Approximation of the Inverse Hessian in Large-Scale Variational Data Assimilation Problems

Alison Ramage

Department of Mathematics and Statistics

With thanks to...

Kirsty Brown (Strathclyde), Igor Gejadze (IRSTEA, France),

Amos Lawless and Nancy Nichols (Reading)

Four-dimensional Variational Assimilation (4D-Var)

4D-Var aims to find the solution of a numerical forecast model that best fits sequences of observations distributed in space over a finite time interval.

Minimise cost function

$$J(\mathbf{v}_0) = (\mathbf{v}_0 - \mathbf{v}_0^B)^T \mathcal{B}^{-1} (\mathbf{v}_0 - \mathbf{v}_0^B) + \sum_{i=0}^n (\mathcal{H}(\mathbf{v}_i) - \mathbf{y}_i)^T \mathcal{R}^{-1} (\mathcal{H}(\mathbf{v}_i) - \mathbf{y}_i)$$

with constraint $\mathbf{v}_i = \mathcal{M}^{i,0}(\mathbf{v}_0)$.

analysis	\mathbf{v}_0
background (short-term forecast)	v_0^B
observations	y
observation operator	${\cal H}$
model dynamics	$\mathbf{v}_{i+1} = \mathcal{M}(\mathbf{v}_i)$
background error covariance matrix	${\cal B}$
observation error covariance matrix	${\cal R}$

Incremental 4D-Var

• Linearise \mathcal{H} , \mathcal{M} and solve resulting unconstrained optimisation problem iteratively:

$$\left. \bar{H}_{k-1}^{i} \equiv \frac{\partial \mathcal{H}^{i}}{\partial \mathbf{v}} \right|_{\mathbf{v} = \mathbf{v}_{k-1}}, \qquad \left. \bar{M}_{k-1}^{i,0} \equiv \frac{\partial \mathcal{M}^{i,0}}{\partial \mathbf{v}} \right|_{\mathbf{v} = \mathbf{v}_{k-1}}$$

Hessian of the cost function is

$$\mathbb{H} = \mathcal{B}^{-1} + \widehat{H}^T \widehat{\mathcal{R}}^{-1} \widehat{H}$$

where
$$\widehat{H} = [(\overline{H}^0)^T, (\overline{H}^1 \overline{M}^{1,0})^T, \dots, (\overline{H}^N \overline{M}^{N,0})^T]^T$$

 $\widehat{\mathcal{R}} = \text{bldiag}(\mathcal{R}_i), \quad i = 1, \dots, N.$

• Cannot store \mathbb{H} as a matrix: only action of applying \mathbb{H} to a vector is available.

Motivation

- Why approximate \mathbb{H}^{-1} ?
 - ℍ⁻¹ represents an approximation of the Posterior Covariance Matrix (PCM).
 - The PCM can be used to find confidence intervals and carry out a posteriori error analysis.
 - \bullet $\mathbb{H}^{-1/2}$ can be used in ensemble forecasting.
 - \mathbb{H}^{-1} , $\mathbb{H}^{-1/2}$ can be used for preconditioning in a Gauss-Newton method.
- What are the main challenges?
 - Evaluating Hv is expensive in terms of computing time and memory (involves both forward and backward model solves with a sequence of tangent linear and adjoint problems).
 - No obvious equivalent option exists for evaluating $\mathbb{H}^{-1}\mathbf{v}$.

First level preconditioning

$$\mathbb{H} = \mathcal{B}^{-1} + \widehat{H}^T \widehat{\mathcal{R}}^{-1} \widehat{H}$$

Precondition
 \mathbb{H} based on the background covariance matrix (control variable transform):

$$H = (\mathcal{B}^{1/2})^T \mathbb{H} \mathcal{B}^{1/2} = I + (\mathcal{B}^{1/2})^T \widehat{H}^T \widehat{\mathcal{R}}^{-1} \widehat{H} \mathcal{B}^{1/2}$$

- Eigenvalues of H are bounded below by one: more details on the full eigenspectrum can be found in HABEN ET AL. (2011), TABEART ET AL. (2018).
- Aim here is to construct a limited-memory approximation to the action of H^{-1} using only matrix-vector multiplication.

Limited-memory approximation for H^{-1}

- *H* amenable to limited-memory approximation.
- Find n_e leading eigenvalues and orthonormal eigenvectors using the Lanczos method (needs only $H\mathbf{v}$).
- Construct approximation

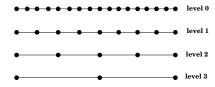
$$H \approx I + \sum_{i=1}^{n_e} (\lambda_i - 1) \mathbf{u}_i \mathbf{u}_i^T$$

• Can also use this to easily approximate matrix powers (including H^{-1} and $H^{-1/2}$):

$$H^p pprox I + \sum_{i=1}^{n_e} (\lambda_i^p - 1) \mathbf{u}_i \mathbf{u}_i^T$$

Multilevel limited-memory approximation

• Sequence of grid levels $k = 0, 1, 2, \dots$



- Matrix H_0 is available on finest grid k=0.
- Construct a multilevel approximation to H_0^{-1} based on limited-memory approximations on a sequence of nested grids.
- Need grid transfer operators (more shortly).
- Identity matrix l_k on grid level k.
- $[H]_{\rightarrow k}$ means "matrix H transferred to grid level k".

Grid transfers for vectors

- Coarse grid level k = c; fine grid level k = f.
- Restriction matrix R; prolongation matrix P: assume "perfect interpolation", i.e., $RP = I_c$.
- Split fine grid vector into two parts:

$$\mathbf{v}_{f} = \mathbf{v}_{f}^{(1)} + \mathbf{v}_{f}^{(2)} = (I_{f} - PR)\mathbf{v}_{f} + PR\mathbf{v}_{f}.$$

• Restrict \mathbf{v}_f to coarse grid:

$$\mathbf{v}_{c}^{(1)} = R\mathbf{v}_{f}^{(1)} = R(I_{f} - PR)\mathbf{v}_{f} = (R - (RP)R)\mathbf{v}_{f} = \mathbf{0}$$

$$\mathbf{v}_{c}^{(2)} = R\mathbf{v}_{f}^{(2)} = (RP)R\mathbf{v}_{f} = R\mathbf{v}_{f}.$$

• Modes in $\mathbf{v}_f^{(1)}$ are not supported on coarse grid.

Grid transfers for matrices

• Consider action of coarse grid matrix H_c on a fine grid vector:

$$[H_c]_{\to f} \mathbf{v}_f = \mathbf{v}_f^{(1)} + PH_cR\mathbf{v}_f^{(2)}$$

$$= (I_f - PR)\mathbf{v}_f + PH_c(RP)R\mathbf{v}_f$$

$$= (P(H_c - I_c)R + I_f)\mathbf{v}_f$$

- This motivates matrix transfer operators
 - From coarse grid to fine grid

$$[H_c]_{\to f} = P(H_c - I_c)R + I_f$$

• From fine grid to coarse grid

$$[H_f]_{\to c} = R(H_f - I_f)P + I_c$$

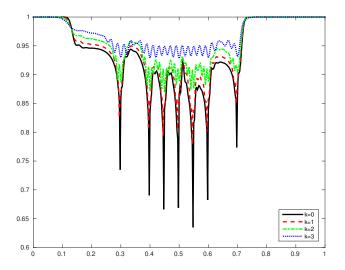
Test problem 1

- Model is 1D Burgers' equation.
- Discretise evolution equation on a grid with m+1 nodes (level 0) to represent full Hessian H_0 .
- Grid level k contains $m_k = m/2^k + 1$ nodes.
- 1D uniform grid with 7 sensors located at 0.3, 0.4, 0.45, 0.5, 0.55, 0.6, and 0.7 in [0,1].
- Construct a multilevel approximation to H^{-1} with four grid levels:

k	0	1	2	3
grid points	401	201	101	51

Hessian in a multilevel framework

• Diagonal of H^{-1} on various grid levels:



Motivating idea

- Eigenvalues of $[H_c^{-1/2}]_{\to f}$ H_f $[H_c^{-1/2}]_{\to f}$ should be clustered around 1.
- Construct an approximation to $H_c^{-1/2}$:
 - Precondition H_c to obtain $\tilde{H}_c = M^T H_c M$ with eigenvalues closer to 1.
 - Build \hat{H}_c , a limited memory approximation for \tilde{H}_c using n_c eigenvalues with the Lanczos method.
 - Note that

$$H_c^{-1} = M \tilde{H}_c^{-1} M^T \simeq M \hat{H}_c^{-1} M^T$$

SO

$$H_c^{-1/2} = M \tilde{H}_c^{-1/2} \simeq M \hat{H}_c^{-1/2}.$$

• Use $\hat{M} = [M\hat{H}_c^{-1/2}]_{\to f}$ as a preconditioner on the level above.

Outline of multilevel concept

- Step 1. Start on coarsest grid level.
- Step 2. Represent H_0 on grid level k as $H_k = [H_0]_{\rightarrow k}$.
- Step 3. Precondition this to obtain $\tilde{H}_k = M_k^T H_k M_k$.
- Step 4. Build limited memory approximation $\hat{H}_k^{-1/2}$.
- Step 5. Project $\hat{M}_k = M_k \hat{H}_k^{-1/2}$ to the level above to be used as preconditioner at the next coarsest level.
- Step 6. Move up one grid level and repeat from step 2.

Preconditioners

- On coarsest grid, level k+1 does not exist so set $M_k = I_k$.
- For other levels, M_k is constructed on level k+1 and applied on level k.
- Preconditioners are constructed recursively:

$$M_k = [\hat{M}_{k+1}]_{\to k} = [M_{k+1}\hat{H}_{k+1}^{-1/2}]_{\to k}.$$

• At level 0, final inverse Hessian approximation H_{approx}^{-1} will contain eigenvalue information from all levels.

Algorithm in practice

• use $N_e = (n_0, n_1, \dots, n_{k_c})$ eigenvalues at each level

$$\begin{split} [\Lambda,\mathcal{U}] = & \textit{MLalg}(H_0,N_e) \\ \text{for} \quad & k = k_c, k_c - 1, \dots, 0 \\ \text{compute by the Lanczos method} \\ & \{\lambda_k^i, U_k^i\}, \ i = 1, \dots, n_k \text{ of } \tilde{H}_{0 \to k} \\ \text{using preconditioner } & M_k \end{split}$$
 end

storage:

$$\begin{array}{lcl} \Lambda & = & \left[\lambda_0^1, \dots, \lambda_0^{n_0}, \lambda_1^1, \dots, \lambda_1^{n_1}, \dots, \lambda_{k_c}^1, \dots, \lambda_{k_c}^{n_{k_c}} \right], \\ \mathcal{U} & = & \left[U_0^1, \dots, U_0^{n_0}, U_1^1, \dots, U_1^{n_1}, \dots, U_{k_c}^1, \dots, U_{k_c}^{n_{k_c}} \right]. \end{array}$$

Assessing approximation accuracy

Riemannian distance:

$$\delta(A,B) = \|\ln(B^{-1}A)\|_F = \left(\sum_{i=1}^n \ln^2 \lambda_i\right)^{1/2}$$

• Compare eigenvalues of H^{-1} and H^{-1}_{approx} on the finest grid level k=0 using distance function

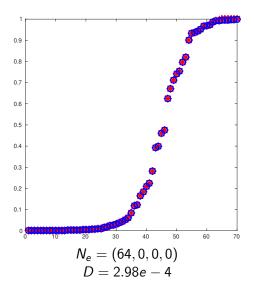
$$D = \frac{\delta(H^{-1}, H_{approx}^{-1})}{\delta(H^{-1}, I)}$$

Vary number of eigenvalues chosen on each grid level

$$N_e = (n_0, n_1, \ldots, n_{k_c})$$

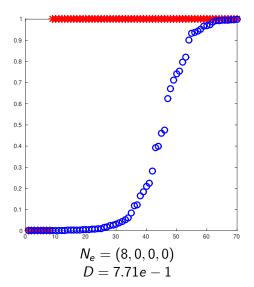
Eigenvalues of the inverse Hessian

• Exact (blue circles), approximated (red stars)



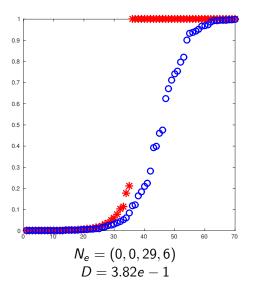
Eigenvalues of the inverse Hessian

• Exact (blue circles), approximated (red stars)



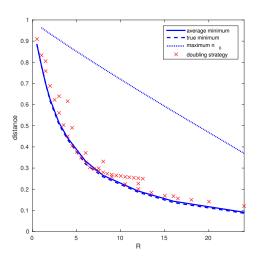
Eigenvalues of the inverse Hessian

• Exact (blue circles), approximated (red stars)



Fixed memory ratio

• Fixed memory ratio $R = \sum_{n=0}^{\infty} \frac{n}{2}$



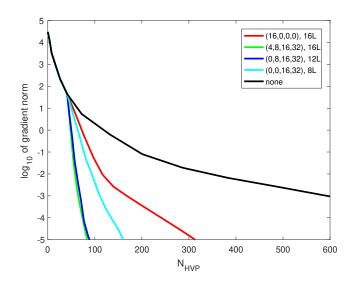
Example: PCG iteration for one Newton step

Hessian linear system (within a Gauss-Newton method):

$$H(\mathbf{u}_k)\delta\mathbf{u}_k=G(\mathbf{u}_k)$$

- Solve using Preconditioned Conjugate Gradient iteration (needs only Hv).
- measurement units
 - storage: length of vector on finest grid
 solve cost: cost of HVP on finest grid
 HVP
 - Preconditioner # CG iterations storage solve cost 57 0.157 HVP none ML(400,0,0,0)400 L 402 HVP ML(4,8,16,32)4 16 L 34 HVP ML(0,8,16,32)5 12 L 14 HVP ML(0,0,16,32)8 L 10 HVP 8

Solve cost measured in number of HVPs

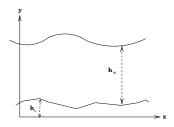


Test problem 2

• Model is 1D shallow water equations for velocity u and geopotential $\phi = gh_w$.

$$\frac{Du}{Dt} + \frac{\partial \phi}{\partial x} = -g \frac{\partial h_s}{\partial x}$$

$$\frac{D(\ln \phi)}{Dt} + \frac{\partial u}{\partial x} = 0$$



- Uniformly spaced sensors.
- Four grid multilevel structure as before.

PCG iteration for one Newton step

 Background covariance matrix B constructed using a Laplacian correlation function.

	# PCG iterations			
Preconditioner	n = 400	n = 800	n = 1600	n = 3200
none	308	1302	5,879	25,085
ML(4,0,0,0)	38	34	34	47
ML(1,2,4,8)	31	29	28	37
ML(0,2,4,16)	27	26	24	32
ML(0,0,8,16)	26	25	24	30
ML(0,0,0,32)	23	19	19	24

PCG iteration for one Newton step

 Background covariance matrix B constructed using a Second-Order Auto-Regressive (SOAR) correlation function.

	# PCG iterations			
Preconditioner	n = 400	n = 800	n = 1600	n = 3200
none	509	2,277	10,453	43,915
ML(4,0,0,0)	39	35	35	44
ML(1,2,4,8)	28	26	26	34
ML(0,2,4,16)	23	22	21	27
ML(0,0,8,16)	22	21	20	26
ML(0,0,0,32)	19	16	15	20

Practical implementation

- Algorithm based solely on repeated use of the Lanczos method at each level (for building limited-memory approximations).
- This calculation of largest eigenvalues and associated eigenvectors is expensive, and needs to be done with reasonable accuracy.
- Use of a randomised Nyström method looks promising.
- Major reduction in computation times comes from using a Hessian decomposition technique.

Hessian decomposition

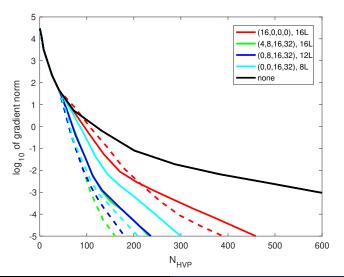
 partition domain into S subregions and compute local Hessians H^s such that

$$H(\mathbf{v}) = I + \sum_{s=1}^{S} (H^{s}(\mathbf{v}) - I)$$

- computational advantages of local Hessians:
 - fewer eigenvalues required for limited-memory approximation;
 - can be calculated at a coarser grid level;
 - can use local rather than global models;
 - can be computed in parallel.

Sample costs including building preconditioner

 Local Hessians with 8 eigenvalues at level 0 (solid lines) or level 1 (dashed lines).



Concluding remarks

- Algorithm for building limited-memory approximations to the inverse Hessian seems promising.
- Difficult to identify the correct number of eigenvalues to use at each level: good rule of thumb available but analysis would be better!
- Full algorithm may not always be practical, but we have developed practical implementations based on Hessian decompositions.
- Currently investigating the use of faster eigenvalue techniques.
- Also works well for other configurations (e.g. moving sensors, different initial conditions).
- Potential for extension to higher dimensions and other applications.

Thank you!