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Data assimilation

• Combine observational and background data with
numerical models to obtain the best estimate of state of
a system.

• Find u which minimises

J(u) =
1

2
(u− ub)

TV −1

b (u− ub)

+
1

2

N
∑

i=0

(Co(ui)− yi)
TV −1

o (Co(ui)− yi)

subject to ui+1 = Mi,i+1(ui), i = 0, . . . , N − 1.

• Discrete nonlinear evolution operator Mi,i+1.

• Incremental 4D-Var: rewrite as an unconstrained
minimisation with linearised evolution operator.
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Hessian matrix

• Linear system (Gauss-Newton method):

H(uk)δuk = G(uk)

Hessian H, gradient G(uk)

• PCG convergence depends on conditioning of

H = V −1

b +RTCT
o V

−1
o CoR

• Discrete tangent linear operator R and its adjoint.

• H is usually too large to be stored in memory but all we
need for PCG is Hv.

• This is still very expensive to compute, so we also need
a good preconditioner.
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First level preconditioning

• Projected Hessian:

H = (V
1/2
b )THV

1/2
b = I + (V

1/2
b )TRTCT

o V
−1
o CoRV

1/2
b

• Eigenvalues of H are usually clustered in a narrow
band above one, with few eigenvalues distinct enough
to contribute noticeably to the Hessian value.

• AIM: construct a limited-memory approximation to H−1

using only matrix-vector multiplication.
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Limited-memory approximation

• Find ne leading eigenvalues (by lnλ2) and orthonormal
eigenvectors using the Lanczos method.

• Construct approximation

H ≈ I +

ne
∑

i=1

(λi − 1)uiu
T
i

• Easy to evaluate matrix powers:

Hp ≈ I +

ne
∑

i=1

(λpi − 1)uiu
T
i
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Second level preconditioning

• Construct a multilevel approximation to H−1 based on
coarser grids (where it is cheaper to use Lanczos).

• Discretise evolution equation on the finest grid (level
k = 0) to obtain Hessian H ≡ H0.

• Grid transfers with “correction” between course grid
level k + 1 and a fine grid level k

• Piecewise cubic splines: Rk
k+1

, P k+1

k

• Coarse to fine:

[Mk+1]→k = P k+1

k (Mk+1 − Ik+1)R
k
k+1

+ Ik

• Fine to coarse:

[Mk]→k+1 = Rk
k+1

(Mk − Ik)P
k+1

k + Ik+1
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Outline of multilevel algorithm

• Represent H0 at a given level (k, say):

H0→k = R0
k(H0 − I0)P

k
0 + Ik

• Precondition to improve eigenvalue spectrum:

H̃0→k = (Bk+1

k )TH0→kB
k+1

k

• Find nk eigenvalues/eigenvectors of H̃0→k using the
Lanczos method.

• Approximate H̃−1

0→k:

H̃−1

0→k ≈ Ik +

nk
∑

i=1

(

1

λi
− 1

)

uiu
T
i .
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Preconditioners

• On coarsest grid, level k + 1 does not exist so set

Bk+1

k = Ik.

• For other levels, construct preconditioners recursively:

Bk+1

k =
[

Bk+2

k+1
H̃

−1/2
0→k+1

]

→k
, Bk+1

k

T
=
[

H̃
−1/2
0→k+1

Bk+2

k+1

T
]

→k

• Finest level: recover projected inverse Hessian using

H−1

0
= B1

0H̃
−1

0
B1
0

T

Atlanta, October 2015 – p.8/19



Summary

• Algorithm:

[Λ,U ]=mlpre(H0,nc, . . . , n1, n0)
for k = kc, kc − 1, . . . , 0

compute by the Lanczos method

and store in memory

{λik, U
i
k}, i = 1, . . . , nk of H̃0→k

using preconditioners Bk,k+1 and BT
k,k+1

end

• storage:

Λ =
[

λ1kc , . . . , λ
nkc

kc
, λ1kc−1, . . . , λ

nkc−1

kc−1
, . . . , λ10, . . . , λ

n0

0

]

,

U =
[

U1
kc , . . . , U

nkc

kc
, U1

kc−1, . . . , U
nkc−1

kc−1
, . . . , U1

0 , . . . , U
n0

0

]

.
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Example

• Test using 1D Burgers’ equation with initial condition

f(x) = 0.1 + 0.35

[

1 + sin

(

4πx+
3π

2

)]

, 0 < x < 1

• 1D uniform grid with 7 sensors located at 0.3, 0.4, 0.45,
0.5, 0.55, 0.6, and 0.7 in [0, 1].

• Multilevel preconditioning with four grid levels:

k 0 1 2 3
grid points 401 201 101 51
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Assessing approximation accuracy

• Riemannian distance:

δ(A,B) =
∥

∥ln(B−1A)
∥

∥

F
=

(

n
∑

i=1

ln2λi

)1/2

• Compare eigenvalues of H−1 and H̃−1 on the finest grid
level k = 0 using

D =
δ(H−1, H̃−1)

δ(H−1, I)

• Vary number of eigenvalues chosen on each grid level

Ne = (n0, n1, n2, n3)
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Eigenvalues of the inverse Hessian

• Exact (blue circles), approximated (red stars)
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Eigenvalues of the inverse Hessian

• Exact (blue circles), approximated (red stars)
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Fixed memory ratio

• Fixed memory ratio R =

kc
∑

k=0

nk

2k

R
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Practical approach: version 1

• Assemble local Hessians for each sensor to form Ha,
then apply mlpre to Ha.

• Local Hessians cheaper to compute:

• Potentially smaller area of influence.

• Could run local rather than global model.

• Compute local Hessians at level l.

• Use limited-memory form with nl eigenpairs.

• Can be computed in parallel.

• More memory required:

• Need to store additional local Hessians.
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Iteration counts
Preconditioner Ne l nl

P1 (200,0,0,0) 1 8
P2 (0,8,16,32) 1 8
P3 (0,4,8,16) 1 8
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Practical approach: version 2

• Can reduce memory requirements further.

• Approximate local Hessians by applying mlpre to local

inverse Hessians using N l
e.

• Construct a reduced-memory assembled Hessian Hrm
a .

• Use mlpre again on Hrm
a .
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Iteration counts
Preconditioner Ne l nl N l

e

P1 (200,0,0,0) 1 8 -
P2 (0,8,16,32) 1 8 -
P3 (0,4,8,16) 1 8 -
P4 (0,8,16,32) 1 8 (0,0,8,0)
P5 (0,8,16,32) 2 8 (0,0,0,8)

log(error) vs number of HVP

ensemble mean of NHV P
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Conclusions and next steps

• Similar results with other configurations (e.g. moving
sensors, different initial conditions).

• Multilevel preconditioning looks promising for
constructing a good limited-memory approximation to

H−1.

• The balance between restrictions on memory/cost
limitations may vary between particular applications.

• Identifying globally appropriate values for (n0, n1, n2, n3)
is tricky.

• Now ready for two dimensions!
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