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Data assimilation

Numerical weather prediction is an IVP: given initial
conditions, forecast atmospheric evolution.

Data assimilation is a technique for combining information
such as observational and background data with numerical
models to obtain the best estimate of state of a system (initial
condition).

Other application areas include hydrology, oceanography,
environmental science, data analytics, sensor networks. . .

Variational assimilation is used to find the optimal analysis
that minimises a specific cost function.
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Physical model

Evolution equation:

∂ϕ(t)

∂t
= F (ϕ(t)) + f (t),

ϕ(0) = u,

u ∈ X , t ∈ (0,T ), f , ϕ ∈ Y = L2(0,T ;X )

true initial state ū

true state evolution ϕ̄
observation operator Cobs : Y → Yobs

observation error ξo
observations ϕobs = Cobs ϕ̄+ ξo

background error ξb
background function ub = ū + ξb
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Data assimilation problem

represent model in operator form via control-to-state mapping

ϕ = Rcts(u)

assume errors ξo , ξb are normal, unbiased and mutually
uncorrelated with positive definite covariance operators

Vb(·) = E [〈·, ξb〉X ξb], Vo(·) = E [〈·, ξo〉Yobs
ξo ]

DA problem: find v ∈ X which minimises

J(v) =
1

2
〈V−1

b v , v〉X +
1

2
〈V−1

o CobsR
cts(u)v ,CobsR

cts(u)v〉Yobs
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Hessian operator

define associated tangent linear operator

R ′(u)w = lim
τ→0

Rcts(u + τw)− Rcts(u)

τ
, ∀w ∈ X

and adjoint

〈w ,R ′∗(u)w∗〉X = 〈R ′(u)w ,w∗〉Y , ∀w ∈ X ,∀w∗ ∈ Y

Hessian of DA problem:

H(u) = V−1
b + R ′∗(u)C ∗

obsV
−1
o CobsR

′(u)
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Incremental 4D-Var

Represent functions using a finite-dimensional basis.

Rewrite as an unconstrained minimisation problem using
Lagrange’s method.

Incremental approach: linearise evolution operator and solve
linearised problem iteratively.

Require a discrete version of the tangent linear model (TLM)
and its adjoint.

Each iteration requires one forward solution of the TLM
equations and one backward solution of the adjoint equations.
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Hessian matrix

Hessian of the cost function:

H = V−1
b + RTCT

obsV
−1
o CobsR

Discrete tangent linear operator R and its adjoint.

H is often too large to be stored in memory.

Action of applying H to a vector is available, but expensive:

involves both forward and backward solves with the linearised
evolution operator and its adjoint.
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Approximating the inverse Hessian

Why approximate H−1?

H−1 represents an approximation of the Posterior Covariance
Matrix (PCM).

The PCM can be used to find confidence intervals and carry
out a posteriori error analysis.

H−1/2 can be used in ensemble forecasting.

H−1, H−1/2 can be used for preconditioning in a
Gauss-Newton method (focus of this talk).

AIM: construct a limited-memory approximation to H−1 using only
matrix-vector multiplication.
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Return to 4D-Var

Linear system (within a Gauss-Newton method):

H(uk)δuk = G (uk)

Hessian of the cost function H
gradient of the cost function G (uk)

Solve using Preconditioned Conjugate Gradient iteration
(needs only Hv).

Convergence depends on eigenvalues of the Hessian

H = V−1
b

+ RTCT
obsV

−1
o CobsR .

Evaluating Hv is very expensive, so we need a good
preconditoner.
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First level preconditioning

Use the background covariance matrix Vb.

Projected Hessian:

H = (V
1/2
b

)THV
1/2
b

= I + (V
1/2
b

)TRTCT
obsV

−1
o CobsRV

1/2
b

Easy to recover H in the original space.

Eigenvalues of H are usually clustered in a narrow band above
one, with few eigenvalues distinct enough to contribute
noticeably to the Hessian value.
[Haben et al., Computers & Fluids 46 (2011)]

This makes H amenable to limited-memory approximation.
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Correlation matrix

H−1 (scaled to have unit diagonal)
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Preconditioned correlation matrix

H−1 (after first level preconditioning)
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Limited-memory approximation

Find ne leading eigenvalues and orthonormal eigenvectors
using the Lanczos method.

Construct approximation

H ≈ I +

ne
∑

i=1

(λi − 1)uiu
T
i

Easy to evaluate matrix powers:

Hp ≈ I +

ne
∑

i=1

(λp
i − 1)uiu

T
i
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Second level preconditioning

IDEA: Construct a multilevel approximation to H−1 based on
a sequence of nested grids.

Discretise evolution equation on a grid with m + 1 nodes
(level 0) to represent Hessian H0

Grid level k contains mk = m/2k + 1 nodes.

level 0

level 1

level 2

Identity matrix Ik on grid level k .
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Grid transfers with “correction”

Grid transfer based on piecewise cubic splines:

Restriction matrix R f
c from k = f to k = c .

Prolongation matrix Pc
f from k = c to k = f .

Construct new operators which transfer a matrix between a
course grid level c and a fine grid level f .

From coarse to fine:

Mc→f = Pc
f (Mc − Ic)R

f
c + If

From fine to coarse:

Mf→c = R f
c (Mf − If )P

c
f + Ic
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Outline of multilevel concept

Given a symmetric positive definite operator A0 available on
the finest grid level in matrix-vector
product form:

1 represent A0 on the coarsest grid level;

2 use a local preconditioner to improve the eigenvalue
distribution;

3 build a limited memory approximation to its inverse using the
Lanczos method (which forms the basis of the local
preconditioner at the next coarsest level);

4 move up one grid level and repeat.
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Multilevel algorithm for H−1

Represent H0 at a given level (k , say):

H0→k = R0
k (H0 − I0)P

k
0 + Ik

Precondition to improve eigenvalue spectrum:

H̃0→k = (Bk+1
k )TH0→kB

k+1
k

Find nk eigenvalues/eigenvectors of H̃0→k using the Lanczos
method.

Approximate H̃
−1/2
0→k

:

H̃
−1/2
0→k ≈ Ik +

nk
∑

i=1

(

1√
λi

− 1

)

uiu
T
i
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Preconditioners

Construct Bk+1
k on level k + 1, apply on level k .

On coarsest grid, level k + 1 does not exist so set Bk+1
k = Ik .

For other levels, construct preconditioners recursively:

Bk+1
k

=
[

Bk+2
k+1 H̃

−1/2
0→k+1

]

→k
, Bk+1

k

T
=
[

H̃
−1/2
0→k+1B

k+2
k+1

T
]

→k

Square brackets represent projection to the correct grid level
using “corrected” grid transfers, e.g.

[Mk+1]→k = Rk+1
k

(Mk+1 − Ik+1)P
k
k+1 + Ik
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Finest level

We already have H0, so precondition to obtain

H̃0 = B1
0

T
H0B

1
0

Find n0 eigenvalues/eigenvectors of H̃0 using the Lanczos
method.

Approximate H̃−1
0 :

H̃−1
0 ≈ Ik +

n0
∑

i=1

(

1

λi

− 1

)

uiu
T
i

Recover projected inverse Hessian using

H−1
0 = B1

0 H̃
−1
0 B1

0

T
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Algorithm

use Ne = (n0, n1, . . . , nc) eigenvalues at each level

[Λ,U ]=mlevd(H0,Ne)
for k = kc , kc − 1, . . . , 0

compute by the Lanczos method

and store in memory

{λi
k ,U

i
k}, i = 1, . . . , nk of H̃0→k

using preconditioner Bk+1
k

end

storage:

Λ =
[

λ1
kc
, . . . , λ

nkc
kc

, λ1
kc−1, . . . , λ

nkc−1

kc−1 , . . . , λ
1
0, . . . , λ

n0
0

]

,

U =
[

U1
kc
, . . . ,U

nkc
kc

,U1
kc−1, . . . ,U

nkc−1

kc−1 , . . . ,U
1
0 , . . . ,U

n0
0

]

.
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Example

Test using 1D Burgers’ equation with initial condition

f (x) = 0.1 + 0.35

[

1 + sin

(

4πx +
3π

2

)]

, 0 < x < 1

1D uniform grid with 7 sensors located at 0.3, 0.4, 0.45, 0.5,
0.55, 0.6, and 0.7 in [0, 1].

Multilevel preconditioning with four grid levels:

k 0 1 2 3

grid points 401 201 101 51
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Diagonal of H−1
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Assessing approximation accuracy

Riemannian distance:

δ(A,B) =
∥

∥ln(B−1A)
∥

∥

F
=

(

n
∑

i=1

ln2λi

)1/2

Compare eigenvalues of H−1 and H̃−1 on the finest grid level
k = 0 using

D =
δ(H−1, H̃−1)

δ(H−1, I )

Vary number of eigenvalues chosen on each grid level

Ne = (n0, n1, n2, n3)
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Eigenvalues of the inverse Hessian

Exact (blue circles), approximated (red stars)
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Eigenvalues of the inverse Hessian

Exact (blue circles), approximated (red stars)
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Eigenvalues of the inverse Hessian

Exact (blue circles), approximated (red stars)
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Eigenvalues of the inverse Hessian

Exact (blue circles), approximated (red stars)
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Fixed memory ratio

Fixed memory ratio R =

kc
∑

k=0

nk

2k

R
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PCG iteration for one Newton step

measurement units

memory: length of vector on finest grid L
cost: cost of HVP on finest grid M

Preconditioner # CG iterations storage cost

none 57 0L 57M

MG(400,0,0,0) 1 400L 402M

MG(4,8,16,32) 4 16L 34M

MG(0,8,16,32) 5 12L 14M

MG(0,0,16,32) 8 8L 10M
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Hessian decomposition

partition domain into subregions and compute local Hessians
H l such that

H(u) = I +

L
∑

l=1

(H l (u)− I )

fewer eigenvalues required for limited-memory representation
of each H l

local Hessians can be computed in parallel

H l need not be computed at finest grid level:

Hk(uk) = Ik +

L
∑

l=1

(H l
k(uk)− Ik)

could run local rather than global model
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Practical approach: version 1

Compute limited-memory approximations to local
sensor-based Hessians on level l using nl eigenpairs.

Assemble these to form Ha, then apply mlevd to Ha based on
a fixed Ne .

Local Hessians cheaper to compute.

Additional user-specified parameter(s) l , nl needed.

More memory required as local Hessians must also be stored.
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Numerical results

Preconditioner Ne l nl

P1 (200,0,0,0) 1 8
P2 (0,8,16,32) 1 8
P3 (0,4,8,16) 1 8

ensemble mean of NHV P
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Practical approach: version 2

Can reduce memory requirements further by using a multilevel
approximation of each limited-memory local Hessian on level l
using nl eigenpairs.

Approximate local Hessians by applying mlevd to local inverse
Hessians based on N l

e .

Assemble these to form a reduced-memory assembled Hessian
Hrm
a .

Use mlevd again on Hrm
a based on Ne .
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Numerical results

Preconditioner Ne l nl N l
e

P1 (200,0,0,0) 1 8 -
P2 (0,8,16,32) 1 8 -
P3 (0,4,8,16) 1 8 -
P4 (0,8,16,32) 1 8 (0,0,8,0)
P5 (0,8,16,32) 2 8 (0,0,0,8)
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Conclusions and next steps

Similar results with other configurations (e.g. moving sensors,
different initial conditions).

Multilevel preconditioning looks promising for constructing a
good limited-memory approximation to H−1.

The balance between restrictions on memory/cost limitations
may vary between particular applications.

Identifying globally appropriate values for (n0, n1, n2, n3) and
other parameters is tricky.

Now ready for two dimensions!
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It is sometimes nice in Scotland. . .
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. . . you should come to visit!

27th Biennial Numerical Analysis Conference
University of Strathclyde, Glasgow, Scotland

June 27th-30th 2017

http://numericalanalysisconference.org.uk/

Alison Ramage, University of Strathclyde Multilevel preconditioner for data assimilation with 4D-Var


