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Overview

1. Introduction

2. Equations for Flow and Orientation

3. Numerical Method

3. Proof of Concept: Lid Driven Cavity
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Nematic Order Parameters

Ψ(u) • 〈f〉 =
∮

S2 f%(u)d2u

• %(u) = %(−u)

• %(u) = 1
4π

(1 +
∑

Qµ1...µlφµ1...µl)

with
Qµ1...µl =〈φµ1...µl〉∝〈 uµ1 · · ·uµl 〉

• Q =
√

3
2
〈u ⊗ u − 1

3
δ〉

• ε = εiso δ + ∆εQ
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Alignment Tensor and Relatives

5 Q = S
√

3/2 n ⊗ n + T
√

1/2 (l ⊗ l −m ⊗m)

3 Q = S
√

3/2 n ⊗ n

2 Q =
√

3/2 n ⊗ n

2 unit vector n

T = 0

S = const.

Simplified Calculations
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Linear Irreversible Thermodynamics

A recipe for . . .
• Find the entropy production in terms of your main players

• Write the entropy production as a product of generalised
fluxes and forces

• Assume that the fluxes are linear functions of the forces
• If required, assume that these linear relationships are

symmetric (Onsager relations)
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A brief history . . .

τa(
dQ

dt
− 2 WQ ) = −Φ− τap

√
2 D

• S. Hess, Z. Naturforsch. 30a (1975)
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A brief history . . .

τa(
dQ
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− 2 WQ−2σDQ ) = ξ2∆Q−Φ− τap

√
2 D

• S. Hess, Z. Naturforsch. 30a (1975)
• S. Hess and I. Pardowitz, Z. Naturforsch. 36a (1981)
• S. Hess, J. Non-Equilib. Thermodyn. 11 (1986) and

C. Pereira Borgmeyer and S. Hess, J. Non-Equilib.
Thermodyn. 20 (1995)
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Lagrange Equations with Frictional Forces

d

dt

∂L

∂q̇
− ∂L

∂q
+
∂R

∂q̇
= 0 L = T (q, q̇)− V (q)

q, q̇ ∈ Rm

Ḟ = Ṫ + V̇ =

(

d

dt

∂L

∂q̇
− ∂L

∂q

)

· q̇ ∂R

∂q̇
· q̇ = 2R

Ḟ + 2R = 0

T quadratic in q̇ R quadratic in q̇
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Balance of Forces

Total mechanical powerW = X · q̇

Balance of forces X + Y = 0

Equations of motion X +
∂R

∂q̇
= 0

Constitutive Assumption: Y =
∂R

∂q̇
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Variational principle

In a given configuration the velocities are such that the
dissipation R is at a minimum when both the forces X and the

power input W are fixed:

δR+ λδW =

(

∂R
∂q̇

+ λX

)

· δq̇ = 0

λX +
∂R
∂q̇

= 0 X +
∂R
∂q̇

= 0

arbitrary δq̇

. . . · q̇
gives λW + 2R = 0
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Material Frame Indifference
• Material properties must not depend on the observer:

Elastic energy and dissipation have to be invariant under
Euclidean transformations x ∗ = Ω(t)x + b(t)

• It is convenient to build the dissipation function from
indifferent tensors only. For a velocity field v and an order
tensor O these are, e.g.,
� D = 1

2(∇v + (∇v)T )

� O
� The corotational time derivative

◦

O or a
codeformational time derivative

�

O of O
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Time derivatives . . .

• Material time derivative: Ȯ =
∂

∂t
O+ (∇O)v

• Corotational time derivative (JAUMANN):

◦

OI = ȮI −
n
∑

k=1

WIkjOIjk
, W = 1

2(∇v − (∇v)T ),

I = (I1, · · · , In), Ijk = (I1, · · · , Ik−1, j, Ik+1, · · · , In)

• Codeformational time derivative (OLDROYD):

ÔI =
◦

OI +
n
∑

k=1

akDIkjOIjk
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. . . of the Alignment Tensor

• Material time derivative Q̇ = ∂Q
∂t + (∇Q)v

• . . . of the gradient (∇Q)· = ∇Q̇− (∇Q)∇v

• Frame indifferent time derivatives:

� Co-rotational:
◦

Q = Q̇− 2 WQ

� Co-deformational:
�

Q = Q̇− 2 WQ − 2σDQ

with D = 1
2(∇v + (∇v)T ) and W = 1

2(∇v − (∇v)T )
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Free Energy

F =

∫ {

1

2
ρv 2 + χ(Q) +W (Q,∇Q)

}

dV

• ρ: mass density
• χ: potential energy for external actions on Q

• W : elastic free energy of the alignment
• NOT here:
� potential energy of the compressibility (div v = 0)
� body force
� microinertia
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Power Input

Ḟ =

∫ {

ρv̇ · v +

(

∂χ

∂Q
+
∂W

∂Q

)

· Q̇ +
∂W

∂∇Q
· (∇Q)·

}

dV

=

∫ {[

ρv̇ + div

(

pI +∇Q� ∂W

∂∇Q

)]

· v

+

[

∂χ

∂Q
+
∂W

∂Q
− div

∂W

∂∇Q

]

· Q̇
}

dV + s.t.

•
(

∇Q� ∂W

∂∇Q

)

ij

:= Qkl,i
∂W

∂Qkl,j
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Fluxes and Forces

q̇ X

v ρv̇ + div

(

p I +∇Q� ∂W

∂∇Q

)

Q̇
∂χ

∂Q
+
∂W

∂Q
− div

∂W

∂∇Q
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Dissipation

R =

∫

R(Q,
◦
Q,D)dV

δR =

∫ {

∂R

∂Q̇
· δQ̇ +

∂R

∂∇v
· ∇(δv)

}

dV

δR =

∫ {

∂R

∂Q̇
· δQ̇− div

(

∂R

∂∇v

)

· δv
}

dV + s.t.

δ(∇v) = ∇(δv)

integration by parts
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Chain Rule

∂R

∂∇v
=
∂R

∂D
+ Q

∂R

∂
◦

Q
− ∂R

∂
◦

Q
Q

∂R

∂Q̇
=
∂R

∂
◦

Q
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Equations of Motion

ρv̇ = div T

∂χ

∂Q
+
∂W

∂Q
− div

∂W

∂∇Q
+
∂R

∂
◦

Q
= 0

T = −p I−∇Q� ∂W

∂∇Q
+
∂R

∂D
+ Q

∂R

∂
◦

Q
− ∂R

∂
◦

Q
Q
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15 Invariants Bilinear in
◦

Q and D

◦

Q
2

D ·
◦

Q D2

◦

Q · (
◦

QQ)
◦

Q · (DQ) D · (DQ)

(
◦

Q · Q)2 (D ·Q)(
◦

Q · Q) (D ·Q)2

(
◦

QQ) · (
◦

QQ) (DQ) · (
◦

QQ) (DQ) · (DQ)

Q2
◦

Q
2

Q2 (D ·
◦

Q) Q2D2
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The Director: Q = S n ⊗ n

2S2 ◦
n

2
2S

◦
n ·Dn D ·D

1
3S

3 ◦
n

2 1
3S

2 ◦
n ·Dn S(||Dn ||2 − 1

3D ·D)

0 0 S2(n ·Dn)2

5
9S

4 ◦
n

2 5
9S

3 ◦
n ·Dn S2(1

9D ·D + 1
3||Dn ||2)

4
3S

4 ◦
n

2 4
3S

3 ◦
n ·Dn 2

3S
2D ·D
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8 Terms up to Second Order in S

R =
1

2
ζ1

◦

Q ·
◦

Q + ζ2 D ·
◦

Q +
1

2
ζ3 D ·D +

ζ21
◦

Q · (D ·Q) +

1

2
ζ31 D · (DQ) +

1

2
ζ32 (D ·Q)2 +

1

2
ζ33 (DQ) · (DQ) +

1

2
ζ34 (Q ·Q)(D ·D)
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Comparison to ELP theory

R =
1

2
γ1

◦
n

2
+γ2

◦
n ·Dn+

1

2
γ3 (Dn)2+

1

2
α1 (n ·Dn)2+

1

2
α4 D·D

with γ1 = α3 − α2, γ2 = α5 − α6, γ3 = α5 + α6.

γ1 = 2S2ζ1

γ2 = 2Sζ2 +
1

3
S2ζ21

γ3 = Sζ31 +
1

3
S2ζ33

α1 = S2ζ32

α4 = ζ3 −
1

3
Sζ31 +

1

9
S2ζ33 +

2

3
S2ζ34
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Further Simplification

ζ21 = ζ33 = ζ34 = 0: neglect corrections of order S2:

R =
1

2
ζ1

◦

Q·
◦

Q+ζ2D ·
◦

Q+
1

2
ζ3D·D+

1

2
ζ31D·(DQ)+

1

2
ζ32(D·Q)2.

W = φ+
1

2
L1‖∇Q‖2,

where φ = 1
2A(T ) tr Q2 −

√
6

3 B tr Q3 + 1
4C(tr Q2)2 is the

Landau-deGennes potential and L1 is an elastic modulus.
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Equations

ζ1
◦

Q = −Φ− ζ2D + L1∆Q,

and the skew-symmetric part of the stress tensor is

Tskew = ζ1(Q
◦

Q−
◦

QQ) + ζ2(QD−DQ)

The symmetric traceless part of the viscous stress is given by

T(v) = ζ2
◦

Q + ζ3D + ζ31 DQ + ζ32(Q ·D) Q,

and the elastic contribution to the stress, which here is
symmetric, reads as

T(e) = −L1∇Q�∇Q.
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Separating the Time Dependencies
On a solution

◦
Q =

1

ζ1

(−Φ− ζ2D + L1∆Q)

and so

Tskew = ζ1(Q
◦
Q−

◦
QQ) + ζ2(QD−DQ)

= ΦQ−QΦ + L1[Q(∆Q)− (∆Q)Q]

= L1[Q(∆Q)− (∆Q)Q]

and

T(v) =
ζ2

ζ1

(L1∆Q−Φ) + ζ4D + ζ31 DQ + ζ32(Q ·D) Q

with ζ4 := ζ3 − ζ2
2

ζ1
.
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Viscosities
With (≈MBBA)

α1 = α3 = 0

α4 = −α2 = α

α5 = −α6 = α/2

=⇒

ζ1 = α/2S2

ζ2 = α/2S

ζ3 = α

ζ4 = 3α/2

ζ31 = ζ32 = 0
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ζ31 = ζ32 = 0

div T = 0 ⇒

∇p− 1

2
ζ4∆v = f

with
f = div F

F = L1

(

Q(∆Q)− (∆Q)Q + ζ2
ζ1

∆Q−∇Q�∇Q
)

− ζ2
ζ1

Φ
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Strategy

1. For a given orientation field Q, solve Stokes equation
with f as a body force

2. Use the obtained flow field to compute one time step in
a discretised version of the orientation equation

3. With the new orientation field, go back to 1.
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Dimensionless Quantities

• Q̃ = 3C
2BQ

• τ1 = 9Cζ1
2B2

• ξ =
√

9CL1

2B2

• Tu = 3Cζ2
2Bζ1

• Bf = 4Bζ2
3Cζ4

• Φ̃ = (ϑ+2 tr Q̃2)Q̃+3
√

6 Q̃Q̃

• ϑ = 9C
2B2A(T )

• p̃ = . . .
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Dimensionless Equations

◦

Q = ∆Q−Φ− Tu D

∇p−∆v = div F

F = Bf
{ 1

Tu [Q(∆Q)− (∆Q)Q−∇Q�∇Q] + ∆Q−Φ
}
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Solving the Equations

• Orientation equation: finite difference scheme with
explicit euler time discretisation (leaves a lot of room for
improvement . . .)

• Stokes equation: finite element iterative solver. Matlab
package using MINRES solver with multigrid
preconditioning (this should really be coded using an
efficient programming language . . .).
http://www.cs.umd.edu/˜elman/ifiss.html
(Incompressible Flow & Iterative Solver Software Version
2.2)
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Lid Driven Cavity

v = 10 ex

L = 8

L L

Re =
V Lρ

ζ4
= 8× 10−6

De ≈ V

L
= 1.2

Er ≈ ζ1V L

L1
= 80

Flow and Orientation of Nematic Liquid Crystals 32/43



Lid Driven Cavity

v = 10 ex

L = 8

L L

Re =
V Lρ

ζ4
= 8× 10−6

De ≈ V

L
= 1.2

Er ≈ ζ1V L

L1
= 80

Flow and Orientation of Nematic Liquid Crystals 32/43



Biaxiality Measure

β2 = 1− 6(tr Q3)2

(tr Q2)3 ∈ [0, 1]
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Initial Orientation

Flow and Orientation of Nematic Liquid Crystals 34/43



Initial Flow Field
Streamlines: uniform
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Later Orientation
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Later Flow Field
Streamlines: uniform
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Flow Field Difference
Streamlines: uniform
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Out of Plane Orientation

v = 15 ex

L = 16

L L

Re =
V Lρ

ζ4
= 2.4× 10−5

De ≈ V

L
= 0.9

Er ≈ ζ1V L

L1
= 240
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Initial Orientation
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Later Orientation
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Out of Plane Force
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Out of Plane Force
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Summary

• Adding orientational order to Computational Fluid
Dynamics can be very cheap!

• Even for ‘linear’ flow at low Reynolds numbers, an
anisotropic fluid can show nonlinear flow effects

• Out of plane orientation such as kayaking makes 2d-flow
impossible

• A lot of work still needs to be done . . .

Flow and Orientation of Nematic Liquid Crystals 43/43



Summary

• Adding orientational order to Computational Fluid
Dynamics can be very cheap!

• Even for ‘linear’ flow at low Reynolds numbers, an
anisotropic fluid can show nonlinear flow effects

• Out of plane orientation such as kayaking makes 2d-flow
impossible

• A lot of work still needs to be done . . .

Flow and Orientation of Nematic Liquid Crystals 43/43



Summary

• Adding orientational order to Computational Fluid
Dynamics can be very cheap!

• Even for ‘linear’ flow at low Reynolds numbers, an
anisotropic fluid can show nonlinear flow effects

• Out of plane orientation such as kayaking makes 2d-flow
impossible

• A lot of work still needs to be done . . .

Flow and Orientation of Nematic Liquid Crystals 43/43



Summary

• Adding orientational order to Computational Fluid
Dynamics can be very cheap!

• Even for ‘linear’ flow at low Reynolds numbers, an
anisotropic fluid can show nonlinear flow effects

• Out of plane orientation such as kayaking makes 2d-flow
impossible

• A lot of work still needs to be done . . .

Flow and Orientation of Nematic Liquid Crystals 43/43


	Overview
	Nematic Order Parameters
	Alignment Tensor and Relatives
	usefont {T1}{phv}{m}{n}�ontsize {20.24pt}{20pt}selectfont Linear Irreversible Thermodynamics
	A brief history $ldots $
	large Lagrange Equations with Frictional Forces
	Balance of Forces
	Variational principle
	Material Frame Indifference
	Time derivatives ldots 
	ldots of the Alignment Tensor
	Free Energy
	Power Input
	Fluxes and Forces
	Dissipation
	Chain Rule
	Equations of Motion
	15 Invariants Bilinear in $corr {	ensor {Q}}$ and $	ensor {D}$
	The Director: $displaystyle 	ensor {Q}= S irr {vctr {n}otimes vctr {n}}$
	8 Terms up to Second Order in $S$
	Comparison to ELP theory
	Further Simplification
	Equations
	Separating the Time Dependencies
	Viscosities
	$zeta _{31}=zeta _{32}=0$
	Strategy
	Dimensionless Quantities
	Dimensionless Equations
	Solving the Equations
	Lid Driven Cavity
	Biaxiality Measure
	Initial Orientation
	Initial Flow Field
	Later Orientation
	Later Flow Field
	Flow Field Difference
	Out of Plane Orientation
	Initial Orientation
	Later Orientation
	Out of Plane Force
	Summary

