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Abstract

In geotechnical finite element analysis, iterative solvers are generally preferred to direct solvers, and for larger problems

iterative solvers usually provide the only economical way for calculating solutions on a desktop PC. In practice, the

speed of convergence of an iterative solver can be increased significantly by using a suitable preconditioner. However,

the wide range of elasto-plastic constitutive models and the changing nature of the equations during the analysis make

effective preconditioning particularly difficult in geotechnical FE analysis. Knowledge of the eigenvalue spectrum of the

stiffness matrix is helpful in designing effective preconditioners. In this paper we look at the eigenvalues of the element

stiffness matrix when elasto-plastic models such as the Mohr-Coulomb model are used. Specifically, we consider the

effect on the condition number from the onset of plasticity. This should provide valuable insight for constructing effective

preconditioners for elasto-plastic problems.
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1. Background

Finite element (FE) techniques are widely used in geotechnical engineering for modelling many situations of practical

interest. As the scope and complexity of the models being studied grows, so does the need for efficient numerical algo-

rithms to ensure that the problems can be solved using a realistic amount of computational time and computer memory.

A typical FE analysis usually involves linearisation within a nonlinear iteration procedure, such as a modified Euler or

Newton-Raphson methods (see, for example, [1, 2]). With these approaches, each nonlinear iteration involves a large,

sparse linear system of the form

Ku = f (1)

(where K is the structure stiffness matrix and f represents the load vector) which must be solved for the nodal displace-

ments u. For many realistic problems, the use of direct methods such as Gaussian Elimination to solve (1) is simply not

practical, hence there is a pressing need to develop efficient iterative methods to do this.

For problems where the coefficient matrix K is symmetric and positive definite (SPD), the method of choice is usually

the conjugate gradient (CG) method [3]. The convergence behaviour of CG is well understood and is known to depend

on the eigenvalue spectrum of K. This suggests the idea of preconditioning system (1): theoretically, this is equivalent

to replacing K by a preconditioned matrix P−1K whose eigenvalue spectrum facilitates faster CG convergence, leading

to the Preconditioned Conjugate Gradient (PCG) method [4]. In particular, it can be shown that the number of PCG

iterations required for convergence to within a specified tolerance is proportional to the square root of the condition

number κ = λmax/λmin, where λmax and λmin are the extreme eigenvalues of the preconditioned coefficient matrix (see,

for example, [5]). One preconditioning strategy is therefore to find a preconditioner P such that the condition number of

P−1K is smaller than that of K. However, this must be done whilst ensuring that the action of the matrix P−1 (required by

the PCG algorithm) is available at a reasonable cost.

The development of efficient preconditioners is a vibrant area of current research (see e.g. [6]). Although PCG methods

have been used successfully for structural engineering problems such as linear elasticity [7, 8, 9, 10, 11], the issues

surrounding preconditioning problems in other geotechnical finite element analyses are less well understood, particularly

when the coefficient matrix in (1) is not SPD (see, for example, [12, 13]). For nonsymmetric systems, preconditioned

versions of alternative iterative methods such as GMRES [14], Bi-CGSTAB [15] or IDR(s) [16] must be used. Although

convergence properties for these methods are not as well understood as for PCG, it is generally accepted that in many

cases, the eigenvalue spectrum still plays an important role. In this paper, we will consider some model problems with

elasto-plastic material behaviour, leading to a nonsymmetric K at the onset of plasticity, and make some observations about

the eigenvalues of K which should be helpful in the design of preconditioners for nonsymmetric iterative algorithms.
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2. Outline of the finite element model

As an illustration, we consider a problem discretised using a total of Ndo f degrees of freedom on a domain Ωd in d

dimensions, with NE finite elements whose nodes do not have rotational freedoms. For an element with Ne nodes, the

element stiffness matrix can be constructed by evaluating the integral

Ke =

∫

V

BT DB dV (2)

over the element length, area or volume. Here B is a 6 × dNe matrix containing derivatives of the shape functions and

D is a 6 × 6 matrix expressing the constitutive behaviour of the material (see, for example, [17, §2.6]), so that Ke is of

size dNe × dNe. The global coefficient matrix K in (1) can then be constructed using an dNe × Ndo f Boolean connectivity

matrix Ce via the steps

K̄e = CT
e KeCe for e = 1, . . . ,NE , K =

NE
∑

e=1

K̄e.

When the assembled stiffness matrix K is symmetric, bounds on its extreme eigenvalues can be obtained by consider-

ing the eigenvalues of individual element matrices. Specifically, it is shown in [18] that

min
e
λmin(Ke) ≤ λ(K) ≤ max

e
λmax(Ke) (3)

where λmin(Ke) and λmax(Ke) represent the extreme eigenvalues of the element matrix Ke. Although the left-hand inequal-

ity can essentially be disregarded here (as it simply gives a lower bound of zero), the right-hand inequality can be used to

predict the dependence of the maximum eigenvalue on problem parameters. Note that if an element-based preconditioner

P is assembled in an analogous way, result (3) also applies to the preconditioned system. To our knowledge, (3) has not

been extended to include nonsymmetric problems, but we anticipate that this may be possible, at least for the subclass of

nonsymmetric matrices whose eigenvalues are real. The fact that the nonsymmetric matrices produced by nonassociated

plasticity have real eigenvalues is certainly true for the Mohr-Coulomb examples studied in this paper, and has been shown

more generally for a Drucker-Prager model in [19]. With this in mind, in this paper we study properties of the maximum

eigenvalue of element matrices of the form (2) with a view to investigating their dependence on material properties.

3. Constitutive behaviour for elasto-plastic problems

For a linear elastic material, the matrix D in (2) takes the form

Del =
E

(1 − 2ν)(1 + ν)
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(4)

where E is Young’s modulus and ν is Poisson’s ratio (see, for example, [17]). Representing the stresses and strains (normal

and shear) in vector form as

σ = [σx, σy, σz, τxy, τyz, τxz]
T , ǫ = [ǫx, ǫy, ǫz, γxy, γyz, γxz]

T ,

the linear elastic relationship between the stress and strain rates can be written as σ̇ = Del
ǫ̇. For an elasto-plastic consti-

tutive model under small deformations with yield function F(σ) and plastic potential function P(σ), it can be shown that

the analogous relationship σ̇ = Dep
ǫ̇ holds, where (for perfect plasticity) the constitutive matrix takes the form

Dep = Del −

Del

(

∂P

∂σ

) (

∂F

∂σ

)T

Del

(

∂F

∂σ

)T

Del

(

∂P

∂σ

)

. (5)

(see, for example, [20]). Different forms of the yield and plastic potential functions will clearly lead to different matrices

Dep. For associated flow (that is, when F ≡ P), Dep will be symmetric: otherwise, Dep will be nonsymmetric. We observe

that, in linear algebra terminology, Dep is simply a rank-one update of Del.
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4. Two Mohr-Coulomb model problems

Assuming the principal stresses σ1, σ2 and σ3 are such that σ1 ≥ σ2 ≥ σ3, for a Mohr-Coulomb model the onset of

plastic deformation is controlled by the yield function

σ1(1 − sin θ) − σ3(1 + sin θ) = 2c cos θ (6)

where c is the cohesion of the material and θ is the angle of internal friction (see, for example, [20]). The plastic potential

function is taken to be

σ1(1 − sinψ) − σ3(1 + sinψ) = 2c cosψ (7)

where ψ is the angle of dilation for the material. Taking ψ = θ (associated flow) leads to a symmetric model but otherwise,

after the onset of plasticity, some of the element matrices in (2) (and hence the coefficient matrix in (1)) will be nonsym-

metric. We now examine the use of this model in two different settings.

Homogeneous 2D plane strain with applied normal tractions

Here we consider a block of cohesionless sand loaded in plane strain conditions with applied normal tractions along all

four edges [20, §3.8]. The coordinate axes are chosen along the principal directions, with no extensional strain in the

z-direction. The stress matrix is therefore diagonal, and the principal stresses are σx, σy and σz. If the block is initially

unstressed then stresses σx andσy are increased (equally) to a value of p0, the principal stresses are given byσx = σy = p0

and σz = 2νp0. In this case, the linear elastic constitutive matrix (4) simplifies to

Del =
E

(1 + ν)(1 − 2ν)

[

1 − ν ν

ν 1 − ν

]

, (8)

which has maximum eigenvalue

λmax(Del) =
E

(1 + ν)(1 − 2ν)
. (9)

In a similar way, (5) evaluates to

Dep =
E

2(1 + ν)(1 − 2ν + sin θ sinψ)

[

(1 − sin θ)(1 − sinψ) (1 + sin θ)(1 − sinψ)

(1 + sinψ)(1 − sin θ) (1 + sin θ)(1 + sinψ)

]

(10)

(see [20, p. 99]). This matrix has only one nonzero eigenvalue, given by

λmax(Dep) =
E(1 + sin θ sinψ)

(1 + ν)(1 − 2ν + sin θ sinψ)
. (11)

Using a finite element model with bilinear basis functions on square elements of side length h (that is, with four nodes

per element), the 8 × 8 element stiffness matrix for elastic elements (using (8)) can be shown to be of the form

Kel
e =

E

(1 + ν)(1 − 2ν)





















1
6
(1 − ν) A1

1
4
ν A2

1
4
ν AT

2
1
6
(1 − ν) A3





















(12)
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. (13)

The maximum eigenvalue of Kel
e is the same as that of Del (as given in (9)). Note that this eigenvalue (and hence the

condition number) tends to infinity as ν→ 0.5, indicating a potential problem for iterative convergence.

In a similar way, the equivalent elasto-plastic finite element stiffness matrix (constructed using (5)) can be written as

K
ep
e =

E

2(1 + ν)(1 − 2ν + sin θ sinψ)
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(14)

again using the matrices in (13). The maximum eigenvalue of (14) is the same as that of Dep (as given in (11)). In contrast

to the elastic case, the denominator of this eigenvalue is bounded away from 0 for non-zero θ, φ as ν→ 0.5.
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Figure 1: Comparison of λmax(Ke) for the elastic and elasto-plastic cases with two-dimensional homogeneous plane strain.

Comparing (11) with (9), we see that, when ν = 0, the maximum eigenvalues both equal E. As ν→ 0.5, however, the

former is bounded above by
2E

3

(

1 +
1

sin θ sinψ

)

whereas the latter is unbounded. This effect is illustrated in Figure 1 for Young’s modulus E = 10. We note that in

practice, the value of θ (the angle of internal friction) typically lies in the range 20◦ to 45◦: the results shown here are

for representative values in this range. In the left-hand plot, θ = ψ in each case so the flow is associated and the matrices

symmetric. The right-hand plot show results for an example with θ , ψ (non-associated flow). The eigenvalue behaviour

is similar for other realistic combinations of θ and ψ.

Homogeneous 3D plane strain with applied normal tractions

We now carry out an equivalent analysis for the analogous homogeneous plane strain problem in a three-dimensional box.

Here the linear elastic constitutive matrix (4) is the 3 × 3 matrix to

Del =
E

(1 + ν)(1 − 2ν)
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, (15)

which has maximum eigenvalue

λmax(Del) =
E

1 − 2ν
. (16)

Discretising with eight-node trilinear box elements of side length h, it can be shown that the associated element matrix

has maximum eigenvalue

λmax(Kel
e ) =

h

2
λmax(Del).

In [21], Yu derives the elasto-plastic constitutive matrix of a Mohr-Coulomb model for two different examples of

stress state. In the case where the stress state lies at the corner defined by two individual yield functions, he gives the

elasto-plastic constitutive matrix as

Dep = C
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where

C =
3E

8(1 + ν) sinψ sin θ + (1 − 2ν)(3 − sinψ)(3 − sin θ)
.

This matrix has maximum eigenvalue

λmax(Dep) =
3E(3(1 + sin θ sinψ) − (sin θ + sinψ))

8(1 + ν) sinψ sin θ + (1 − 2ν)(3 − sinψ)(3 − sin θ)
(17)
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Figure 2: Comparison of λmax(Ke) for the elastic and elasto-plastic cases with three-dimensional homogeous plane strain.

and, as in the elastic case, the maximum eigenvalue of the full elasto-plastic element matrix is a simple scaling of this,

namely

λmax(K
ep
e ) =

h

2
λmax(Dep).

Comparing λmax(Kel
e ) and λmax(K

ep
e ) in this case, we see that when ν = 0, they are both equal to hE/2. However, as in

the two-dimensional case, in the limit as ν→ 0.5, λmax(K
ep
e ) is bounded above, by

hE(3(1 + sin θ sinψ) − (sin θ + sinψ))

4 sin θ sinψ
,

whereas λmax(Kel
e ) grows in an unbounded way.

Figure 2 shows the analogous plots to Figure 1 for the three-dimensional case, again for E = 10, with h = 0.01. The

plots show very similar behaviour to the two-dimensional case.

5. Summary

It is well known that the convergence rate of a Krylov-subspace iterative method is usually adversely affected by

growth in the condition number of the coefficient matrix. In this paper, we have illustrated why iterative solution of linear

elastic problems is difficult, as we have seen unbounded growth in the largest eigenvalue of the linear elastic element

matrix in the limit as Poisson’s ratio ν → 0.5. In contrast, for a Mohr-Coulomb model of plane strain perfect plasticity,

the maximum eigenvalue of the element stiffness matrix is bounded above by a constant (dependent on the angle of internal

friction θ and the angle of dilation ψ) as ν grows. This hold for both associated (symmetric) and non-associated (non-

symmetric) flow problems. Our conclusion is therefore that when designing preconditioners for elasto-plastic problems,

the key issue is how to precondition the elastic part of K, as this will dominate the overall eigenvalue structure.
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