
A multilevel preconditioner for data
assimilation with 4D-Var

Alison Ramage and Kirsty Brown,
Mathematics and Statistics,

University of Strathclyde,
Glasgow, Scotland

Igor Gejadze,
National Research Institute of
Science and Technology for

Environment and Agriculture,
Montpelier, France

Atlanta, October 2015 – p.1/19



Data assimilation

• Combine observational and background data with
numerical models to obtain the best estimate of state of
a system.

• Find u which minimises

J(u) =
1

2
(u− ub)

TV −1

b (u− ub)

+
1

2

N
∑

i=0

(Co(ui)− yi)
TV −1

o (Co(ui)− yi)

subject to ui+1 = Mi,i+1(ui), i = 0, . . . , N − 1.

• Discrete nonlinear evolution operator Mi,i+1.

• Incremental 4D-Var: rewrite as an unconstrained
minimisation with linearised evolution operator.

Atlanta, October 2015 – p.2/19



Hessian matrix

• Linear system (Gauss-Newton method):

H(uk)δuk = G(uk)

Hessian H, gradient G(uk)

• PCG convergence depends on conditioning of

H = V −1

b +RTCT
o V

−1
o CoR

• Discrete tangent linear operator R and its adjoint.

• H is usually too large to be stored in memory but all we
need for PCG is Hv.

• This is still very expensive to compute, so we also need
a good preconditioner.

Atlanta, October 2015 – p.3/19



First level preconditioning

• Projected Hessian:

H = (V
1/2
b )THV

1/2
b = I + (V

1/2
b )TRTCT

o V
−1
o CoRV

1/2
b

• Eigenvalues of H are usually clustered in a narrow
band above one, with few eigenvalues distinct enough
to contribute noticeably to the Hessian value.

• AIM: construct a limited-memory approximation to H−1

using only matrix-vector multiplication.

Atlanta, October 2015 – p.4/19



Limited-memory approximation

• Find ne leading eigenvalues (by lnλ2) and orthonormal
eigenvectors using the Lanczos method.

• Construct approximation

H ≈ I +

ne
∑

i=1

(λi − 1)uiu
T
i

• Easy to evaluate matrix powers:

Hp ≈ I +

ne
∑

i=1

(λpi − 1)uiu
T
i

Atlanta, October 2015 – p.5/19



Second level preconditioning

• Construct a multilevel approximation to H−1 based on
coarser grids (where it is cheaper to use Lanczos).

• Discretise evolution equation on the finest grid (level
k = 0) to obtain Hessian H ≡ H0.

• Grid transfers with “correction” between course grid
level k + 1 and a fine grid level k

• Piecewise cubic splines: Rk
k+1

, P k+1

k

• Coarse to fine:

[Mk+1]→k = P k+1

k (Mk+1 − Ik+1)R
k
k+1

+ Ik

• Fine to coarse:

[Mk]→k+1 = Rk
k+1

(Mk − Ik)P
k+1

k + Ik+1

Atlanta, October 2015 – p.6/19



Outline of multilevel algorithm

• Represent H0 at a given level (k, say):

H0→k = R0
k(H0 − I0)P

k
0 + Ik

• Precondition to improve eigenvalue spectrum:

H̃0→k = (Bk+1

k )TH0→kB
k+1

k

• Find nk eigenvalues/eigenvectors of H̃0→k using the
Lanczos method.

• Approximate H̃−1

0→k:

H̃−1

0→k ≈ Ik +

nk
∑

i=1

(

1

λi
− 1

)

uiu
T
i .

Atlanta, October 2015 – p.7/19



Preconditioners

• On coarsest grid, level k + 1 does not exist so set

Bk+1

k = Ik.

• For other levels, construct preconditioners recursively:

Bk+1

k =
[

Bk+2

k+1
H̃

−1/2
0→k+1

]

→k
, Bk+1

k

T
=
[

H̃
−1/2
0→k+1

Bk+2

k+1

T
]

→k

• Finest level: recover projected inverse Hessian using

H−1

0
= B1

0H̃
−1

0
B1
0

T

Atlanta, October 2015 – p.8/19



Summary

• Algorithm:

[Λ,U ]=mlpre(H0,nc, . . . , n1, n0)
for k = kc, kc − 1, . . . , 0

compute by the Lanczos method

and store in memory

{λik, U
i
k}, i = 1, . . . , nk of H̃0→k

using preconditioners Bk,k+1 and BT
k,k+1

end

• storage:

Λ =
[

λ1kc , . . . , λ
nkc

kc
, λ1kc−1, . . . , λ

nkc−1

kc−1
, . . . , λ10, . . . , λ

n0

0

]

,

U =
[

U1
kc , . . . , U

nkc

kc
, U1

kc−1, . . . , U
nkc−1

kc−1
, . . . , U1

0 , . . . , U
n0

0

]

.

Atlanta, October 2015 – p.9/19



Example

• Test using 1D Burgers’ equation with initial condition

f(x) = 0.1 + 0.35

[

1 + sin

(

4πx+
3π

2

)]

, 0 < x < 1

• 1D uniform grid with 7 sensors located at 0.3, 0.4, 0.45,
0.5, 0.55, 0.6, and 0.7 in [0, 1].

• Multilevel preconditioning with four grid levels:

k 0 1 2 3
grid points 401 201 101 51

Atlanta, October 2015 – p.10/19



Assessing approximation accuracy

• Riemannian distance:

δ(A,B) =
∥

∥ln(B−1A)
∥

∥

F
=

(

n
∑

i=1

ln2λi

)1/2

• Compare eigenvalues of H−1 and H̃−1 on the finest grid
level k = 0 using

D =
δ(H−1, H̃−1)

δ(H−1, I)

• Vary number of eigenvalues chosen on each grid level

Ne = (n0, n1, n2, n3)

Atlanta, October 2015 – p.11/19



Eigenvalues of the inverse Hessian

• Exact (blue circles), approximated (red stars)

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ne = (64, 0, 0, 0) Ne = (8, 0, 0, 0)
D = 2.98e− 4 D = 7.71e− 1

Atlanta, October 2015 – p.12/19



Eigenvalues of the inverse Hessian

• Exact (blue circles), approximated (red stars)

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ne = (0, 6, 13, 14) Ne = (0, 0, 29, 6)
D = 3.95e− 1 D = 3.39e− 1

Atlanta, October 2015 – p.13/19



Fixed memory ratio

• Fixed memory ratio R =

kc
∑

k=0

nk

2k

R
0 5 10 15 20

di
st

an
ce

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

average minimum
true minimum
maximum n

0

doubling strategy

Atlanta, October 2015 – p.14/19



Practical approach: version 1

• Assemble local Hessians for each sensor to form Ha,
then apply mlpre to Ha.

• Local Hessians cheaper to compute:

• Potentially smaller area of influence.

• Could run local rather than global model.

• Compute local Hessians at level l.

• Use limited-memory form with nl eigenpairs.

• Can be computed in parallel.

• More memory required:

• Need to store additional local Hessians.

Atlanta, October 2015 – p.15/19



Iteration counts
Preconditioner Ne l nl

P1 (200,0,0,0) 1 8
P2 (0,8,16,32) 1 8
P3 (0,4,8,16) 1 8

log(error) vs number of HVP

ensemble mean of NHV P

0 50 100 150 200 250

lo
g
1
0
o
f
d
ev
ia
ti
o
n
n
o
rm

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

none

P1

P2

P3

Atlanta, October 2015 – p.16/19



Practical approach: version 2

• Can reduce memory requirements further.

• Approximate local Hessians by applying mlpre to local

inverse Hessians using N l
e.

• Construct a reduced-memory assembled Hessian Hrm
a .

• Use mlpre again on Hrm
a .

Atlanta, October 2015 – p.17/19



Iteration counts
Preconditioner Ne l nl N l

e

P1 (200,0,0,0) 1 8 -
P2 (0,8,16,32) 1 8 -
P3 (0,4,8,16) 1 8 -
P4 (0,8,16,32) 1 8 (0,0,8,0)
P5 (0,8,16,32) 2 8 (0,0,0,8)

log(error) vs number of HVP

ensemble mean of NHV P

0 50 100 150 200 250

lo
g
1
0
o
f
d
ev
ia
ti
o
n
n
o
rm

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

none

P1

P2

P3

P4

P5

Atlanta, October 2015 – p.18/19



Conclusions and next steps

• Similar results with other configurations (e.g. moving
sensors, different initial conditions).

• Multilevel preconditioning looks promising for
constructing a good limited-memory approximation to

H−1.

• The balance between restrictions on memory/cost
limitations may vary between particular applications.

• Identifying globally appropriate values for (n0, n1, n2, n3)
is tricky.

• Now ready for two dimensions!

Atlanta, October 2015 – p.19/19


	
	Data assimilation
	Hessian matrix
	First level preconditioning
	Limited-memory approximation
	Second level preconditioning
	Outline of multilevel algorithm
	Preconditioners
	Summary
	Example
	Assessing approximation accuracy
	Eigenvalues of the inverse Hessian
	Eigenvalues of the inverse Hessian
	Fixed memory ratio
	Practical approach: version 1
	Iteration counts
	Practical approach: version 2
	Iteration counts
	Conclusions and next steps

