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Four-dimensional Variational Assimilation (4D-Var)

4D-Var aims to find the solution of a numerical forecast model
that best fits sequences of observations distributed in space over a
finite time interval.

Minimise cost function

J(v0) = (v0 − vB0 )
TB−1(v0 − vB0 ) +

n∑

i=0

(H(vi )− yi )
TR−1(H(vi )− yi )

with constraint vi = Mi ,0(v0).

analysis v0
background (short-term forecast) vB0

observations y

observation operator H
model dynamics vi+1 = M(vi )

background error covariance matrix B

observation error covariance matrix R
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Incremental 4D-Var

Linearise H, M and solve resulting unconstrained
optimisation problem iteratively:

H̄ i
k−1 ≡

∂Hi

∂v

∣∣∣∣
v=vk−1

, M̄
i ,0
k−1 ≡

∂Mi ,0

∂v

∣∣∣∣
v=vk−1

Hessian of the cost function is

H = B−1 + ĤT R̂−1Ĥ

where
Ĥ = [(H̄0)T , (H̄1M̄1,0)T , . . . , (H̄NM̄N,0)T ]T

R̂ = bldiag(Ri), i = 1, . . . ,N.
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Motivation

Why approximate H
−1?

H
−1 represents an approximation of the Posterior Covariance

Matrix (PCM).

The PCM can be used to find confidence intervals and carry
out a posteriori error analysis.

H
−1/2 can be used in ensemble forecasting.

H
−1, H−1/2 can be used for preconditioning in a

Gauss-Newton method.
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Issues with approximating the inverse Hessian

State and observation vectors used in realistic applications can
be of length 109 − 1012 and 106 − 109, respectively.

Cannot store H as a matrix: only action of applying H to a
vector is available.

Evaluating Hv is expensive in terms of computing time and
memory (involves both forward and backward model solves
with a sequence of tangent linear and adjoint problems).

No obvious equivalent option exists for evaluating H
−1v.
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First level preconditioning

H = B−1 + ĤT R̂−1Ĥ

Precondition H based on the background covariance matrix

H = (B1/2)THB1/2 = I + (B1/2)T ĤT R̂−1ĤB1/2

Eigenvalues of H are bounded below by one: more details on
the full eigenspectrum can be found in Haben et al. (2011),
Tabeart et al. (2018).

Aim here is to construct a limited-memory approximation to
the action of H−1 using only matrix-vector multiplication.
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Correlation matrix

H
−1 (scaled to have unit diagonal)

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

Alison Ramage, University of Strathclyde Approximating the inverse Hessian in 4D-Var



Preconditioned correlation matrix

H−1 (scaled to have unit diagonal)
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Limited-memory approximation for H−1

H amenable to limited-memory approximation.

Find ne leading eigenvalues and orthonormal eigenvectors
using the Lanczos method (needs only Hv).

Construct approximation

H ≈ I +

ne∑

i=1

(λi − 1)uiu
T
i

Can also use this to easily approximate matrix powers
(including H−1 and H−1/2):

Hp ≈ I +

ne∑

i=1

(λp
i − 1)uiu

T
i
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Multilevel limited-memory approximation

Sequence of grid levels k = 0, 1, 2, . . ..
level 0

level 1

level 2

level 3

Matrix H0 is available on finest grid k = 0.

Construct a multilevel approximation to H−1
0 based on

limited-memory approximations on a sequence of nested grids.

Need grid transfer operators (more shortly).

Identity matrix Ik on grid level k .

[H]→k means “matrix H transferred to grid level k”.
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Grid transfers for vectors

Coarse grid level k = c ; fine grid level k = f .

Restriction matrix R ; prolongation matrix P : assume “perfect
interpolation”, i.e., RP = Ic .

Split fine grid vector into two parts:

vf = v
(1)
f +v

(2)
f = (If − PR)vf+PRvf .

Restrict vf to coarse grid:

v
(1)
c = Rv

(1)
f = R(If − PR)vf = (R − (RP)R)vf = 0

v
(2)
c = Rv

(2)
f = (RP)Rvf = Rvf .

Modes in v
(1)
f are not supported on coarse grid.
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Grid transfers for matrices

Consider action of coarse grid matrix Hc on a fine grid vector:

[Hc ]→f vf = v
(1)
f + PHcRv

(2)
f

= (If − PR)vf + PHc(RP)Rvf

= (P(Hc − Ic)R + If )vf

This motivates matrix transfer operators

From coarse grid to fine grid

[Hc ]→f = P(Hc − Ic)R + If

From fine grid to coarse grid

[Hf ]→c = R(Hf − If )P + Ic
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Hessian in a multilevel framework

Diagonal of H−1 on various grid levels:
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Eigenvalues of Hessian at each level

H0

H0 = [H0]→0

H1 = [H0]→1

H2 = [H0]→2

H3 = [H0]→3
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Motivating idea

Eigenvalues of [H
−1/2
c ]→f Hf [H

−1/2
c ]→f should be clustered

around 1.

Construct an approximation to H
−1/2
c :

Precondition Hc to obtain H̃c = MTHcM with eigenvalues
closer to 1.

Build Ĥc , a limited memory approximation for H̃c using nc
eigenvalues with the Lanczos method.

Note that
H−1

c = MH̃−1
c MT ≃ MĤ−1

c MT

so
H−1/2

c = MH̃−1/2
c ≃ MĤ−1/2

c .

Use M̂ = [MĤ
−1/2
c ]→f as a preconditioner on the level above.
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Outline of multilevel concept

Step 1. Start on coarsest grid level.

Step 2. Represent H0 on grid level k as Hk = [H0]→k .

Step 3. Precondition this to obtain H̃k = MT
k HkMk .

Step 4. Build limited memory approximation Ĥ
−1/2
k .

Step 5. Project M̂k = MkĤ
−1/2
k to the level above to be used as

preconditioner at the next coarsest level.

Step 6. Move up one grid level and repeat from step 2.
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Preconditioners

On coarsest grid, level k + 1 does not exist so set Mk = Ik .

For other levels, Mk is constructed on level k + 1 and applied
on level k .

Preconditioners are constructed recursively:

Mk = [M̂k+1]→k =
[
Mk+1Ĥ

−1/2
k+1

]
→k

.

At level 0, final inverse Hessian approximation H−1
approx will

contain eigenvalue information from all levels.
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Algorithm in practice

use Ne = (n0, n1, . . . , nkc ) eigenvalues at each level

[Λ,U ]=MLalg(H0,Ne)
for k = kc , kc − 1, . . . , 0

compute by the Lanczos method

{λi
k ,U

i
k}, i = 1, . . . , nk of H̃0→k

using preconditioner Mk

end

storage:

Λ =
[
λ1
0, . . . , λ

n0
0 , λ1

1, . . . , λ
n1
1 , . . . , λ1

kc
, . . . , λ

nkc
kc

]
,

U =
[
U1
0 , . . . ,U

n0
0 ,U1

1 , . . . ,U
n1
1 , . . . ,U1

kc
, . . . ,U

nkc
kc

]
.
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Assessing approximation accuracy

Riemannian distance:

δ(A,B) =
∥∥ln(B−1A)

∥∥
F
=

(
n∑

i=1

ln2λi

)1/2

Compare eigenvalues of H−1 and H−1
approx on the finest grid

level k = 0 using distance function

D =
δ(H−1,H−1

approx )

δ(H−1, I )

Vary number of eigenvalues chosen on each grid level

Ne = (n0, n1, . . . , nkc )
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Test problem 1

Model is 1D Burgers’ equation.

Discretise evolution equation on a grid with m + 1 nodes
(level 0) to represent full Hessian H0.

Grid level k contains mk = m/2k + 1 nodes.

1D uniform grid with 7 sensors located at 0.3, 0.4, 0.45, 0.5,
0.55, 0.6, and 0.7 in [0, 1].

Construct a multilevel approximation to H−1 with four grid
levels:

k 0 1 2 3

grid points 401 201 101 51
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Eigenvalues of the inverse Hessian

Exact (blue circles), approximated (red stars)
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Eigenvalues of the inverse Hessian

Exact (blue circles), approximated (red stars)
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Eigenvalues of the inverse Hessian

Exact (blue circles), approximated (red stars)
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Fixed memory ratio

Fixed memory ratio R =
kc∑

k=0

nk

2k

R
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Eigenvalues of preconditioned Hessian

H0

(64, 0, 0, 0)

(8, 0, 0, 0)

(2, 4, 8, 16)

(0, 0, 29, 6)
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Example: PCG iteration for one Newton step

Hessian linear system (within a Gauss-Newton method):

H(uk)δuk = G (uk)

Solve using Preconditioned Conjugate Gradient iteration
(needs only Hv).

measurement units
storage: length of vector on finest grid L
solve cost: cost of HVP on finest grid HVP

Preconditioner # CG iterations storage solve cost

none 57 0 L 57 HVP

ML(400,0,0,0) 1 400 L 402 HVP

ML(4,8,16,32) 4 16 L 34 HVP

ML(0,8,16,32) 5 12 L 14 HVP

ML(0,0,16,32) 8 8 L 10 HVP
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Problem 1: Solve cost measured in number of HVPs
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Test problem 2

Model is 1D shallow water equations for velocity u and
geopotential φ = gh.

Du

Dt
+

∂φ

∂x
= −g

∂H

∂x
D(lnφ)

Dt
+

∂u

∂x
= 0

h

y

x
Ho

Uniformly spaced sensors.

Four grid multilevel structure as before.
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PCG iteration for one Newton step

Background covariance matrix B constructed using a
Laplacian correlation function.

# PCG iterations

Preconditioner n = 400 n = 800 n = 1600 n = 3200

none 308 1302 5,879 25,085

ML(4,0,0,0) 38 34 34 47

ML(1,2,4,8) 31 29 28 37

ML(0,2,4,16) 27 26 24 32

ML(0,0,8,16) 26 25 24 30

ML(0,0,0,32) 23 19 19 24
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PCG iteration for one Newton step

Background covariance matrix B constructed using a
Second-Order Auto-Regressive (SOAR) correlation function.

# PCG iterations

Preconditioner n = 400 n = 800 n = 1600 n = 3200

none 509 2,277 10,453 43,915

ML(4,0,0,0) 39 35 35 44

ML(1,2,4,8) 28 26 26 34

ML(0,2,4,16) 23 22 21 27

ML(0,0,8,16) 22 21 20 26

ML(0,0,0,32) 19 16 15 20

Alison Ramage, University of Strathclyde Approximating the inverse Hessian in 4D-Var



Practical implementation: Hessian decomposition

partition domain into S subregions and compute local
Hessians Hs such that

H(v) = I +

S∑

s=1

(Hs (v) − I )

computational advantages of local Hessians:

fewer eigenvalues required for limited-memory approximation;
can be calculated at a coarser grid level;
can use local rather than global models;
can be computed in parallel.
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Practical approach: Version 1

1 Compute limited-memory approximations to local sensor-based
Hessians on level k using nk eigenpairs:

Hs
k ≈ I +

nk∑

i=1

(λi − 1)uiu
T
i

2 Assemble these to form Ha.

3 Apply MLalg to Ha based on a fixed Ne .

Advantage:

Local Hessians cheaper to compute.

Disadvantages:

Additional user-specified parameter(s) nk needed.
More memory required as local Hessians must also be stored.
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Sample costs including building preconditioner
Local Hessians with 8 eigenvalues at level 0 (solid lines) or
level 1 (dashed lines).
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Practical approach: Version 2

1 Approximate each local Hessian Hs
k by applying MLalg to local

inverse Hessians based on Ne,k .

2 Assemble these to form reduced-memory Hessian Hrm
a .

3 Use MLalg again on Hrm
a based on Ne .

Advantage:

Requires less memory than Version 1.

Disadvantage:

Additional user-specified parameter(s) Ne,k needed.
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Version 2: cost including building preconditioner
Local Hessians with 8 eigenvalues at level 0 (solid lines) or
level 1 (dashed lines) with Ne,k = (8, 4, 0, 0) ML approx.
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Concluding remarks

Algorithm based solely on repeated use of Lanczos at each
level (for building limited-memory approximations).

Difficult to identify the correct number of eigenvalues to use
at each level: good rule of thumb available but analysis would
be better!

Full algorithm may not always be practical, but we have
developed practical implementations based on Hessian
decompositions.

Also works well for other configurations (e.g. moving sensors,
different initial conditions).

Potential for extension to higher dimensions and other
applications.
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Concluding remarks

Algorithm based solely on repeated use of Lanczos at each
level (for building limited-memory approximations).

Difficult to identify the correct number of eigenvalues to use
at each level: good rule of thumb available but analysis would
be better!

Full algorithm may not always be practical, but we have
developed practical implementations based on Hessian
decompositions.

Also works well for other configurations (e.g. moving sensors,
different initial conditions).

Potential for extension to higher dimensions and other
applications.

Thank you!
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