Flow and Orientation Nematic Liquid Crystals

A M Sonnet

ams@maths.strath.ac.uk

Department of Mathematics, University of Strathclyde

Overview

1. Introduction

2. Equations for Flow and Orientation

3. Numerical Method

3. Proof of Concept: Lid Driven Cavity

Nematic Order Parameters

- $\langle f\rangle=\oint_{S^{2}} f \varrho(\boldsymbol{u}) d^{2} \boldsymbol{u}$
- $\varrho(\boldsymbol{u})=\varrho(-\boldsymbol{u})$
- $\varrho(\boldsymbol{u})=\frac{1}{4 \pi}\left(1+\sum Q_{\mu_{1} \ldots \mu_{l}} \phi_{\mu_{1} \ldots \mu_{l}}\right)$
with
$Q_{\mu_{1} \ldots \mu_{l}}=\left\langle\phi_{\mu_{1} \ldots \mu_{l}}\right\rangle \propto\left\langle\overline{u_{\mu_{1}} \cdots u_{\mu_{l}}}\right\rangle$
- $\mathbf{Q}=\sqrt{\frac{3}{2}}\left\langle\boldsymbol{u} \otimes \boldsymbol{u}-\frac{1}{3} \delta\right\rangle$
- $\epsilon=\epsilon^{i s o} \delta+\Delta \epsilon \mathbf{Q}$

Alignment Tensor and Relatives

A recipe for ...

- Find the entropy production in terms of your main players

A recipe for ...

- Find the entropy production in terms of your main players
- Write the entropy production as a product of generalised fluxes and forces

A recipe for ...

- Find the entropy production in terms of your main players
- Write the entropy production as a product of generalised fluxes and forces
- Assume that the fluxes are linear functions of the forces

A recipe for ...

- Find the entropy production in terms of your main players
- Write the entropy production as a product of generalised fluxes and forces
- Assume that the fluxes are linear functions of the forces
- If required, assume that these linear relationships are symmetric (Onsager relations)
$\tau_{a}\left(\frac{\mathrm{~d} \mathbf{Q}}{\mathrm{~d} t}-2 \stackrel{\mathrm{WQ}}{ }\right)=\quad-\boldsymbol{\Phi}-\tau_{a p} \sqrt{2} \mathbf{D}$
- S. Hess, Z. Naturforsch. 30a (1975)

A brief history

$\tau_{a}\left(\frac { \mathrm { d } \mathbf { Q } } { \mathrm { d } t } - 2 \longdiv { \mathbf { W Q } }\right.$

$$
)=\xi^{2} \Delta \mathbf{Q}-\mathbf{\Phi}-\tau_{a p} \sqrt{2} \mathbf{D}
$$

- S. Hess, Z. Naturforsch. 30a (1975)
- S. Hess and I. Pardowitz, Z. Naturforsch. 36a (1981)

A brief history

$$
\tau_{a}\left(\frac{\mathrm{dQ}}{\mathrm{~d} t}-2 \overleftarrow{\mathbf{W Q}}-2 \sigma \overleftarrow{\mathrm{DQ}}\right)=\xi^{2} \Delta \mathbf{Q}-\boldsymbol{\Phi}-\tau_{a p} \sqrt{2} \mathbf{D}
$$

- S. Hess, Z. Naturforsch. 30a (1975)
- S. Hess and I. Pardowitz, Z. Naturforsch. 36a (1981)
- S. Hess, J. Non-Equilib. Thermodyn. 11 (1986) and C. Pereira Borgmeyer and S. Hess, J. Non-Equilib. Thermodyn. 20 (1995)

$$
\tau_{a}\left(\frac{\mathrm{~d} \mathbf{Q}}{\mathrm{~d} t}-2 \overleftarrow{\mathbf{W Q}}-2 \sigma \overleftarrow{\mathrm{DQ}}\right)=\xi^{2} \Delta \mathbf{Q}-\boldsymbol{\Phi}-\tau_{a p} \sqrt{2} \mathbf{D}
$$

- S. Hess, Z. Naturforsch. 30a (1975)
- S. Hess and I. Pardowitz, Z. Naturforsch. 36a (1981)
- S. Hess, J. Non-Equilib. Thermodyn. 11 (1986) and
C. Pereira Borgmeyer and S. Hess, J. Non-Equilib. Thermodyn. 20 (1995)
- P. D. Olmsted and P. Goldbart, Phys. Rev. A 41 (1990) and T. Qian and P. Sheng, Phys. Rev. E 58 (1998)

Lagrange Equations with Frictional Forces

Balance of Forces

Total mechanical power $\mathcal{W}=X \cdot \dot{q}$

Balance of forces $X+Y=0$

Constitutive Assumption:

$$
Y=\frac{\partial R}{\partial \dot{q}}
$$

Equations of motion $X+\frac{\partial R}{\partial \dot{q}}=0$

In a given configuration the velocities are such that the dissipation R is at a minimum when both the forces X and the power input W are fixed:

- Material properties must not depend on the observer: Elastic energy and dissipation have to be invariant under Euclidean transformations $\boldsymbol{x}^{*}=\boldsymbol{\Omega}(t) \boldsymbol{x}+\boldsymbol{b}(t)$
- It is convenient to build the dissipation function from indifferent tensors only. For a velocity field \boldsymbol{v} and an order tensor \mathbb{O} these are, e.g.,
■ $\mathbf{D}=\frac{1}{2}\left(\nabla \boldsymbol{v}+(\nabla \boldsymbol{v})^{T}\right)$
\square (1)
- The corotational time derivative $\stackrel{\circ}{\mathbb{O}}$ or a codeformational time derivative \mathbb{O} of \mathbb{O}
- Material time derivative: $\dot{\mathbb{O}}=\frac{\partial}{\partial t} \mathbb{O}+(\nabla \mathbb{O}) \boldsymbol{v}$
- Corotational time derivative (JAUMANN):

$$
\check{O}_{I}=\dot{O}_{I}-\sum_{\mathrm{k}=1}^{\mathrm{n}} W_{I_{\mathrm{k} j}} O_{I_{\mathrm{k}}^{j}}, \quad \mathbf{W}=\frac{1}{2}\left(\nabla \boldsymbol{v}-(\nabla \boldsymbol{v})^{T}\right),
$$

$$
I=\left(I_{1}, \cdots, I_{\mathrm{n}}\right), I_{\mathrm{k}}^{j}=\left(I_{1}, \cdots, I_{\mathrm{k}-1}, j, I_{\mathrm{k}+1}, \cdots, I_{\mathrm{n}}\right)
$$

- Codeformational time derivative (OLDROYD):

$$
\hat{O}_{I}=\stackrel{\circ}{O}_{I}+\sum_{\mathrm{k}=1}^{\mathrm{n}} a_{\mathrm{k}} D_{I_{\mathrm{k} j}} O_{I_{\mathrm{k}}^{j}}
$$

- Material time derivative

$$
\dot{\mathbf{Q}}=\frac{\partial \mathbf{Q}}{\partial t}+(\nabla \mathbf{Q}) \boldsymbol{v}
$$

... of the gradient

$$
(\nabla \mathbf{Q})^{\cdot}=\nabla \dot{\mathbf{Q}}-(\nabla \mathbf{Q}) \nabla \boldsymbol{v}
$$

- Frame indifferent time derivatives:
- Co-rotational:

$$
\stackrel{\mathbf{Q}}{\mathbf{Q}} \dot{\mathbf{Q}}-2 \stackrel{\mathbf{W Q}}{\mathbf{W}}
$$

- Co-deformational:

$$
\stackrel{\mathbf{Q}}{\mathbf{Q}} \dot{\mathbf{Q}}-2 \overleftarrow{\mathbf{W Q}}-2 \sigma \overleftarrow{\mathbf{D Q}}
$$

$$
\text { with } \mathbf{D}=\frac{1}{2}\left(\nabla \boldsymbol{v}+(\nabla \boldsymbol{v})^{T}\right) \text { and } \mathbf{W}=\frac{1}{2}\left(\nabla \boldsymbol{v}-(\nabla \boldsymbol{v})^{T}\right)
$$

Free Energy

$$
\mathcal{F}=\int\left\{\frac{1}{2} \rho \boldsymbol{v}^{2}+\chi(\mathbf{Q})+W(\mathbf{Q}, \nabla \mathbf{Q})\right\} \mathrm{d} V
$$

- ρ : mass density
- χ : potential energy for external actions on \mathbf{Q}
- W: elastic free energy of the alignment
- NOT here:
\square potential energy of the compressibility $(\operatorname{div} \boldsymbol{v}=0)$
- body force
- microinertia

Power Input

$$
\begin{aligned}
\dot{\mathcal{F}}= & \int\left\{\rho \dot{\boldsymbol{v}} \cdot \boldsymbol{v}+\left(\frac{\partial \chi}{\partial \mathbf{Q}}+\frac{\partial W}{\partial \mathbf{Q}}\right) \cdot \dot{\mathbf{Q}}+\frac{\partial W}{\partial \nabla \mathbf{Q}} \cdot(\nabla \mathbf{Q})^{\cdot}\right\} \mathrm{d} V \\
= & \int\left\{\rho\left[\dot{\boldsymbol{v}}+\operatorname{div}\left(p \mathbf{I}+\nabla \mathbf{Q} \odot \frac{\partial W}{\partial \nabla \mathbf{Q}}\right)\right] \cdot \boldsymbol{v}\right. \\
& \left.+\left[\frac{\partial \chi}{\partial \mathbf{Q}}+\frac{\partial W}{\partial \mathbf{Q}}-\operatorname{div} \frac{\partial W}{\partial \nabla \mathbf{Q}}\right] \cdot \dot{\mathbf{Q}}\right\} \mathrm{d} V+\text { s.t. }
\end{aligned}
$$

- $\left(\nabla \mathbf{Q} \odot \frac{\partial W}{\partial \nabla \mathbf{Q}}\right)_{i j}:=Q_{k l, i} \frac{\partial W}{\partial Q_{k l, j}}$

Fluxes and Forces

Chain Rule

$$
\frac{\partial R}{\partial \nabla v}=\frac{\partial R}{\partial \mathbf{D}}+\mathbf{Q} \frac{\partial R}{\partial \dot{\mathbf{Q}}}-\frac{\partial R}{\partial \dot{\mathbf{Q}} \mathbf{Q}}
$$

Equations of Motion

$\rho \dot{\boldsymbol{v}}=\operatorname{div} \mathbf{T}$

$$
\frac{\partial \chi}{\partial \mathbf{Q}}+\frac{\partial W}{\partial \mathbf{Q}}-\operatorname{div} \frac{\partial W}{\partial \nabla \mathbf{Q}}+\frac{\partial R}{\partial \dot{\mathbf{Q}}}=\mathbf{0}
$$

$$
\mathbf{T}=-p \mathbf{I}-\nabla \mathbf{Q} \odot \frac{\partial W}{\partial \nabla \mathbf{Q}}+\frac{\partial R}{\partial \mathbf{D}}+\mathbf{Q} \frac{\partial R}{\partial \dot{\mathbf{Q}}}-\frac{\partial R}{\partial \dot{\mathbf{Q}}} \mathbf{Q}
$$

15 Invariants Bilinear in Q and D

$\dot{\mathbf{Q}}^{2}$	$\mathbf{D} \cdot \dot{\mathbf{Q}}$	\mathbf{D}^{2}
$\mathbf{Q} \cdot(\dot{\mathbf{Q} Q})$	$\grave{\mathbf{Q}} \cdot(\mathbf{D Q})$	$\mathbf{D} \cdot(\mathbf{D Q})$
$(\dot{\mathbf{Q}} \cdot \mathbf{Q})^{2}$	$(\mathbf{D} \cdot \mathbf{Q})(\dot{\mathbf{Q}} \cdot \mathbf{Q})$	$(\mathbf{D} \cdot \mathbf{Q})^{2}$
$(\mathbf{Q} \mathbf{Q}) \cdot(\mathbf{Q} \mathbf{Q} \mathbf{Q})$	$(\mathbf{D Q}) \cdot(\mathbf{Q} \mathbf{Q})$	$(\mathbf{D Q}) \cdot(\mathbf{D Q})$
$\mathbf{Q}^{2} \dot{\mathbf{Q}}^{2}$	$\mathbf{Q}^{2}(\mathbf{D} \cdot \dot{\mathbf{Q}})$	$\mathbf{Q}^{2} \mathbf{D}^{2}$

$2 S^{2} \dot{\boldsymbol{n}}^{2}$	$2 S \dot{\boldsymbol{n}} \cdot \mathbf{D} \boldsymbol{n}$	$\mathbf{D} \cdot \mathbf{D}$		
$\frac{1}{3} S^{3} \dot{\boldsymbol{n}}^{2}$	$\frac{1}{3} S^{2} \dot{\boldsymbol{n}} \cdot \mathbf{D} \boldsymbol{n}$	$S\left(\\|\mathbf{D} \boldsymbol{n}\\|^{2}-\frac{1}{3} \mathbf{D} \cdot \mathbf{D}\right)$		
0	0	$S^{2}(\boldsymbol{n} \cdot \mathbf{D} \boldsymbol{n})^{2}$		
$\frac{5}{9} S^{4} \dot{\boldsymbol{n}}^{2}$	$\frac{5}{9} S^{3} \dot{\boldsymbol{n}} \cdot \mathbf{D} \boldsymbol{n}$	$S^{2}\left(\frac{1}{9} \mathbf{D} \cdot \mathbf{D}+\frac{1}{3}\\|\mathbf{D} \boldsymbol{n}\\|^{2}\right)$		
$\frac{4}{3} S^{4} \dot{\boldsymbol{n}}^{2}$	$\frac{4}{3} S^{3} \dot{\boldsymbol{n}} \cdot \mathbf{D} \boldsymbol{n}$	$\frac{2}{3} S^{2} \mathbf{D} \cdot \mathbf{D}$		

8 Terms up to Second Order in S

$$
\begin{aligned}
R= & \frac{1}{2} \zeta_{1} \mathbf{Q} \cdot \mathbf{Q}+\zeta_{2} \mathbf{D} \cdot \stackrel{\circ}{\mathbf{Q}}+\frac{1}{2} \zeta_{3} \mathbf{D} \cdot \mathbf{D}+ \\
& \zeta_{21} \mathbf{Q} \cdot(\mathbf{D} \cdot \mathbf{Q})+ \\
& \frac{1}{2} \zeta_{31} \mathbf{D} \cdot(\mathbf{D Q})+\frac{1}{2} \zeta_{32}(\mathbf{D} \cdot \mathbf{Q})^{2}+ \\
& \frac{1}{2} \zeta_{33}(\mathbf{D Q}) \cdot(\mathbf{D Q})+\frac{1}{2} \zeta_{34}(\mathbf{Q} \cdot \mathbf{Q})(\mathbf{D} \cdot \mathbf{D})
\end{aligned}
$$

$$
R=\frac{1}{2} \gamma_{1} \stackrel{\circ}{n}^{2}+\gamma_{2} \stackrel{\circ}{\boldsymbol{n}} \cdot \mathbf{D} \boldsymbol{n}+\frac{1}{2} \gamma_{3}(\mathbf{D} \boldsymbol{n})^{2}+\frac{1}{2} \alpha_{1}(\boldsymbol{n} \cdot \mathbf{D} \boldsymbol{n})^{2}+\frac{1}{2} \alpha_{4} \mathbf{D} \cdot \mathbf{D}
$$

with $\gamma_{1}=\alpha_{3}-\alpha_{2}, \gamma_{2}=\alpha_{5}-\alpha_{6}, \gamma_{3}=\alpha_{5}+\alpha_{6}$.

$$
\begin{aligned}
\gamma_{1} & =2 S^{2} \zeta_{1} \\
\gamma_{2} & =2 S \zeta_{2}+\frac{1}{3} S^{2} \zeta_{21} \\
\gamma_{3} & =S \zeta_{31}+\frac{1}{3} S^{2} \zeta_{33} \\
\alpha_{1} & =S^{2} \zeta_{32} \\
\alpha_{4} & =\zeta_{3}-\frac{1}{3} S \zeta_{31}+\frac{1}{9} S^{2} \zeta_{33}+\frac{2}{3} S^{2} \zeta_{34}
\end{aligned}
$$

$\zeta_{21}=\zeta_{33}=\zeta_{34}=0:$ neglect corrections of order $S^{2}:$

$$
\begin{gathered}
R=\frac{1}{2} \zeta_{1} \mathbf{Q} \cdot \dot{\mathbf{Q}}+\zeta_{2} \mathbf{D} \cdot \dot{\mathbf{Q}}+\frac{1}{2} \zeta_{3} \mathbf{D} \cdot \mathbf{D}+\frac{1}{2} \zeta_{31} \mathbf{D} \cdot(\mathbf{D Q})+\frac{1}{2} \zeta_{32}(\mathbf{D} \cdot \mathbf{Q})^{2} . \\
W=\phi+\frac{1}{2} L_{1}\|\nabla \mathbf{Q}\|^{2}
\end{gathered}
$$

where $\phi=\frac{1}{2} A(T) \operatorname{tr} \mathbf{Q}^{2}-\frac{\sqrt{6}}{3} B \operatorname{tr} \mathbf{Q}^{3}+\frac{1}{4} C\left(\operatorname{tr} \mathbf{Q}^{2}\right)^{2}$ is the Landau-deGennes potential and L_{1} is an elastic modulus.

$$
\zeta_{1} \mathbf{Q}=-\boldsymbol{\Phi}-\zeta_{2} \mathbf{D}+L_{1} \Delta \mathbf{Q},
$$

and the skew-symmetric part of the stress tensor is

$$
\mathbf{T}^{\text {skew }}=\zeta_{1}(\mathbf{Q} \mathbf{Q}-\mathbf{Q} \mathbf{Q})+\zeta_{2}(\mathbf{Q D}-\mathbf{D Q})
$$

The symmetric traceless part of the viscous stress is given by

$$
\stackrel{\mathbf{T}^{(\mathrm{v})}}{ }=\zeta_{2} \stackrel{\circ}{\mathbf{Q}}+\zeta_{3} \mathbf{D}+\zeta_{31} \overleftarrow{\mathbf{D Q}}+\zeta_{32}(\mathbf{Q} \cdot \mathbf{D}) \mathbf{Q}
$$

and the elastic contribution to the stress, which here is symmetric, reads as

$$
\mathbf{T}^{(\mathrm{e})}=-L_{1} \nabla \mathbf{Q} \odot \nabla \mathbf{Q}
$$

Separating the ime Dependencies

On a solution

$$
\stackrel{\circ}{\mathbf{Q}}=\frac{1}{\zeta_{1}}\left(-\boldsymbol{\Phi}-\zeta_{2} \mathbf{D}+L_{1} \Delta \mathbf{Q}\right)
$$

and so

$$
\begin{aligned}
\mathbf{T}^{\text {skew }} & =\zeta_{1}(\mathbf{Q} \mathbf{Q}-\stackrel{\circ}{\mathbf{Q}} \mathbf{Q})+\zeta_{2}(\mathbf{Q D}-\mathbf{D Q}) \\
& =\mathbf{\Phi} \mathbf{Q}-\mathbf{Q} \Phi+L_{1}[\mathbf{Q}(\Delta \mathbf{Q})-(\Delta \mathbf{Q}) \mathbf{Q}] \\
& =L_{1}[\mathbf{Q}(\Delta \mathbf{Q})-(\Delta \mathbf{Q}) \mathbf{Q}]
\end{aligned}
$$

and

$$
\begin{gathered}
\stackrel{\mathbf{T}^{(\mathrm{v})}}{ }=\frac{\zeta_{2}}{\zeta_{1}}\left(L_{1} \Delta \mathbf{Q}-\mathbf{\Phi}\right)+\zeta_{4} \mathbf{D}+\zeta_{31} \stackrel{\mathbf{D Q}}{\mathbf{Q}}+\zeta_{32}(\mathbf{Q} \cdot \mathbf{D}) \mathbf{Q} \\
\text { with } \zeta_{4}:=\zeta_{3}-\frac{\zeta_{2}^{2}}{\zeta_{1}}
\end{gathered}
$$

Viscosities

With (\approx MBBA)

$$
\begin{aligned}
& \alpha_{1}=\alpha_{3}=0 \\
& \alpha_{4}=-\alpha_{2}=\alpha \\
& \alpha_{5}=-\alpha_{6}=\alpha / 2
\end{aligned}
$$

$$
\begin{aligned}
& \zeta_{1}=\alpha / 2 S^{2} \\
& \zeta_{2}=\alpha / 2 S \\
& \zeta_{3}=\alpha \\
& \zeta_{4}=3 \alpha / 2 \\
& \zeta_{31}=\zeta_{32}=0
\end{aligned}
$$

$\zeta_{31}=\zeta_{32}=0$

$\operatorname{div} \mathbf{T}=\boldsymbol{O} \Rightarrow$

$$
\nabla p-\frac{1}{2} \zeta_{4} \Delta \boldsymbol{v}=\boldsymbol{f}
$$

$$
f=\operatorname{div} \mathbf{F}
$$

$\mathbf{F}=L_{1}\left(\mathbf{Q}(\Delta \mathbf{Q})-(\Delta \mathbf{Q}) \mathbf{Q}+\frac{\zeta_{2}}{\zeta_{1}} \Delta \mathbf{Q}-\nabla \mathbf{Q} \odot \nabla \mathbf{Q}\right)-\frac{\zeta_{2}}{\zeta_{1}} \boldsymbol{\Phi}$

1. For a given orientation field \mathbf{Q}, solve Stokes equation with f as a body force
2. Use the obtained flow field to compute one time step in a discretised version of the orientation equation
3. With the new orientation field, go back to 1 .

Dimensionless Quantities

- $\tilde{\mathbf{Q}}=\frac{3 C}{2 B} \mathbf{Q}$
- $\tau_{1}=\frac{9 C \zeta_{1}}{2 B^{2}}$
- $\xi=\sqrt{\frac{9 C L_{1}}{2 B^{2}}}$
- $\mathrm{Tu}=\frac{3 C \zeta_{2}}{2 B \zeta 1}$
- $\mathrm{Bf}=\frac{4 B \zeta_{2}}{3 C \zeta_{4}}$
- $\tilde{\mathbf{\Phi}}=\left(\vartheta+2 \operatorname{tr} \tilde{\mathbf{Q}}^{2}\right) \tilde{\mathbf{Q}}+3 \sqrt{6} \tilde{\mathbf{Q}} \tilde{\mathbf{Q}}$
- $\vartheta=\frac{9 C}{2 B^{2}} A(T)$
- $\tilde{p}=\ldots$

Dimensionless Equations

$$
\dot{\mathbf{Q}}=\Delta \mathbf{Q}-\boldsymbol{\Phi}-\mathrm{Tu} \mathbf{D}
$$

$$
\begin{gathered}
\nabla p-\Delta \boldsymbol{v}=\operatorname{div} \mathbf{F} \\
\mathbf{F}=\operatorname{Bf}\left\{\frac{1}{T \mathrm{Tu}}[\mathbf{Q}(\Delta \mathbf{Q})-(\Delta \mathbf{Q}) \mathbf{Q}-\nabla \mathbf{Q} \odot \nabla \mathbf{Q}]+\Delta \mathbf{Q}-\boldsymbol{\Phi}\right\}
\end{gathered}
$$

Solving the Equations

- Orientation equation: finite difference scheme with explicit euler time discretisation (leaves a lot of room for improvement ...)
- Stokes equation: finite element iterative solver. Matlab package using MINRES solver with multigrid preconditioning (this should really be coded using an efficient programming language . . .).
http://www.cs.umd.edu/~elman/ifiss.html (Incompressible Flow \& Iterative Solver Software Version 2.2)

$\mathbf{v}=10 \mathbf{e}_{x}$

$\mathrm{v}=10 \mathbf{e}_{x}$

Biaxiality Measure

$$
\beta^{2}=1-\frac{6\left(\operatorname{tr} \mathbf{Q}^{3}\right)^{2}}{\left(\operatorname{tr} \mathbf{Q}^{2}\right)^{3}} \quad \in[0,1]
$$

Initial Orientation

Initial Flow Field

Streamlines: uniform

Later Orientation

Later Flow Field

Streamlines: uniform

Flow Field Difference

Streamlines: uniform

Out of Plane Orientation

Initial Orientation

 $\left.\begin{array}{l}00 \\ 00 \\ 0\end{array}\right]$ 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

 -

ater Orientation

Out of Plane Force

Out of Plane Force

Adding orientational order to Computational Fluid Dynamics can be very cheap!

- Adding orientational order to Computational Fluid Dynamics can be very cheap!
- Even for 'linear’ flow at low Reynolds numbers, an anisotropic fluid can show nonlinear flow effects
- Adding orientational order to Computational Fluid Dynamics can be very cheap!
- Even for 'linear' flow at low Reynolds numbers, an anisotropic fluid can show nonlinear flow effects
- Out of plane orientation such as kayaking makes 2d-flow impossible
- Adding orientational order to Computational Fluid Dynamics can be very cheap!
- Even for 'linear' flow at low Reynolds numbers, an anisotropic fluid can show nonlinear flow effects
- Out of plane orientation such as kayaking makes 2d-flow impossible
- A lot of work still needs to be done . . .

