Approximating the inverse Hessian in 4D-Var data assimilation

Alison Ramage

Department of Mathematics and Statistics

University of
 Strathclyde

Glasgow

With thanks to...
Kirsty Brown (Strathclyde), Igor Gejadze (IRSTEA, France), Amos Lawless and Nancy Nichols (Reading)

Four-dimensional Variational Assimilation (4D-Var)

4D-Var aims to find the solution of a numerical forecast model that best fits sequences of observations distributed in space over a finite time interval.

Minimise cost function

$$
J\left(\mathbf{v}_{0}\right)=\left(\mathbf{v}_{0}-\mathbf{v}_{0}^{B}\right)^{T} B^{-1}\left(\mathbf{v}_{0}-\mathbf{v}_{0}^{B}\right)+\sum_{i=0}^{n}\left(\mathcal{H}\left(\mathbf{v}_{i}\right)-\mathbf{y}_{i}\right)^{T} R^{-1}\left(\mathcal{H}\left(\mathbf{v}_{i}\right)-\mathbf{y}_{i}\right)
$$

with constraint $\mathbf{v}_{i}=\mathcal{M}^{i, 0}\left(\mathbf{v}_{0}\right)$.

$$
\begin{array}{cc}
\text { analysis } & \mathbf{v}_{0} \\
\text { background (short-term forecast) } & \mathbf{v}_{0}^{B} \\
\text { observations } & \mathbf{y} \\
\text { observation operator } & \mathcal{H} \\
\text { model dynamics } & \mathbf{v}_{i+1}=\mathcal{M}\left(\mathbf{v}_{i}\right) \\
\text { background error covariance matrix } & B \\
\text { observation error covariance matrix } & R
\end{array}
$$

Incremental 4D-Var

- Linearise \mathcal{H}, \mathcal{M} and solve resulting unconstrained optimisation problem iteratively:

$$
\left.\bar{H}_{k-1}^{i} \equiv \frac{\partial \mathcal{H}^{i}}{\partial \mathbf{v}}\right|_{\mathbf{v}=\mathbf{v}_{k-1}},\left.\quad \bar{M}_{k-1}^{i, 0} \equiv \frac{\partial \mathcal{M}^{i, 0}}{\partial \mathbf{v}}\right|_{\mathbf{v}=\mathbf{v}_{k-1}}
$$

- Hessian of the cost function is

$$
\mathbb{H}=B^{-1}+\widehat{H}^{T} \widehat{R}^{-1} \widehat{H}
$$

where

$$
\begin{aligned}
\widehat{H} & =\left[\left(\bar{H}^{0}\right)^{T},\left(\bar{H}^{1} \bar{M}^{1,0}\right)^{T}, \ldots,\left(\bar{H}^{N} \bar{M}^{N, 0}\right)^{T}\right]^{T} \\
\widehat{R} & =\operatorname{bldiag}\left(R_{i}\right), \quad i=1, \ldots, N .
\end{aligned}
$$

Motivation

Why approximate \mathbb{H}^{-1} ?

- \mathbb{H}^{-1} represents an approximation of the Posterior Covariance Matrix (PCM).
- The PCM can be used to find confidence intervals and carry out a posteriori error analysis.
- $\mathbb{H}^{-1 / 2}$ can be used in ensemble forecasting.
- $\mathbb{H}^{-1}, \mathbb{H}^{-1 / 2}$ can be used for preconditioning in a Gauss-Newton method.

Issues with approximating the inverse Hessian

- State and observation vectors used in realistic applications can be of length $10^{9}-10^{12}$ and $10^{6}-10^{9}$, respectively.
- Cannot store \mathbb{H} as a matrix: only action of applying \mathbb{H} to a vector is available.
- Evaluating $\mathbb{H} \mathbf{v}$ is expensive in terms of computing time and memory (involves both forward and backward model solves with a sequence of tangent linear and adjoint problems).
- No obvious equivalent option exists for evaluating $\mathbb{H}^{-1} \mathbf{v}$.

$$
\mathbb{H}=B^{-1}+\widehat{H}^{\top} \widehat{R}^{-1} \widehat{H}
$$

- Precondition \mathbb{H} based on the background covariance matrix

$$
H=\left(B^{1 / 2}\right)^{T} \mathbb{H} B^{1 / 2}=I+\left(B^{1 / 2}\right)^{\top} \widehat{H}^{\top} \widehat{R}^{-1} \widehat{H} B^{1 / 2}
$$

- Eigenvalues of H are bounded below by one: more details on the full eigenspectrum can be found in Haben et al. (2011), Tabeart et al. (2018).
- Aim here is to construct a limited-memory approximation to the action of H^{-1} using only matrix-vector multiplication.

Correlation matrix

- \mathbb{H}^{-1} (scaled to have unit diagonal)

Preconditioned correlation matrix

- H^{-1} (scaled to have unit diagonal)

Limited-memory approximation for H^{-1}

- H amenable to limited-memory approximation.
- Find n_{e} leading eigenvalues and orthonormal eigenvectors using the Lanczos method (needs only Hv).
- Construct approximation

$$
H \approx I+\sum_{i=1}^{n_{e}}\left(\lambda_{i}-1\right) \mathbf{u}_{i} \mathbf{u}_{i}^{T}
$$

- Can also use this to easily approximate matrix powers (including H^{-1} and $H^{-1 / 2}$):

$$
H^{p} \approx I+\sum_{i=1}^{n_{e}}\left(\lambda_{i}^{p}-1\right) \mathbf{u}_{i} \mathbf{u}_{i}^{T}
$$

Multilevel limited-memory approximation

- Sequence of grid levels $k=0,1,2, \ldots$.

- Matrix H_{0} is available on finest grid $k=0$.
- Construct a multilevel approximation to H_{0}^{-1} based on limited-memory approximations on a sequence of nested grids.
- Need grid transfer operators (more shortly).
- Identity matrix I_{k} on grid level k.
- $[H]_{\rightarrow k}$ means "matrix H transferred to grid level k ".

Grid transfers for vectors

- Coarse grid level $k=c$; fine grid level $k=f$.
- Restriction matrix R; prolongation matrix P : assume "perfect interpolation", i.e., $R P=I_{c}$.
- Split fine grid vector into two parts:

$$
\mathbf{v}_{f}=\mathbf{v}_{f}^{(1)}+\mathbf{v}_{f}^{(2)}=\left(I_{f}-P R\right) \mathbf{v}_{f}+P R \mathbf{v}_{f}
$$

- Restrict \mathbf{v}_{f} to coarse grid:

$$
\begin{gathered}
\mathbf{v}_{c}^{(1)}=R \mathbf{v}_{f}^{(1)}=R\left(I_{f}-P R\right) \mathbf{v}_{f}=(R-(R P) R) \mathbf{v}_{f}=\mathbf{0} \\
\mathbf{v}_{c}^{(2)}=R \mathbf{v}_{f}^{(2)}=(R P) R \mathbf{v}_{f}=R \mathbf{v}_{f}
\end{gathered}
$$

- Modes in $\mathbf{v}_{f}^{(1)}$ are not supported on coarse grid.

Grid transfers for matrices

- Consider action of coarse grid matrix H_{c} on a fine grid vector:

$$
\begin{aligned}
{\left[H_{c}\right]_{\rightarrow f} \mathbf{v}_{f} } & =\mathbf{v}_{f}^{(1)}+P H_{c} R \mathbf{v}_{f}^{(2)} \\
& =\left(I_{f}-P R\right) \mathbf{v}_{f}+P H_{c}(R P) R \mathbf{v}_{f} \\
& =\left(P\left(H_{c}-I_{c}\right) R+I_{f}\right) \mathbf{v}_{f}
\end{aligned}
$$

- This motivates matrix transfer operators
- From coarse grid to fine grid

$$
\left[H_{c}\right]_{\rightarrow f}=P\left(H_{c}-I_{c}\right) R+I_{f}
$$

- From fine grid to coarse grid

$$
\left[H_{f}\right]_{\rightarrow c}=R\left(H_{f}-I_{f}\right) P+I_{c}
$$

Hessian in a multilevel framework

- Diagonal of H^{-1} on various grid levels:

$$
\begin{gathered}
H_{0} \\
H_{0}=\left[H_{0}\right]_{\rightarrow 0} \\
H_{1}=\left[H_{0}\right]_{\rightarrow 1} \\
H_{2}=\left[H_{0}\right]_{\rightarrow 2} \\
H_{3}=\left[H_{0}\right]_{\rightarrow 3}
\end{gathered}
$$

Motivating idea

- Eigenvalues of $\left[H_{c}^{-1 / 2}\right]_{\rightarrow f} H_{f}\left[H_{c}^{-1 / 2}\right]_{\rightarrow f}$ should be clustered around 1.
- Construct an approximation to $H_{c}^{-1 / 2}$:
- Precondition H_{c} to obtain $\tilde{H}_{c}=M^{T} H_{c} M$ with eigenvalues closer to 1.
- Build \hat{H}_{c}, a limited memory approximation for \tilde{H}_{c} using n_{c} eigenvalues with the Lanczos method.
- Note that

$$
H_{c}^{-1}=M \tilde{H}_{c}^{-1} M^{T} \simeq M \hat{H}_{c}^{-1} M^{T}
$$

so

$$
H_{c}^{-1 / 2}=M \tilde{H}_{c}^{-1 / 2} \simeq M \hat{H}_{c}^{-1 / 2} .
$$

- Use $\hat{M}=\left[M \hat{H}_{c}^{-1 / 2}\right]_{\rightarrow f}$ as a preconditioner on the level above.

Outline of multilevel concept

Step 1. Start on coarsest grid level.

Step 2. Represent H_{0} on grid level k as $H_{k}=\left[H_{0}\right]_{\rightarrow k}$.
Step 3. Precondition this to obtain $\tilde{H}_{k}=M_{k}^{T} H_{k} M_{k}$.
Step 4. Build limited memory approximation $\hat{H}_{k}^{-1 / 2}$.
Step 5. Project $\hat{M}_{k}=M_{k} \hat{H}_{k}^{-1 / 2}$ to the level above to be used as preconditioner at the next coarsest level.

Step 6. Move up one grid level and repeat from step 2.

Preconditioners

- On coarsest grid, level $k+1$ does not exist so set $M_{k}=I_{k}$.
- For other levels, M_{k} is constructed on level $k+1$ and applied on level k.
- Preconditioners are constructed recursively:

$$
M_{k}=\left[\hat{M}_{k+1}\right]_{\rightarrow k}=\left[M_{k+1} \hat{H}_{k+1}^{-1 / 2}\right]_{\rightarrow k}
$$

- At level 0, final inverse Hessian approximation $H_{a p p r o x}^{-1}$ will contain eigenvalue information from all levels.

Algorithm in practice

- use $N_{e}=\left(n_{0}, n_{1}, \ldots, n_{k_{c}}\right)$ eigenvalues at each level

$$
\begin{aligned}
& {[\Lambda, \mathcal{U}]=M \operatorname{Lalg}\left(H_{0}, N_{e}\right)} \\
& \text { for } \quad k=k_{c}, k_{c}-1, \ldots, 0 \\
& \quad \text { compute by the Lanczos method } \\
& \quad\left\{\lambda_{k}^{i}, U_{k}^{i}\right\}, i=1, \ldots, n_{k} \text { of } \tilde{H}_{0 \rightarrow k} \\
& \text { using preconditioner } M_{k} \\
& \text { end }
\end{aligned}
$$

- storage:

$$
\begin{aligned}
\Lambda & =\left[\lambda_{0}^{1}, \ldots, \lambda_{0}^{n_{0}}, \lambda_{1}^{1}, \ldots, \lambda_{1}^{n_{1}}, \ldots, \lambda_{k_{c}}^{1}, \ldots, \lambda_{k_{c}}^{n_{k_{c}}}\right] \\
\mathcal{U} & =\left[U_{0}^{1}, \ldots, U_{0}^{n_{0}}, U_{1}^{1}, \ldots, U_{1}^{n_{1}}, \ldots, U_{k_{c}}^{1}, \ldots, U_{k_{c}}^{n_{k_{c}}}\right] .
\end{aligned}
$$

Assessing approximation accuracy

- Riemannian distance:

$$
\delta(A, B)=\left\|\ln \left(B^{-1} A\right)\right\|_{F}=\left(\sum_{i=1}^{n} \ln ^{2} \lambda_{i}\right)^{1 / 2}
$$

- Compare eigenvalues of H^{-1} and $H_{\text {approx }}^{-1}$ on the finest grid level $k=0$ using distance function

$$
D=\frac{\delta\left(H^{-1}, H_{\text {approx }}^{-1}\right)}{\delta\left(H^{-1}, I\right)}
$$

- Vary number of eigenvalues chosen on each grid level

$$
N_{e}=\left(n_{0}, n_{1}, \ldots, n_{k_{c}}\right)
$$

- Model is 1D Burgers' equation.
- Discretise evolution equation on a grid with $m+1$ nodes (level 0) to represent full Hessian H_{0}.
- Grid level k contains $m_{k}=m / 2^{k}+1$ nodes.
- 1D uniform grid with 7 sensors located at $0.3,0.4,0.45,0.5$, $0.55,0.6$, and 0.7 in $[0,1]$.
- Construct a multilevel approximation to H^{-1} with four grid levels:

k	0	1	2	3
grid points	401	201	101	51

- Exact (blue circles), approximated (red stars)

- Exact (blue circles), approximated (red stars)

- Exact (blue circles), approximated (red stars)

- Fixed memory ratio $R=\sum_{k=0}^{k_{c}} \frac{n_{k}}{2^{k}}$

H_{0}
$(64,0,0,0)$
$(8,0,0,0)$
$(2,4,8,16)$
$(0,0,29,6)$

Example: PCG iteration for one Newton step

- Hessian linear system (within a Gauss-Newton method):

$$
H\left(\mathbf{u}_{k}\right) \delta \mathbf{u}_{k}=G\left(\mathbf{u}_{k}\right)
$$

- Solve using Preconditioned Conjugate Gradient iteration (needs only Hv).
- measurement units
- storage: length of vector on finest grid
- solve cost: cost of HVP on finest grid HVP

Preconditioner	\# CG iterations	storage	solve cost
none	57	0 L	57 HVP
$\mathrm{ML}(400,0,0,0)$	1	400 L	402 HVP
$\mathrm{ML}(4,8,16,32)$	4	16 L	34 HVP
$\mathrm{ML}(0,8,16,32)$	5	12 L	14 HVP
$\mathrm{ML}(0,0,16,32)$	8	8 L	10 HVP

Problem 1: Solve cost measured in number of HVPs

Test problem 2

- Model is 1D shallow water equations for velocity u and geopotential $\phi=g h$.

$$
\begin{aligned}
\frac{D u}{D t}+\frac{\partial \phi}{\partial x} & =-g \frac{\partial H}{\partial x} \\
\frac{D(\ln \phi)}{D t}+\frac{\partial u}{\partial x} & =0
\end{aligned}
$$

- Uniformly spaced sensors.
- Four grid multilevel structure as before.

PCG iteration for one Newton step

- Background covariance matrix B constructed using a Laplacian correlation function.

	\# PCG iterations			
Preconditioner	$n=400$	$n=800$	$n=1600$	$n=3200$
none	308	1302	5,879	25,085
$\mathrm{ML}(4,0,0,0)$	38	34	34	47
$\mathrm{ML}(1,2,4,8)$	31	29	28	37
$\mathrm{ML}(0,2,4,16)$	27	26	24	32
$\mathrm{ML}(0,0,8,16)$	26	25	24	30
$\mathrm{ML}(0,0,0,32)$	23	19	19	24

- Background covariance matrix B constructed using a Second-Order Auto-Regressive (SOAR) correlation function.

	\# PCG iterations			
Preconditioner	$n=400$	$n=800$	$n=1600$	$n=3200$
none	509	2,277	10,453	43,915
$\mathrm{ML}(4,0,0,0)$	39	35	35	44
$\mathrm{ML}(1,2,4,8)$	28	26	26	34
$\mathrm{ML}(0,2,4,16)$	23	22	21	27
$\mathrm{ML}(0,0,8,16)$	22	21	20	26
$\mathrm{ML}(0,0,0,32)$	19	16	15	20

- partition domain into S subregions and compute local Hessians H^{s} such that

$$
H(\mathbf{v})=I+\sum_{s=1}^{S}\left(H^{s}(\mathbf{v})-I\right)
$$

- computational advantages of local Hessians:
- fewer eigenvalues required for limited-memory approximation;
- can be calculated at a coarser grid level;
- can use local rather than global models;
- can be computed in parallel.
(1) Compute limited-memory approximations to local sensor-based Hessians on level k using n_{k} eigenpairs:

$$
H_{k}^{s} \approx I+\sum_{i=1}^{n_{k}}\left(\lambda_{i}-1\right) \mathbf{u}_{i} \mathbf{u}_{i}^{T}
$$

(2) Assemble these to form H_{a}.
(3) Apply MLalg to H_{a} based on a fixed N_{e}.

- Advantage:
- Local Hessians cheaper to compute.
- Disadvantages:
- Additional user-specified parameter(s) n_{k} needed.
- More memory required as local Hessians must also be stored.

Sample costs including building preconditioner

- Local Hessians with 8 eigenvalues at level 0 (solid lines) or level 1 (dashed lines).

Practical approach: Version 2

(1) Approximate each local Hessian H_{k}^{s} by applying MLalg to local inverse Hessians based on $N_{e, k}$.
(2) Assemble these to form reduced-memory Hessian $H_{a}^{r m}$.
(3) Use MLalg again on $H_{a}^{r m}$ based on N_{e}.

- Advantage:
- Requires less memory than Version 1.
- Disadvantage:
- Additional user-specified parameter(s) $N_{e, k}$ needed.

Version 2: cost including building preconditioner

- Local Hessians with 8 eigenvalues at level 0 (solid lines) or level 1 (dashed lines) with $N_{e, k}=(8,4,0,0) \mathrm{ML}$ approx.

Concluding remarks

- Algorithm based solely on repeated use of Lanczos at each level (for building limited-memory approximations).
- Difficult to identify the correct number of eigenvalues to use at each level: good rule of thumb available but analysis would be better!
- Full algorithm may not always be practical, but we have developed practical implementations based on Hessian decompositions.
- Also works well for other configurations (e.g. moving sensors, different initial conditions).
- Potential for extension to higher dimensions and other applications.

Concluding remarks

- Algorithm based solely on repeated use of Lanczos at each level (for building limited-memory approximations).
- Difficult to identify the correct number of eigenvalues to use at each level: good rule of thumb available but analysis would be better!
- Full algorithm may not always be practical, but we have developed practical implementations based on Hessian decompositions.
- Also works well for other configurations (e.g. moving sensors, different initial conditions).
- Potential for extension to higher dimensions and other applications.

> Thank you!

