Approximating the inverse Hessian in 4D-Var data assimilation

Alison Ramage

Department of Mathematics and Statistics

Collaborators: Kirsty Brown (Strathclyde), Igor Gejadze (IRSTEA, France), Amos Lawless (Reading), Nancy Nichols (Reading)

Four-dimensional Variational Assimilation (4D-Var)

4D-Var aims to find the solution of a numerical forecast model that best fits sequences of observations distributed in space over a finite time interval.

Minimise cost function

$$J(\mathbf{v}_0) = (\mathbf{v}_0 - \mathbf{v}_0^B)^T B^{-1} (\mathbf{v}_0 - \mathbf{v}_0^B) + \sum_{i=0}^n (\mathcal{H}(\mathbf{v}_i) - \mathbf{y}_i)^T R^{-1} (\mathcal{H}(\mathbf{v}_i) - \mathbf{y}_i)$$

with constraint $\mathbf{v}_i = \mathcal{M}^{i,0}(\mathbf{v}_0)$.

analysis	\mathbf{v}_0
background (short-term forecast)	\mathbf{v}_0^B
observations	y
observation operator	${\cal H}$
model dynamics	$\mathbf{v}_{i+1} = \mathcal{M}(\mathbf{v}_i)$
background error covariance matrix	В
observation error covariance matrix	R

Incremental 4D-Var

• Linearise \mathcal{H} , \mathcal{M} and solve resulting unconstrained optimisation problem iteratively:

$$\left. \bar{H}_{k-1}^{i} \equiv \left. \frac{\partial \mathcal{H}^{i}}{\partial \mathbf{v}} \right|_{\mathbf{v} = \mathbf{v}_{k-1}}, \qquad \left. \bar{M}_{k-1}^{i,0} \equiv \left. \frac{\partial \mathcal{M}^{i,0}}{\partial \mathbf{v}} \right|_{\mathbf{v} = \mathbf{v}_{k-1}} \right.$$

Hessian of the cost function is

$$\mathbb{H} = B^{-1} + \widehat{H}^T \widehat{R}^{-1} \widehat{H}$$

where
$$\widehat{H} = [(\overline{H}^0)^T, (\overline{H}^1 \overline{M}^{1,0})^T, \dots, (\overline{H}^N \overline{M}^{N,0})^T]^T$$

 $\widehat{R} = \text{bldiag}(R_i), \quad i = 1, \dots, N.$

Cannot store

■ as a matrix: action of applying
■ to a vector is available, but expensive (involves both forward and backward model solves).

Motivation for approximating \mathbb{H}^{-1}

$$\mathbb{H} = B^{-1} + \widehat{H}^T \widehat{R}^{-1} \widehat{H}$$

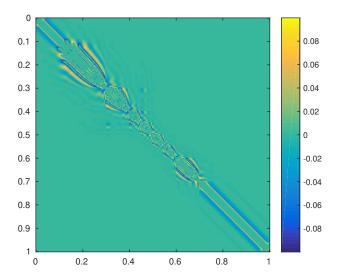
- H⁻¹ approximates Posterior Covariance Matrix (used to find confidence intervals and carry out a posteriori error analysis).
- $\mathbb{H}^{-1/2}$ can be used in ensemble forecasting.
- \mathbb{H}^{-1} , $\mathbb{H}^{-1/2}$ can be used for preconditioning in a Gauss-Newton method.
- ullet Control variable transform: precondition ${\mathbb H}$ based on the background covariance matrix

$$H = (B^{1/2})^T \mathbb{H} B^{1/2} = I + (B^{1/2})^T \widehat{H}^T \widehat{R}^{-1} \widehat{H} B^{1/2}$$

• Eigenvalues of H are bounded below by one: more details on the full eigenspectrum can be found in HABEN ET AL. (2011), TABEART ET AL. (2018).

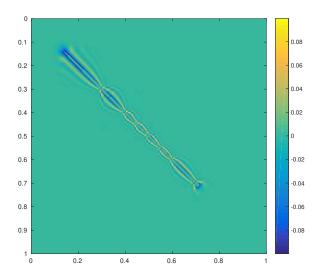
Original inverse Hessian

• \mathbb{H}^{-1} (scaled to have unit diagonal, omitted from plot)



Preconditioned inverse Hessian

• H^{-1} (after control variable transform)



Limited-memory approximation

- *H* amenable to limited-memory approximation.
- Find n_e leading eigenvalues and orthonormal eigenvectors using the Lanczos method (needs only $H\mathbf{v}$).
- Construct approximation

$$H \approx I + \sum_{i=1}^{n_e} (\lambda_i - 1) \mathbf{u}_i \mathbf{u}_i^T$$

• Easy to evaluate matrix powers:

$$H^p pprox I + \sum_{i=1}^{n_e} (\lambda_i^p - 1) \mathbf{u}_i \mathbf{u}_i^T$$

• IDEA: Build a limited-memory approximation to H^{-1} (or $H^{-1/2}$).

Multilevel preconditioning

- Discretise evolution equation on a grid (level k=0) to represent top level Hessian H_0 .
- Build a limited-memory multilevel approximation to H^{-1} based on a sequence of nested grids (level k=1,2,...).
- Grid transfer (based on piecewise cubic splines here):
 - Restriction matrix R_c^f from k = f to k = c.
 - Prolongation matrix P_f^c from k = c to k = f.
- Write H_k for $[H_0]_{\to k}$ (" H_0 restricted to grid level k").
- New operators for matrix transfer:
 - From coarse to fine: $[H_c]_{\rightarrow f} = P_f^c (H_c I_c) R_c^f + I_f$
 - From fine to coarse: $[H_f]_{\rightarrow c} = R_c^f (H_f I_f) P_f^c + I_c$

Key idea

- Build upwards from the coarsest level.
- Assume that H_{k+1} is a good approximation to H_k .

If H is preconditioned as $\tilde{H} = P^T H P$, then

$$H^{-1} = (P\tilde{H}^{-1/2})(\tilde{H}^{-1/2}P^T) \equiv \hat{P}\hat{P}^T.$$

• Precondition H on one level with \hat{P} from the level below.

$$[H_{k+1}^{-1/2}]_{\to k}H_k[H_{k+1}^{-1/2}]_{\to k} \quad \stackrel{\text{sim}}{=} \quad [H_{k+1}^{-1}]_{\to k}H_k \quad \simeq \quad I_k$$

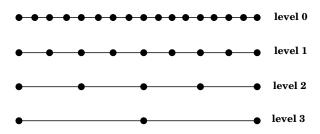
Important points

- In practice, all we need are eigenvalues and eigenvectors of each H_k .
- Limited-memory approximation means matrix powers are easy to calculate.
- Lanczos method used to compute eigenvalues: this is cheaper and requires less storage on coarser grids.
- Choose to retain $N_e = (n_0, n_1, \dots, n_c)$ eigenvalues at each level.
- Difficult to find good values for N_e a priori: we have developed heuristic guidelines from practical experience.

Illustration

- Test using 1D Burgers' equation.
- 1D uniform grid with 7 sensors located at 0.3, 0.4, 0.45, 0.5, 0.55, 0.6, and 0.7 in [0,1].
- Multilevel preconditioning with four grid levels:

k	0	1	2	3
grid points	401	201	101	51



Assessing approximation accuracy

Riemannian distance:

$$\delta(A,B) = \|\ln(B^{-1}A)\|_F = \left(\sum_{i=1}^n \ln^2 \lambda_i\right)^{1/2}$$

ullet Compare eigenvalues of H^{-1} and \tilde{H}^{-1} on the finest grid level k=0 using

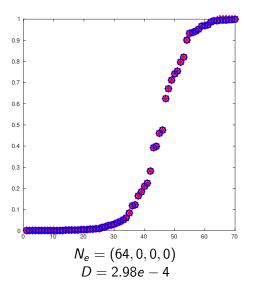
$$D = \frac{\delta(H^{-1}, \tilde{H}^{-1})}{\delta(H^{-1}, I)}$$

Vary number of eigenvalues chosen on each grid level

$$N_e = (n_0, n_1, n_2, n_3)$$

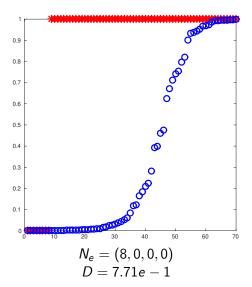
Eigenvalues of the inverse Hessian

• Exact (blue circles), approximated (red stars)



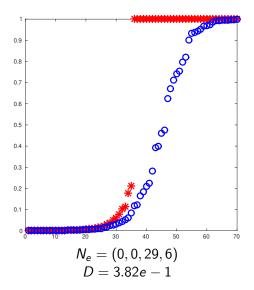
Eigenvalues of the inverse Hessian

• Exact (blue circles), approximated (red stars)



Eigenvalues of the inverse Hessian

• Exact (blue circles), approximated (red stars)



Example: PCG iteration for one Newton step

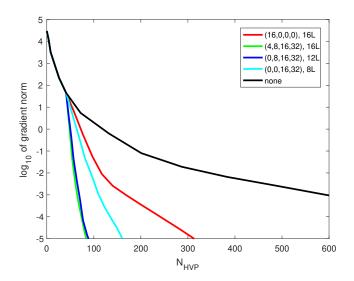
Hessian linear system (within a Gauss-Newton method):

$$H(\mathbf{u}_k)\delta\mathbf{u}_k=G(\mathbf{u}_k)$$

- Solve using Preconditioned Conjugate Gradient iteration (needs only Hv).
- measurement units
 - memory: length of vector on finest grid
 - cost: cost of HVP on finest grid HVP

Preconditioner	# CG iterations	storage	solve cost
none	57	0 L	57 HVP
MG(400,0,0,0)	1	400 L	402 HVP
MG(4,8,16,32)	4	16 L	34 HVP
MG(0,8,16,32)	5	12 L	14 HVP
MG(0,0,16,32)	8	8 L	10 HVP

Solve cost measured in number of HVPs

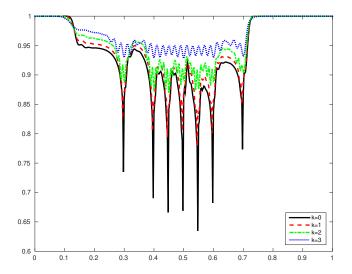


Concluding remarks

- Algorithm based solely on repeated use of Lanczos at each level (for limited-memory approximations).
- Difficult to identify the correct number of eigenvalues to use at each level, but good heuristics available.
- Full algorithm is not practical, but we have developed practical implementations based on Hessian decompositions.
- Also works well for other configurations (e.g. moving sensors, different initial conditions), and other models (e.g. 1D shallow water equations).
- Good potential for extension to higher dimensions and other applications.

Motivation for multilevel preconditioning

• Diagonal of H^{-1} on various grid levels:



- Restrict H_0 to level k to obtain H_k .
- Use preconditioner from previous level:

$$P_k = [P_{k+1}\widetilde{H}_{k+1}^{-1/2}]_{\to k} = [H_{k+1}^{-1/2}]_{\to k}$$

• Precondition H_k to obtain \widetilde{H}_k :

$$\widetilde{H}_k = [H_{k+1}^{-1/2}]_{\to k} H_k [H_{k+1}^{-1/2}]_{\to k} \stackrel{\text{sim}}{=} [H_{k+1}^{-1}]_{\to k} H_k$$

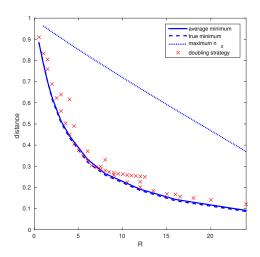
• Build $P_k \widetilde{H}_k^{-1/2}$ to precondition at next level:

$$P_k \widetilde{H}_k^{-1/2} = [H_{k+1}^{-1/2}]_{\to k} H_k^{-1/2} [H_{k+1}^{1/2}]_{\to k} \stackrel{\text{sim}}{=} H_k^{-1/2}$$

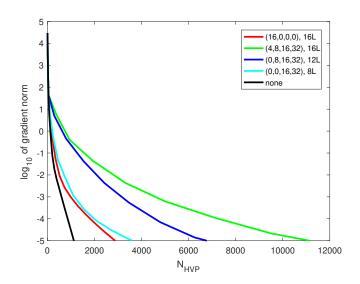
Fixed memory ratio

• Fixed memory ratio R

$$R = \sum_{k=0}^{k_c} \frac{n_k}{2^k}$$



Cost including building preconditioner



Hessian decomposition

 partition domain into S subregions and compute local Hessians H^s such that

$$H(\mathbf{v}) = I + \sum_{s=1}^{S} (H^{s}(\mathbf{v}) - I)$$

- computational advantages of local Hessians:
 - fewer eigenvalues required for limited-memory approximation;
 - could be computed in parallel;
 - could use local rather than global models;
 - could be calculated at a coarser grid level.

Practical approach

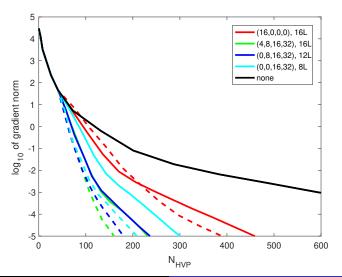
① Compute limited-memory approximations to local sensor-based Hessians on level k using n_k eigenpairs:

$$H_k^s \approx I + \sum_{i=1}^{n_k} (\lambda_i - 1) \mathbf{u}_i \mathbf{u}_i^T$$

- 2 Assemble these to form H_a .
- **3** Apply mlevd to H_a based on a fixed N_e .
- Advantage:
 - Local Hessians cheaper to compute.
- Disadvantages:
 - Additional user-specified parameter(s) k, n_k needed.
 - More memory required as local Hessians must also be stored.
- Can use multilevel approximation of local Hessians to reduce memory costs.

Cost including building preconditioner

• Local Hessians with 8 eigenvalues at level 0 (solid lines) or level 1 (dashed lines).



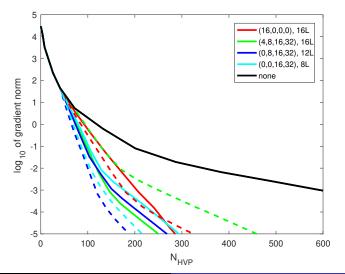
Practical approach: Version 2

- **①** Approximate each local Hessian H_k^s by applying mlevd to local inverse Hessians based on $N_{e,k}$.
- ② Assemble these to form reduced-memory Hessian H_a^{rm} .
- **1** Use mlevd again on H_a^{rm} based on N_e .

- Advantage:
 - Requires less memory than Version 1.
- Disadvantage:
 - Additional user-specified parameter(s) $N_{e,k}$ needed.

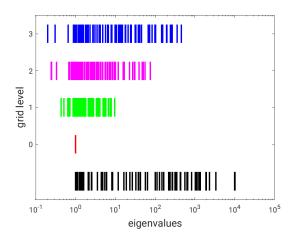
Version 2: cost including building preconditioner

• Local Hessians with 8 eigenvalues at level 0 (solid lines) or level 1 (dashed lines) with $N_{e,k} = (8,4,0,0)$ MG approx.



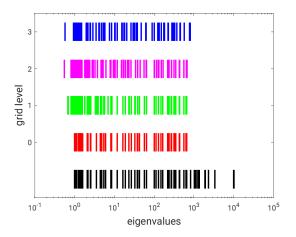
Idea behind preconditioning

• Eigenvalues of $[H_{0\to k}^{-1/2}]_{\to 0} H_0 [H_{0\to k}^{-1/2}]_{\to 0}$.



Replace with limited-memory approximations

• Use limited-memory form with 10 eigenvalues per level.



Idea: use all levels

• Build recursive preconditioner using information from all levels.

