Multigrid Solution of Discrete Convection-Diffusion Equations

Alison Ramage
Dept of Mathematics
University of Strathclyde
Glasgow, Scotland

Howard Elman
Dept of Computer Science University of Maryland College Park, MD, USA

Overview

- background
- convection-diffusion problems
- multigrid methods
- practical multigrid issues
- approximation and smoothing properties
- convergence analysis
- model problem Fourier analysis
- matrix transformation
- comparison with semiperiodic problem
- implications for Dirichlet problems

Convection-Diffusion in 2D

$$
\begin{aligned}
-\epsilon \nabla^{2} u(x, y)+\mathbf{w} \cdot \nabla u(x, y) & =f(x, y) \text { in } \Omega \in \mathbb{R}^{2} \\
u(x, y) & =g \text { on } \partial \Omega
\end{aligned}
$$

divergence-free convective velocity ('wind') w
diffusion parameter $\epsilon \ll 1$
discretisation parameter h

Convection-Diffusion in 2D

$$
\begin{aligned}
-\epsilon \nabla^{2} u(x, y)+\mathbf{w} \cdot \nabla u(x, y) & =f(x, y) \text { in } \Omega \in \mathbb{R}^{2} \\
u(x, y) & =g \text { on } \partial \Omega
\end{aligned}
$$

divergence-free convective velocity ('wind') w diffusion parameter $\epsilon \ll 1$ discretisation parameter h mesh Péclet number $\quad P_{h}=\frac{\|\mathbf{w}\| h}{2 \epsilon}$

Boundary Layers and Oscillations

- Galerkin finite element method

$$
\epsilon\left(\nabla u_{h}, \nabla v_{h}\right)+\left(\mathbf{w} \cdot \nabla u_{h}, v_{h}\right)=\left(f, v_{h}\right) \quad \forall v_{h} \in V_{h}
$$

Boundary Layers and Oscillations

- Galerkin finite element method

$$
\epsilon\left(\nabla u_{h}, \nabla v_{h}\right)+\left(\mathbf{w} \cdot \nabla u_{h}, v_{h}\right)=\left(f, v_{h}\right) \quad \forall v_{h} \in V_{h}
$$

- solution features:
exponential and characteristic boundary layers

Boundary Layers and Oscillations

- Galerkin finite element method

$$
\epsilon\left(\nabla u_{h}, \nabla v_{h}\right)+\left(\mathbf{w} \cdot \nabla u_{h}, v_{h}\right)=\left(f, v_{h}\right) \quad \forall v_{h} \in V_{h}
$$

- solution features:
exponential and characteristic boundary layers
- oscillations observed in discrete solutions for $P_{h}>1$

$P_{e}=0.5$

$P_{e}=2$

Streamline Diffusion Method

streamline diffusion FEM, square bilinear elements

$$
\begin{aligned}
\epsilon\left(\nabla u_{h}, \nabla v_{h}\right) & +\left(\mathbf{w} \cdot \nabla u_{h}, v_{h}\right)+\frac{\delta h}{\|\mathbf{w}\|}\left(\mathbf{w} \cdot \nabla u_{h}, \mathbf{w} \cdot \nabla v_{h}\right) \\
& =\left(f, v_{h}\right)+\frac{\delta h}{\|\mathbf{w}\|}\left(f, \mathbf{w} \cdot \nabla v_{h}\right) \quad \forall v_{h} \in V_{h}
\end{aligned}
$$

Streamline Diffusion Method

streamline diffusion FEM, square bilinear elements

$$
\begin{aligned}
\epsilon\left(\nabla u_{h}, \nabla v_{h}\right) & +\left(\mathbf{w} \cdot \nabla u_{h}, v_{h}\right)+\frac{\delta h}{\|\mathbf{w}\|}\left(\mathbf{w} \cdot \nabla u_{h}, \mathbf{w} \cdot \nabla v_{h}\right) \\
& =\left(f, v_{h}\right)+\frac{\delta h}{\|\mathbf{w}\|}\left(f, \mathbf{w} \cdot \nabla v_{h}\right) \quad \forall v_{h} \in V_{h}
\end{aligned}
$$

- $P_{h} \leq 1: \quad \delta=0$

Galerkin FEM

- $P_{h}>1: \quad \delta=\frac{1}{2}-\frac{\epsilon}{h}$

Streamline Diffusion

Multigrid Ideas

- fine grid (h), coarse grid (2h)

Multigrid Ideas

- fine grid (h), coarse grid (2h)
- decompose a grid function into components in two subspaces

> approximate inverse operator for components in subspace 1
smoothing iteration rapidly reduces error components in subspace 2

Multigrid Ideas

- fine grid (h), coarse grid (2h)
- decompose a grid function into components in two subspaces

> approximate inverse operator for components in subspace 1

smoothing iteration rapidly reduces error components in subspace 2

- recursive process on nested grids

Multigrid Ideas

- fine grid (h), coarse grid (2h)
- decompose a grid function into components in two subspaces

> approximate inverse operator for components in subspace 1

smoothing iteration rapidly reduces error components in subspace 2

- recursive process on nested grids
- optimal in the sense of obtaining convergence rate independent of h

Issues for Convection-Diffusion

- approximation: choice of discretisation
- oscillations on coarser grids?
- grid transfer operators?

Issues for Convection-Diffusion

- approximation: choice of discretisation
- oscillations on coarser grids?
- grid transfer operators?
- smoothing: choice of relaxation method
- direction of flow?
- circular flows?

Issues for Convection-Diffusion

- approximation: choice of discretisation
- oscillations on coarser grids?
- grid transfer operators?
- smoothing: choice of relaxation method
- direction of flow?
- circular flows?
- multigrid can be implemented effectively for convection-diffusion problems

Convergence Analysis

- standard Poisson-type convergence analysis fails
- ideas for convection-diffusion less well-developed

Convergence Analysis

- standard Poisson-type convergence analysis fails
- ideas for convection-diffusion less well-developed
- various successful approaches
- perturbation arguments Bank (1981), Bramble, Pasciak and Xu (1988), Mandel (1986), Wang (1993)
- matrix-based methods

Reusken (2002), Olishanskii and Reusken (2002)

Multigrid Method

- two-grid method: $\quad N_{f}$ (fine grid), $\quad N_{c}$ (coarse grid)

Multigrid Method

- two-grid method: N_{f} (fine grid), $\quad N_{c}$ (coarse grid)
- coefficient matrices: A_{f} (fine grid), A_{c} (coarse grid)
direct discretisation on coarse grid

Multigrid Method

- two-grid method: N_{f} (fine grid), $\quad N_{c}$ (coarse grid)
- coefficient matrices: A_{f} (fine grid), A_{c} (coarse grid)
- prolongation: bilinear interpolation P
- restriction: transpose of prolongation P^{T}

Multigrid Method

- two-grid method: N_{f} (fine grid), $\quad N_{c}$ (coarse grid)
- coefficient matrices: A_{f} (fine grid), A_{c} (coarse grid)
- prolongation: bilinear interpolation P
- restriction: transpose of prolongation P^{T}
- smoothing: line Gauss-Seidel S_{A}
- ν steps of pre-smoothing, no post-smoothing

Multigrid Convergence

- algebraic error

$$
\mathbf{e}_{k}=\hat{\mathbf{u}}-\mathbf{u}_{k}
$$

Multigrid Convergence

- algebraic error $\mathbf{e}_{k}=\hat{\mathbf{u}}-\mathbf{u}_{k}$
- two-grid iteration matrix $\quad M=\left(I-P A_{c}^{-1} P^{T} A_{f}\right) S_{A}^{\nu}$
- error equation $\mathbf{e}_{k}=M \mathbf{e}_{k-1}=M^{k} \mathbf{e}_{0}$

Multigrid Convergence

- algebraic error $\mathbf{e}_{k}=\hat{\mathbf{u}}-\mathbf{u}_{k}$
- two-grid iteration matrix $\quad M=\left(I-P A_{c}^{-1} P^{T} A_{f}\right) S_{A}^{\nu}$
- error equation $\mathbf{e}_{k}=M \mathbf{e}_{k-1}=M^{k} \mathbf{e}_{0}$
- convergence?

$$
\left\|\mathbf{e}_{k}\right\| \leq\|M\|^{k}\left\|\mathbf{e}_{0}\right\|
$$

convergence if $\|M\|<1$

Two-Grid Convergence Analysis

AIM: find an upper bound for
$\|M\|_{2}=\left\|\left(I-P A_{c}^{-1} P^{T} A_{f}\right) S_{A}^{\nu}\right\|_{2}$

Two-Grid Convergence Analysis

AIM: find an upper bound for

$$
\|M\|_{2}=\left\|\left(I-P A_{c}^{-1} P^{T} A_{f}\right) S_{A}^{\nu}\right\|_{2}
$$

- Approach 1: write

$$
M=\left(A_{f}^{-1}-P A_{c}^{-1} P^{T}\right)\left(A_{f} S_{A}^{\nu}\right)=M_{A} M_{S}
$$

and bound $\left\|M_{A}\right\|_{2},\left\|M_{S}\right\|_{2}$ separately

Two-Grid Convergence Analysis

AIM: find an upper bound for

$$
\|M\|_{2}=\left\|\left(I-P A_{c}^{-1} P^{T} A_{f}\right) S_{A}^{\nu}\right\|_{2}
$$

- Approach 1: write

$$
M=\left(A_{f}^{-1}-P A_{c}^{-1} P^{T}\right)\left(A_{f} S_{A}^{\nu}\right)=M_{A} M_{S}
$$

and bound $\left\|M_{A}\right\|_{2},\left\|M_{S}\right\|_{2}$ separately

- Approach 2: bound $\|M\|_{2}$ directly

Model Problem

grid-aligned flow with vertical wind and $f=0$

$$
-\epsilon \nabla^{2} u(x, y)+(0,1) \cdot \nabla u(x, y)=0
$$

Dirichlet boundary conditions square bilinear elements

Computational Molecule

parameters h, ϵ, δ

$$
\begin{aligned}
& M_{2}: \quad-\frac{1}{12}[(2 \delta-1) h+4 \epsilon] \quad-\frac{1}{3}[(2 \delta-1) h+\epsilon] \quad-\frac{1}{12}[(2 \delta-1) h+4 \epsilon] \\
& M_{1}: \quad \frac{1}{3}(\delta h-\epsilon) \quad \leftarrow \quad \frac{4}{3}(\delta h+2 \epsilon) \quad \rightarrow \quad \frac{1}{3}(\delta h-\epsilon) \\
& M_{3}:-\frac{1}{12}[(2 \delta+1) h+4 \epsilon] \quad-\frac{1}{3}[(2 \delta+1) h+\epsilon] \quad-\frac{1}{12}[(2 \delta+1) h+4 \epsilon]
\end{aligned}
$$

symmetric stencil

Coefficient Matrix

$$
A=\left[\begin{array}{ccccc}
M_{1} & M_{2} & & & 0 \\
M_{3} & M_{1} & M_{2} & & \\
& \ddots & \ddots & \ddots & \\
& & M_{3} & M_{1} & M_{2} \\
0 & & & M_{3} & M_{1}
\end{array}\right]
$$

Coefficient Matrix

$$
A=\left[\begin{array}{ccccc}
M_{1} & M_{2} & & & 0 \\
M_{3} & M_{1} & M_{2} & & \\
& \ddots & \ddots & \ddots & \\
& & M_{3} & M_{1} & M_{2} \\
0 & & & M_{3} & M_{1}
\end{array}\right]
$$

eigenvectors and eigenvalues:

$$
\begin{aligned}
& M_{1} \mathbf{v}_{j}=\lambda_{j} \mathbf{v}_{j}, \quad \lambda_{j}=m_{1 c}+2 m_{1 r} \cos \frac{j \pi}{N} \\
& M_{2} \mathbf{v}_{j}=\sigma_{j} \mathbf{v}_{j}, \quad \sigma_{j}=m_{2 c}+2 m_{2 r} \cos \frac{j \pi}{N} \\
& M_{3} \mathbf{v}_{j}=\gamma_{j} \mathbf{v}_{j}, \quad \gamma_{j}=m_{3 c}+2 m_{3 r} \cos \frac{j \pi}{N} \\
& \mathbf{v}_{j}=\sqrt{\frac{2}{N}}\left[\sin \frac{j \pi}{N}, \quad \sin \frac{2 j \pi}{N}, \quad \ldots, \sin \frac{(N-1) j \pi}{N}\right]^{T}
\end{aligned}
$$

Transformation: Coefficient Matrix (1)

$N_{f}^{2} \quad$ elements, $\quad n_{f}^{2}$ unknowns $\quad\left(n_{f}=N_{f}-1\right)$

$$
\hat{V}_{f}=\left[\mathbf{v}_{1} \mathbf{v}_{2} \ldots \mathbf{v}_{n_{f}}\right], \quad V_{f}=\operatorname{diag}\left(\hat{V}_{f}, \ldots, \hat{V}_{f}\right)
$$

$$
M_{1} \hat{V}_{f}=\hat{V}_{f} \Lambda, \quad M_{2} \hat{V}_{f}=\hat{V}_{f} \Sigma, \quad M_{3} \hat{V}_{f}=\hat{V}_{f} \Gamma
$$

$$
V_{f}^{T} A_{f} V_{f}=\hat{T}_{f}=\left[\begin{array}{ccccc}
\Lambda & \Sigma & & & 0 \\
\Gamma & \Lambda & \Sigma & & \\
& \ddots & \ddots & \ddots & \\
& & \Gamma & \Lambda & \Sigma \\
0 & & & \Gamma & \Lambda
\end{array}\right]
$$

Transformation: Coefficient Matrix (2)

permute into tridiagonal form:

$$
\begin{gathered}
\Pi_{f}^{T} \hat{T}_{f} \Pi_{f}=T_{f}=\left[\begin{array}{ccccc}
T_{1} & & & & 0 \\
& T_{2} & & & \\
& & \ddots & & \\
& & & T_{n_{f}-1} & \\
0 & & & T_{n_{f}}
\end{array}\right] \\
T_{j}=\operatorname{tridiag}\left(\gamma_{j}, \lambda_{j}, \sigma_{j}\right) \\
A_{f}=Q_{f} T_{f} Q_{f}^{T} \quad Q_{f}=V_{f} \Pi_{f}
\end{gathered}
$$

Transformation: Coefficient Matrix (2)

permute into tridiagonal form:

$$
\begin{gathered}
\Pi_{f}^{T} \hat{T}_{f} \Pi_{f}=T_{f}=\left[\begin{array}{ccccc}
T_{1} & & & & 0 \\
& T_{2} & & & \\
& & \ddots & & \\
& & & T_{n_{f}-1} & \\
0 & & & T_{n_{f}}
\end{array}\right] \\
T_{j}=\operatorname{tridiag}\left(\gamma_{j}, \lambda_{j}, \sigma_{j}\right) \\
A_{f}=Q_{f} T_{f} Q_{f}^{T} \quad Q_{f}=V_{f} \Pi_{f}
\end{gathered}
$$

coarse grid: $\quad A_{c}=Q_{c} T_{c} Q_{c}^{T} \quad Q_{c}=V_{c} \Pi_{c}$

Transformation: Smoothing Matrix

block matrix splitting:

$$
A_{f}=D_{A}-L_{A}-U_{A}
$$

Gauss-Seidel smoothing matrix:

$$
S_{A}=\left(D_{A}-L_{A}\right)^{-1} U_{A}=I-\left(D_{A}-L_{A}\right)^{-1} A_{f}
$$

Transformation: Smoothing Matrix

block matrix splitting:

$$
A_{f}=D_{A}-L_{A}-U_{A}
$$

Gauss-Seidel smoothing matrix:

$$
S_{A}=\left(D_{A}-L_{A}\right)^{-1} U_{A}=I-\left(D_{A}-L_{A}\right)^{-1} A_{f}
$$

transformation:

$$
S_{A}=Q_{f} S_{T} Q_{f}^{T}
$$

where

$$
S_{T}=I-\left(D_{T}-L_{T}\right)^{-1} T_{f} \quad \text { is block-diagonal }
$$

Transformation: Prolongation Matrix

2D prolongation matrix: $\quad P=L \otimes L$

$$
\left.L^{T}=\left[\begin{array}{llllllll}
\frac{1}{2} & 1 & \frac{1}{2} & & & & & \\
& & \frac{1}{2} & 1 & \frac{1}{2} & & & \\
& & & & & \ddots & & \\
& & & & & & \frac{1}{2} & 1
\end{array}\right] \frac{1}{2}\right]
$$

Transformation: Prolongation Matrix

2D prolongation matrix: $\quad P=L \otimes L$

$$
\left.L^{T}=\left[\begin{array}{llllllll}
\frac{1}{2} & 1 & \frac{1}{2} & & & & & \\
& & \frac{1}{2} & 1 & \frac{1}{2} & & & \\
& & & & & \ddots & & \\
& & & & & & \frac{1}{2} & 1
\end{array}\right] \frac{1}{2}\right]
$$

transformation: $\quad Q_{f}=\left(I_{f} \otimes \hat{V}_{f}\right) \Pi_{f}, \quad Q_{c}=\left(I_{c} \otimes \hat{V}_{c}\right) \Pi_{c}$

$$
\bar{P}=Q_{f}^{T} P Q_{c}=\mathcal{A}^{T} \otimes L
$$

Transformation: Iteration Matrix (1)

$$
\begin{aligned}
M & =\left(I-P A_{c}^{-1} P^{T} A_{f}\right) S_{A}^{\nu} \\
& =\left(I-P Q_{c} T_{c}^{-1} Q_{c}^{T} P^{T} Q_{f} T_{f} Q_{f}^{T}\right) S_{A}^{\nu} \\
& =Q_{f}\left(I-\bar{P} T_{c}^{-1} \bar{P}^{T} T_{f}\right) Q_{f}^{T}\left(Q_{f} S_{T} Q_{f}^{T}\right)^{\nu} \\
& =Q_{f}\left(I-\bar{P} T_{c}^{-1} \bar{P}^{T} T_{f}\right) S_{T}^{\nu} Q_{f}^{T} \\
\Rightarrow M & =Q_{f} \bar{M} Q_{f}^{T}
\end{aligned}
$$

where $\bar{M}=\left(I-\bar{P} T_{c}^{-1} \bar{P}^{T} T_{f}\right) S_{T}^{\nu}$

Transformation: Iteration Matrix (1)

$$
\begin{aligned}
M & =\left(I-P A_{c}^{-1} P^{T} A_{f}\right) S_{A}^{\nu} \\
& =\left(I-P Q_{c} T_{c}^{-1} Q_{c}^{T} P^{T} Q_{f} T_{f} Q_{f}^{T}\right) S_{A}^{\nu} \\
& =Q_{f}\left(I-\bar{P} T_{c}^{-1} \bar{P}^{T} T_{f}\right) Q_{f}^{T}\left(Q_{f} S_{T} Q_{f}^{T}\right)^{\nu} \\
& =Q_{f}\left(I-\bar{P} T_{c}^{-1} \bar{P}^{T} T_{f}\right) S_{T}^{\nu} Q_{f}^{T} \\
\Rightarrow M & =Q_{f} \bar{M} Q_{f}^{T}
\end{aligned}
$$

where $\quad \bar{M}=\left(I-\bar{P} T_{c}^{-1} \bar{P}^{T} T_{f}\right) S_{T}^{\nu}$
Q_{f} is orthogonal:

$$
\|M\|_{2}=\|\bar{M}\|_{2}
$$

Transformed Iteration Matrix (2)

$$
\left[\begin{array}{ccccc}
\mathbf{B}_{1} & & & & \mathbf{C}_{1} \\
& \mathbf{B}_{2} & & & \mathbf{C}_{2} \\
& \mathbf{B}_{3} & \mathbf{C}_{3} & \\
& \mathbf{C}_{5} & \mathbf{B}_{4} & \mathbf{B}_{5} & \\
\mathbf{C}_{7} & \mathbf{C}_{6} & & & \mathbf{B}_{6} \\
\mathbf{B}_{7}
\end{array}\right]
$$

Transformed Iteration Matrix (2)

$$
\left[\begin{array}{ccccc}
\mathbf{B}_{1} & & & & \mathbf{C}_{1} \\
& \mathbf{B}_{2} & & & \mathbf{C}_{2} \\
& \mathbf{B}_{3} & \mathbf{C}_{3} & \\
& & \mathbf{C}_{5} & \mathbf{B}_{5} & \\
\mathbf{C}_{7} & \mathbf{C}_{6} & & & \mathbf{B}_{6} \\
\mathbf{B}_{7}
\end{array}\right]
$$

Transformed Iteration Matrix (2)

$$
\|\bar{M}\|_{2}=\max \left\{\max _{j=1, \ldots, n_{c}}\left\|\left[\begin{array}{ll}
B_{j} & C_{j} \\
C_{k} & B_{k}
\end{array}\right]\right\|_{2},\left\|B_{N_{c}}\right\|_{2}\right\}, \quad k=N_{f}-j
$$

The Story So Far...

- $n_{f}^{2} \times n_{f}^{2}$ two-grid iteration matrix M
- Fourier transformation converts 2D problem to a set of n_{f} problems with 1D structure
- $\|M\|_{2}$ can be found from norms of N_{c} smaller problems

$$
n_{c} \text { of size } 2 n_{f} \times 2 n_{f}, 1 \text { of size } n_{f} \times n_{f}
$$

The Story So Far...

- $n_{f}^{2} \times n_{f}^{2}$ two-grid iteration matrix M
- Fourier transformation converts 2D problem to a set of n_{f} problems with 1D structure
- $\|M\|_{2}$ can be found from norms of N_{c} smaller problems

$$
n_{c} \text { of size } 2 n_{f} \times 2 n_{f}, 1 \text { of size } n_{f} \times n_{f}
$$

- IDEA: analyse semiperiodic version of the problem

$$
n_{c} \text { of size } 2 N_{f} \times 2 N_{f}, 1 \text { of size } N_{f} \times N_{f}
$$

- gain insight into Dirichlet problem behaviour?

Semiperiodic problem

- B_{j}, C_{j} are replaced by periodic versions, e.g.

$$
B_{j}^{\text {per }}=\left[I-\bar{P}_{j}^{\text {per }}\left(T_{c}^{\text {per }}\right)_{j}^{-1}\left(\bar{P}_{j}^{\text {per }}\right)^{T}\left(T_{f}^{p e r}\right)_{j}\right] S_{j}^{\text {per }}
$$

Semiperiodic problem

- B_{j}, C_{j} are replaced by periodic versions, e.g.

$$
B_{j}^{\text {per }}=\left[I-\bar{P}_{j}^{\text {per }}\left(T_{c}^{\text {per }}\right)_{j}^{-1}\left(\bar{P}_{j}^{\text {per }}\right)^{T}\left(T_{f}^{p e r}\right)_{j}\right] S_{j}^{p e r}
$$

- transform using coarse grid periodic eigenvectors
- $B_{j}^{\text {per }}, C_{j}^{\text {per }}$ become block diagonal with 2×2 blocks

Semiperiodic problem

- B_{j}, C_{j} are replaced by periodic versions, e.g.

$$
B_{j}^{\text {per }}=\left[I-\bar{P}_{j}^{\text {per }}\left(T_{c}^{\text {per }}\right)_{j}^{-1}\left(\bar{P}_{j}^{\text {per }}\right)^{T}\left(T_{f}^{p e r}\right)_{j}\right] S_{j}^{\text {per }}
$$

- transform using coarse grid periodic eigenvectors
- $B_{j}^{\text {per }}, C_{j}^{\text {per }}$ become block diagonal with 2×2 blocks
- permute into block diagonal form

Semiperiodic problem

- B_{j}, C_{j} are replaced by periodic versions, e.g.

$$
B_{j}^{\text {per }}=\left[I-\bar{P}_{j}^{\text {per }}\left(T_{c}^{p e r}\right)_{j}^{-1}\left(\bar{P}_{j}^{\text {per }}\right)^{T}\left(T_{f}^{p e r}\right)_{j}\right] S_{j}^{\text {per }}
$$

- transform using coarse grid periodic eigenvectors
- $B_{j}^{\text {per }}, C_{j}^{\text {per }}$ become block diagonal with 2×2 blocks
- permute into block diagonal form

- 2-norm given by maximum 2-norm of the 4×4 blocks

Analytic result

- with semiperiodic approximation, when $P_{h}>1$

$$
\left\|M^{p e r}\right\|_{2}=\frac{\sqrt{3+\cos (2 \pi h)}}{\sqrt{2}\left(5^{\nu}\right)}
$$

independent of ϵ

Analytic result

- with semiperiodic approximation, when $P_{h}>1$

$$
\left\|M^{p e r}\right\|_{2}=\frac{\sqrt{3+\cos (2 \pi h)}}{\sqrt{2}\left(5^{\nu}\right)}
$$

- as h is small in practice,

$$
\left\|M^{p e r}\right\|_{2} \simeq \frac{\sqrt{2}}{5^{\nu}}
$$

Analytic result

- with semiperiodic approximation, when $P_{h}>1$

$$
\left\|M^{p e r}\right\|_{2}=\frac{\sqrt{3+\cos (2 \pi h)}}{\sqrt{2}\left(5^{\nu}\right)}
$$

- as h is small in practice,

$$
\left\|M^{p e r}\right\|_{2} \simeq \frac{\sqrt{2}}{5^{\nu}}
$$

- when $P_{h}<1$, analysis is more detailed but good approximations to $\left\|M^{p e r}\right\|_{2}$ can be derived

Analytic result

- with semiperiodic approximation, when $P_{h}>1$

$$
\left\|M^{p e r}\right\|_{2}=\frac{\sqrt{3+\cos (2 \pi h)}}{\sqrt{2}\left(5^{\nu}\right)}
$$

- as h is small in practice,

$$
\left\|M^{p e r}\right\|_{2} \simeq \frac{\sqrt{2}}{5^{\nu}}
$$

- when $P_{h}<1$, analysis is more detailed but good approximations to $\left\|M^{p e r}\right\|_{2}$ can be derived

Question: Does this semiperiodic analysis correctly predict Dirichlet problem behaviour?

Model Problem Results (1)

- $\|M\|_{2}$ vs P_{h}
- $P_{h} \geq 1$ only
- semiperiodic: dashed line
- Dirichlet: solid lines
- h fixed for each line
- $h=\frac{1}{8}$ to $h=\frac{1}{512}$
- $\nu=1$
- semiperiodic: $\frac{\sqrt{2}}{5} \simeq 0.28$
- Dirichlet $\rightarrow \frac{\sqrt{2}}{5}$

Model Problem Results (2)

- $\|M\|_{2}$ vs P_{h}
- $P_{h}<1$ only
- semiperiodic: dashed line
- Dirichlet: solid lines
- h fixed for each line
- $h=\frac{1}{8}$ to $h=\frac{1}{512}$
- $\nu=1$
- not a good match
- MG may diverge!

Observations

- $\|M\|_{2}=\sqrt{\left|\lambda_{1}\left(M^{*} M\right)\right|}$

Observations

- $\|M\|_{2}=\sqrt{\left|\lambda_{1}\left(M^{*} M\right)\right|}$
- for $P_{h}<1$, matrix blocks have one 'bad' eigenvalue

$\sqrt{\left|\lambda_{1}\left(\mathcal{M}_{1}^{*} \mathcal{M}_{1}\right)\right|}$ for fixed $P_{h}=0.38$

Alternative Bound?

- artificially 'remove' this eigenvalue: use $\sqrt{\left|\lambda_{2}\left(M^{*} M\right)\right|}$

Alternative Bound?

- artificially 'remove' this eigenvalue: use $\sqrt{\left|\lambda_{2}\left(M^{*} M\right)\right|}$

- $P_{h}<1$ only
- semiperiodic: $\left\|M^{p e r}\right\|_{2}$
- Dirichlet: $\sqrt{\left|\lambda_{2}\left(M^{*} M\right)\right|}$

Outlying eigenvalue

- in practice, the effect of this outlying eigenvalue is transient
- the eigenvector corresponding to the outlying eigenvalue is large only on grid lines very close to the inflow boundary
- after a few MG iterations, it is smooth and so is easily eliminated by coarse grid correction

Outlying eigenvalue

- in practice, the effect of this outlying eigenvalue is transient
- the eigenvector corresponding to the outlying eigenvalue is large only on grid lines very close to the inflow boundary
- after a few MG iterations, it is smooth and so is easily eliminated by coarse grid correction
- these effects do not have an impact on practical MG performance

MG Iteration Counts

- MG-like convergence for any value of P_{h}

MG Iteration Counts

- MG-like convergence for any value of P_{h}

	ϵ														
h	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{8}$	$\frac{1}{16}$	$\frac{1}{32}$	$\frac{1}{64}$	$\frac{1}{128}$	$\frac{1}{256}$	$\frac{1}{512}$	$\frac{1}{1024}$	$\frac{1}{2048}$				
$\frac{1}{4}$	5	5	5	5	5	4	4	3	2	2	2				
$\frac{1}{8}$	7	7	6	6	5	5	4	4	3	2	2				
$\frac{1}{16}$	7	7	7	6	5	5	5	4	4	3	2				
$\frac{1}{32}$	7	7	7	7	6	5	5	4	4	3	3				
$\frac{1}{64}$	7	7	7	7	6	5	5	4	4	4	3				
$\frac{1}{128}$	7	6	6	6	6	6	5	4	4	4	3				
$P_{h}<1$								$P_{h} \geq 1$							

MG-like convergence for any value of P_{h}

Final Remarks

- Linear algebra gives useful insight into convergence of two-grid iteration.

Final Remarks

- Linear algebra gives useful insight into convergence of two-grid iteration.
- Semiperiodic analysis gives an accurate description of MG behaviour for the full Dirichlet problem.

Final Remarks

- Linear algebra gives useful insight into convergence of two-grid iteration.
- Semiperiodic analysis gives an accurate description of MG behaviour for the full Dirichlet problem.
- Separate approximation and smoothing matrices:
- semiperiodic analysis for smoothing matrix norm is representative of Dirichlet problem behaviour for all values of P_{h},
- semiperiodic analysis for approximation matrix norm is representative of Dirichlet problem behaviour for $P_{h} \geq 1$: for $P_{h}<1$, one 'bad' eigenvalue again causes trouble.

Final Remarks

- Linear algebra gives useful insight into convergence of two-grid iteration.
- Semiperiodic analysis gives an accurate description of MG behaviour for the full Dirichlet problem.
- Separate approximation and smoothing matrices:
- semiperiodic analysis for smoothing matrix norm is representative of Dirichlet problem behaviour for all values of P_{h},
- semiperiodic analysis for approximation matrix norm is representative of Dirichlet problem behaviour for $P_{h} \geq 1$: for $P_{h}<1$, one 'bad' eigenvalue again causes trouble.
- Replacing the Dirichlet condition by a Neumann condition on the outflow boundary leads to similar computational results.

