A Moving Mesh Finite Element Method for Modelling Defects in Liquid Crystals

Alison Ramage

Department of Mathematics and Statistics, University of Strathclyde

Joint work with Craig MacDonald and John Mackenzie

Motivation

- Understanding the formation and dynamics of defects is important in the design and control of liquid crystal devices.
- Defects typically induce distortion over very small length scales as compared to the size of the cell.
- This poses significant challenges for standard numerical modelling techniques.
- In this talk we present a finite-element based adaptive moving mesh model designed to track defect movement.

Liquid crystal model: **Q**-tensor theory

- Describe the orientation of each molecule in a uniaxial nematic liquid crystal by a single vector u in direction of its main axis.
- Represent average orientation by symmetric traceless order tensor

$$\mathbf{Q} = \sqrt{\frac{3}{2}} \left\langle \mathbf{u} \otimes \mathbf{u} - \frac{1}{3} \mathbf{I} \right\rangle.$$

• Use orthogonal eigenframe $\{I, m, n\}$ to write

$$\mathbf{Q} = S\left(\mathbf{n} \otimes \mathbf{n} - \frac{1}{3}\mathbf{I}\right) + T(\mathbf{m} \otimes \mathbf{m} - \mathbf{I} \otimes \mathbf{I})$$

where S and T are uniaxial and biaxial order parameters.

• Consider a uniaxial molecular distribution (T = 0) where the (unit) eigenvector \mathbf{n} is known as the liquid crystal director

Q-tensor representation

- Symmetric traceless tensor Q has five degrees of freedom.
- Represent Q using a (non-unique) basis of five linearly-independent tensors, e.g.

$$\mathbf{Q} = \left[egin{array}{cccc} q_1 & q_2 & q_3 \ q_2 & q_4 & q_5 \ q_3 & q_5 & -q_1 - q_4 \ \end{array}
ight].$$

Five unknowns for PDE model:

$$q_1$$
, q_2 , q_3 , q_4 , q_5 .

Q-tensor equations

Minimise the free energy

$$F = \int_{V} F_{bulk}(\mathbf{Q}, \nabla \mathbf{Q}) \, dv + \int_{S} F_{surface}(\mathbf{Q}) \, dS$$
$$F_{bulk} = F_{elastic} + F_{thermotropic} + F_{electrostatic}$$

• With strong anchoring (Dirichlet boundary conditions), there is no contribution from the surface energy.

 Solutions with least energy are physically relevant: solve Euler-Lagrange equations.

Bulk energies

• Elastic: induced by distorting the Q-tensor in space

$$\label{eq:Felastic} \textit{F}_{\textit{elastic}} = \frac{1}{2}\textit{L}_1(\text{div } \boldsymbol{Q})^2 + \frac{1}{2}\textit{L}_2|\nabla\times\boldsymbol{Q}|^2.$$

• Thermotropic: potential function which dictates which preferred state (uniaxial, biaxial or isotropic)

$$F_{thermotropic} = \frac{1}{2}A(T-T^*) \text{ tr } \mathbf{Q}^2 - \frac{\sqrt{6}}{3}B \text{ tr } \mathbf{Q}^3 + \frac{1}{4}C(\text{tr } \mathbf{Q}^2)^2.$$

• Electrostatic: due to an applied electric field \mathbf{E} (electric potential U with $\mathbf{E} = -\nabla U$).

$$F_{electrostatic} = -\frac{1}{2}\epsilon_0 \mathbf{E} \cdot \epsilon \mathbf{E} - (\bar{\mathbf{e}} \operatorname{div} \mathbf{Q}) \cdot \mathbf{E}$$

Derivation of time-dependent PDEs

• Use a dissipation function with viscosity coefficient ν :

$$\mathcal{D} = \frac{\nu}{2} \text{tr} \left[\left(\frac{\partial \mathbf{Q}}{\partial t} \right)^2 \right] = \nu (\dot{q}_1 \dot{q}_4 + \dot{q}_1^2 + \dot{q}_2^2 + \dot{q}_3^2 + \dot{q}_4^2 + \dot{q}_5^2).$$

• Obtain **Q**-tensor PDEs (for i = 1, ..., 5 and j = 1, 2, 3):

$$\frac{\partial \mathcal{D}}{\partial \dot{q}_i} = \nabla \cdot \hat{\mathbf{\Gamma}}_i - \hat{f}_i,$$

$$(\hat{\mathbf{\Gamma}}_i)_j = \frac{\partial F_{bulk}}{\partial q_{i,j}}, \qquad q_{i,j} = \frac{\partial q_i}{\partial x_i}, \qquad \hat{f}_i = \frac{\partial F_{bulk}}{\partial q_i}.$$

• Combining equations and manipulating terms we can write

$$\frac{\partial q_i}{\partial t} = \nabla \cdot \mathbf{\Gamma}_i - f_i, \qquad i = 1, \dots, 5.$$

Coupling with electric field

- Additional unknown U such that $\mathbf{E} = -\nabla U$.
- Assuming no free charges, solve the Maxwell equation $\nabla \cdot \mathbf{D} = 0$ for electric displacement \mathbf{D} .

Coupling with electric field

- Additional unknown U such that $\mathbf{E} = -\nabla U$.
- Assuming no free charges, solve the Maxwell equation
 ∇ · D = 0 for electric displacement D.

SUMMARY

Final time-dependent physical PDEs (PPDEs) are

$$\frac{\partial q_i}{\partial t} = \nabla \cdot \mathbf{\Gamma}_i - f_i, \quad i = 1, \dots, 5,$$

$$\nabla \cdot \mathbf{D} = 0.$$

• 6 PDEs in 6 unknowns $(q_1, q_2, q_3, q_4, q_5, U)$

Adaptive finite element methods

- Three common forms of grid adaptivity in finite elements:
 - h-refinement: uniform mesh locally coarsened or refined, normally based on a posteriori error estimates;
 - p-refinement: order of local polynomial approximation is increased or decreased in accordance with solution error;
 - r-refinement: original mesh points are moved to areas where high resolution is needed.
- Advantages of moving meshes:
 - retaining fixed number of mesh points and connectivity;
 - interpolation from old to new mesh unnecessary for time-dependent problems.
- Focus here on Moving Mesh PDE model.
 Huang and Russell, Adaptive Moving Mesh Methods, Springer (2011)

Adapt PPDEs for mesh movement

- Define physical domain Ω and computational domain Ω_c .
- Map $\boldsymbol{\xi} = (\xi, \eta) \subset \Omega_c$ to $\mathbf{x} = (x, y) \subset \Omega$ using bijective mappings $\mathcal{A}_t : \Omega_c \to \Omega$ such that

$$\mathbf{x}(\boldsymbol{\xi},t)=\mathcal{A}_t(\boldsymbol{\xi}).$$

Define a mesh velocity

$$\dot{\mathbf{x}}(\mathbf{x},t) = \frac{\partial \mathbf{x}}{\partial t} \Big|_{\boldsymbol{\xi}} \left(\mathcal{A}_t^{-1}(\mathbf{x}) \right)$$

and apply the Chain Rule to get

$$\frac{\partial q}{\partial t}\Big|_{\boldsymbol{\xi}} = \frac{\partial q}{\partial t}\Big|_{\mathbf{X}} + \dot{\mathbf{x}} \cdot \nabla q.$$

Additional convection-like term due to the mesh movement

Finite elements for the physical PDEs

• PPDEs in computational domain(i = 1, ..., 5):

$$\frac{\partial q_i}{\partial t}\Big|_{\dot{\xi}} - \dot{\mathbf{x}} \cdot \nabla q = \nabla \cdot \Gamma_i - f_i, \qquad \nabla \cdot \mathbf{D} = 0.$$

• Find $q_{ih}(t)$, U_h such that, for test functions v_h ,

$$\frac{d}{dt} \int_{\Omega} q_{ih} v_h \, d\mathbf{x} - \int_{\Omega} (\nabla \cdot (\dot{\mathbf{x}} q_{ih})) \, v_h \, d\mathbf{x} = \int_{\Omega} \Gamma_{ih} \cdot \nabla v_h \, d\mathbf{x} - \int_{\Omega} f_{ih} v_h \, d\mathbf{x},$$
$$\int_{\Omega} \mathbf{D}_h \cdot \nabla v_h \, d\mathbf{x} = 0.$$

• Non-linear differential algebraic system (i = 1, ..., 5)

$$\frac{d}{dt}(M(t)\mathbf{q}_i(t)) = \mathbf{G}_i(t,\mathbf{q}_i(t),\mathbf{u}(t)), \qquad \mathbf{C}(\mathbf{q}_i(t),\mathbf{u}(t)) = \mathbf{0}.$$

Moving Mesh PDEs

Avoid mesh crossings by evolving the inverse mapping

$$\mathcal{A}_t^{-1}(\mathbf{x}) = \boldsymbol{\xi}(\mathbf{x}, t).$$

• Choose mapping $\xi(x)$ for a fixed t to minimise

$$I[\boldsymbol{\xi}] = \frac{1}{2} \int_{\Omega_t} [(\nabla \xi)^T G^{-1} (\nabla \xi) + (\nabla \eta)^T G^{-1} (\nabla \eta)] d\mathbf{x}$$

with 2×2 symmetric positive definite monitor matrix G.

• For robustness, evolve mesh via gradient flow equations

$$\frac{\partial \xi}{\partial t} = \frac{P}{\tau} \nabla \cdot (G^{-1} \nabla \xi), \qquad \frac{\partial \eta}{\partial t} = \frac{P}{\tau} \nabla \cdot (G^{-1} \nabla \eta).$$

- User-specified parameters:
 - positive temporal smoothing parameter τ ;
 - positive spatial balancing function $P(\mathbf{x}, t)$.

Final form of MMPDE

• Use Winslow monitor matrix with monitor function $w(\mathbf{x}, t)$:

$$G = \left[\begin{array}{cc} w & 0 \\ 0 & w \end{array} \right].$$

• In practice, interchange variable roles in MMPDE to obtain

$$\tau \frac{\partial \mathbf{x}}{\partial t} = P(a\mathbf{x}_{\xi\xi} + b\mathbf{x}_{\xi\eta} + c\mathbf{x}_{\eta\eta} + d\mathbf{x}_{\xi} + e\mathbf{x}_{\eta}).$$

$$a = \frac{1}{w} \frac{x_{\eta}^{2} + y_{\eta}^{2}}{J^{2}}, \quad b = -\frac{2}{w} \frac{(x_{\xi}x_{\eta} + y_{\xi}y_{\eta})}{J^{2}}, \quad c = \frac{1}{w} \frac{x_{\xi}^{2} + y_{\xi}^{2}}{J^{2}},$$

$$d = \frac{1}{(wJ)^{2}} [w_{\xi}(x_{\eta}^{2} + y_{\eta}^{2}) - w_{\eta}(x_{\xi}x_{\eta} + y_{\xi}y_{\eta}),$$

$$e = \frac{1}{(wJ)^{2}} [-w_{\xi}(x_{\xi}x_{\eta} + y_{\xi}y_{\eta}) + w_{\eta}(x_{\xi}^{2} + y_{\xi}^{2})].$$

Additional details for MMPDE

- Discretise in space using linear finite elements.
- Discretise in time using a backward Euler scheme.
- Boundary conditions obtained using a 1D MMPDE.
- To avoid solving nonlinear algebraic systems, at $t = t^{n+1}$ evaluate coefficients a, b, c, d, e at the time $t = t^n$.
- Solve resulting linear systems using iterative method BiCGSTAB with Incomplete LU preconditioner.
- Adaptive time-stepping based on computed solutions of PPDEs and MMPDE.

Overview of full algorithm

end while.

```
Set an initial uniform mesh \Delta_N^0. Set the initial guess \mathbf{q}_i^0. Select an initial \Delta t^0. Set n=0. while (t^n < t^{\max}); Evaluate monitor function at time t^n. Integrate MMPDE forward in time to obtain new grid \Delta_N^{n+1}. Integrate PPDEs forward using SDIRK2 to obtain \mathbf{q}_i^{n+1}, \mathbf{u}^{n+1}. n:=n+1.
```

Choice of monitor function

- Choose input function $\mathcal{T}(\mathbf{x}, t)$.
- Three different forms of monitor function.
 - AL. Based on a measure of the arc-length of \mathcal{T} :

$$w(\mathcal{T}(\mathbf{x},t)) = \left(1 + \left|
abla \mathcal{T}(\mathbf{x},t)
ight|^2
ight)^{rac{1}{2}}$$

• BM1: Based on first-order partial derivatives of T:

$$w(\mathcal{T}(\mathbf{x},t)) = \alpha(\mathbf{x},t) + |\nabla \mathcal{T}(\mathbf{x},t)|^{\frac{1}{m}}$$

• BM2: Based on second-order partial derivatives of T:

$$w(\mathcal{T}(\mathbf{x},t)) = \alpha(\mathbf{x},t) + \left(\sqrt{\left(\frac{\partial^2 \mathcal{T}}{\partial x^2}\right)^2 + 2\left(\frac{\partial^2 \mathcal{T}}{\partial x \partial y}\right)^2 + \left(\frac{\partial^2 \mathcal{T}}{\partial y^2}\right)^2}\right)^{\frac{1}{m}}$$

• Scaling parameters α and m regulate mesh clustering.

Choosing the input function

- Two different forms of input function.
 - Scalar order parameter. Based on the trace of \mathbf{Q}^2 :

$$\mathcal{T}(\mathbf{x},t) = \operatorname{tr}(\mathbf{Q}^2)$$

 $tr(\mathbf{Q}^2) = S^2$ for a uniaxial state with scalar order parameter S

Biaxiality. Based on a direct invariant measure of biaxiality

$$\mathcal{T}(\mathbf{x},t) = \left[1 - rac{6\operatorname{tr}(\mathbf{Q}^3)^2}{\operatorname{tr}(\mathbf{Q}^2)^3}
ight]^{rac{1}{2}}$$

which takes values ranging from 0 (uniaxial) to 1 (fully biaxial).

 Both have extrema at the centre of a defect and vary rapidly in the immediate neighbourhood of the defect centre.

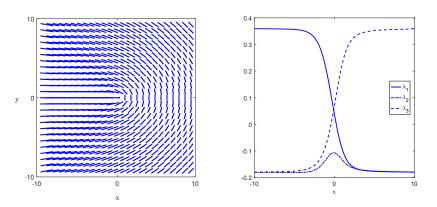
Numerical experiments

- PPDEs non-dimensionalised with respect to lengths and energies.
- Use triangular grid with quadratic basis functions for PPDEs, linear basis functions for MMPDE.
- Monitor/input function combinations:

Method name	AL	BM1a	BM1b	BM2b
Monitor function	AL	BM1	BM1	BM2
Input function	$\operatorname{tr}(\mathbf{Q}^2)$	$\mathrm{tr}(\mathbf{Q}^2)$	biaxiality	biaxiality

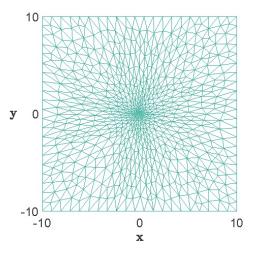
• All experiments in MATLAB.

Test problem 1: stationary defect



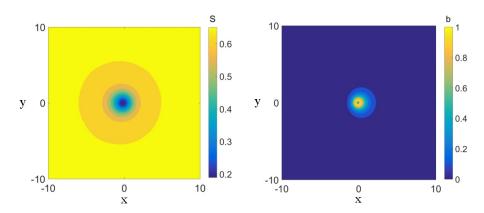
Director field of 1/2 defect and eigenvalue exchange along y = 0.

Typical adapted grid



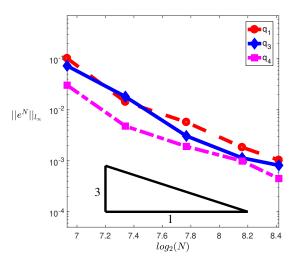
Sample adapted grid with 1388 quadratic elements.

Typical solutions



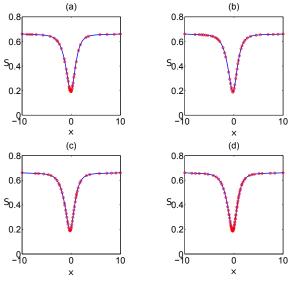
Scalar order parameter S and biaxiality.

Estimated rate of spatial convergence



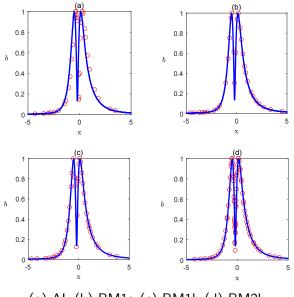
 ℓ_{∞} error compared with reference solution is $O(N^{-3})$.

Scalar order parameter along line y = 0



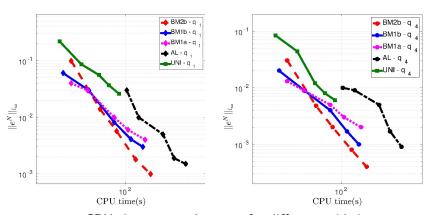
(a) AL (b) BM1a (c) BM1b (d) BM2b

Biaxiality along line y = 0



(a) AL (b) BM1a (c) BM1b (d) BM2b

Comparing computational costs



CPU time versus ℓ_∞ error for different grid sizes

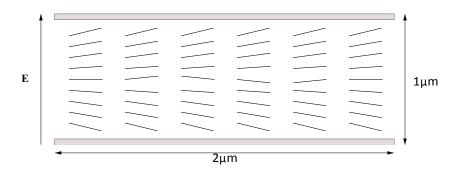
BM2b established as combination of choice.

Test problem 2: 2D Pi-cell

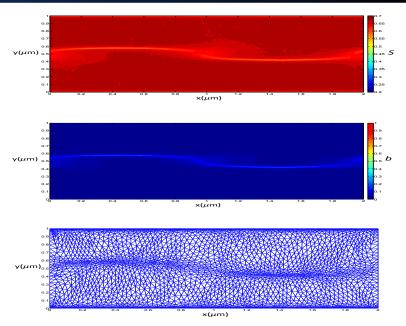
- Two-dimensional Pi-cell geometry.
 Zhang, Chung, Wang and Bos, Liquid Crystals 34(2), 2007
- Electric field applied parallel to the cell thickness at time t=0.
- Inhomogeneous transition mediated by the nucleation of defect pairs moving and annihilating each other.
- Initial director angle across cell centre follows $\sin(2\pi x/p)$ for cell width p.
- Perturbation fixed only at t = 0 for one time step, but introduces solution gradients in two dimensions.

Pi-cell geometry

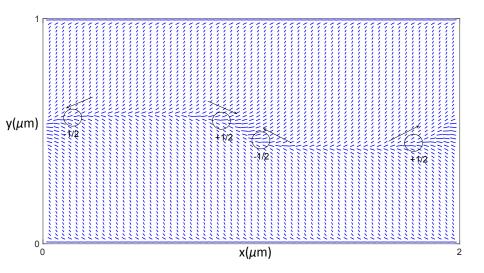
- Pre-tilt angle $\theta = \pm 6^{\circ}$ at boundaries.
- Electric field strength $18V\mu\mathrm{m}^{-1}$.



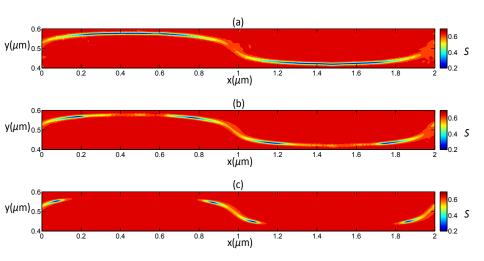
S, biaxiality and mesh after 12μ s



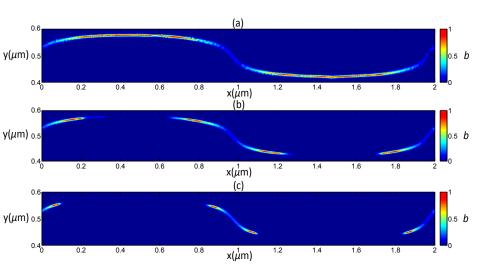
Director field after 15.5μ s



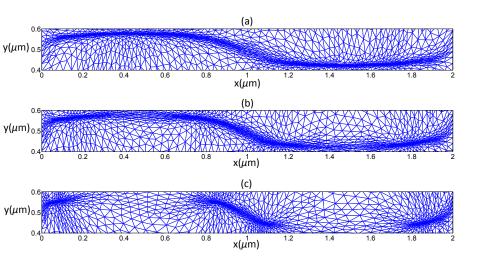
Order parameter S after (a) $15.5\mu s$ (b) $16\mu s$ and (c) $17\mu s$



Biaxiality after (a) $15.5\mu s$ (b) $16\mu s$ and (c) $17\mu s$



Adaptive mesh after (a) $15.5\mu s$ (b) $16\mu s$ and (c) $17\mu s$



Summary and future work

- New efficient moving mesh method for Q-tensor models of liquid crystal cells.
- Found biaxiality to be a good choice for the monitor input function.
- Demonstrated optimal spatial convergence for a model of a static +1/2 defect.
- Method resolved the movement and core details of defects (including creation and annihilation) in a time-dependent Pi-cell problem.
 - MacDonald, Mackenzie and Ramage, JCP:X 8, 2020
- Future challenges involve the extension to more irregular geometries (e.g. the ZBD) and three dimensions.