Some Characteristics of Multigrid Performance for the Two-Dimensional Convection-Diffusion Equation

Alison Ramage Dept of Mathematics University of Strathclyde Glasgow, Scotland

Howard Elman Dept of Computer Science University of Maryland College Park, MD, USA

Convection-Diffusion in 2D

$$-\epsilon \nabla^2 u(x,y) + \mathbf{w} \cdot \nabla u(x,y) = f(x,y) \quad \text{in} \quad \Omega \in \mathbb{R}^2$$
$$u(x,y) = g \quad \text{on} \quad \partial \Omega$$

convective velocity ('wind') \mathbf{w}

diffusion parameter $\epsilon << 1$

discretisation parameter h

mesh Péclet number

$$P_h = \frac{\|\mathbf{w}\|h}{2\epsilon}$$

Streamline Diffusion Method

streamline diffusion FEM, square bilinear elements

$$\epsilon(\nabla u_h, \nabla v_h) + (\mathbf{w} \cdot \nabla u_h, v_h) + \frac{\delta h}{\|\mathbf{w}\|} (\mathbf{w} \cdot \nabla u_h, \mathbf{w} \cdot \nabla v_h)$$
$$= (f, v_h) + \frac{\delta h}{\|\mathbf{w}\|} (f, \mathbf{w} \cdot \nabla v_h) \quad \forall v_h \in V_h$$

•
$$P_h \le 1$$
: $\delta = 0$ Galerkin FEM

•
$$P_h > 1$$
: $\delta = \frac{1}{2} - \frac{\epsilon}{h}$

Model Problem

grid-aligned flow with vertical wind and f = 0 $-\epsilon \nabla^2 u(x, y) + (0, 1) \cdot \nabla u(x, y) = 0$

Dirichlet boundary conditions

computational molecule:

 $M_{2}: -\frac{1}{12}[(2\delta-1)h+4\epsilon] -\frac{1}{3}[(2\delta-1)h+\epsilon] -\frac{1}{12}[(2\delta-1)h+4\epsilon]$ $M_{1}: \frac{1}{3}(\delta h-\epsilon) \leftarrow \frac{4}{3}(\delta h+2\epsilon) \rightarrow \frac{1}{3}(\delta h-\epsilon)$ $M_{3}: -\frac{1}{12}[(2\delta+1)h+4\epsilon] -\frac{1}{3}[(2\delta+1)h+\epsilon] -\frac{1}{12}[(2\delta+1)h+4\epsilon]$

Coefficient Matrix

$$A = \begin{bmatrix} M_1 & M_2 & & 0 \\ M_3 & M_1 & M_2 & & \\ & \ddots & \ddots & \ddots & \\ & & M_3 & M_1 & M_2 \\ 0 & & & M_3 & M_1 \end{bmatrix}$$

eigenvectors and eigenvalues:

$$M_{1}\mathbf{v}_{j} = \lambda_{j}\mathbf{v}_{j}, \quad \lambda_{j} = m_{1c} + 2m_{1r}\cos\frac{j\pi}{N}$$
$$M_{2}\mathbf{v}_{j} = \sigma_{j}\mathbf{v}_{j}, \quad \sigma_{j} = m_{2c} + 2m_{2r}\cos\frac{j\pi}{N}$$
$$M_{3}\mathbf{v}_{j} = \gamma_{j}\mathbf{v}_{j}, \quad \gamma_{j} = m_{3c} + 2m_{3r}\cos\frac{j\pi}{N}$$

$$\mathbf{v}_j = \sqrt{\frac{2}{N}} \left[\sin \frac{j\pi}{N}, \quad \sin \frac{2j\pi}{N}, \quad \dots, \sin \frac{(N-1)j\pi}{N} \right]^T$$

• two-grid method

- two-grid method
- coefficient matrices: A_f (fine grid), A_c (coarse grid)

direct discretisation on coarse grid

- two-grid method
- coefficient matrices: A_f (fine grid), A_c (coarse grid)
- prolongation: bilinear interpolation P
- restriction: transpose of prolongation P^T

- two-grid method
- coefficient matrices: A_f (fine grid), A_c (coarse grid)
- prolongation: bilinear interpolation P
- restriction: transpose of prolongation P^T
- smoothing: line Gauss-Seidel S_A
- ν steps of pre-smoothing, no post-smoothing

- two-grid method
- coefficient matrices: A_f (fine grid), A_c (coarse grid)
- prolongation: bilinear interpolation P
- restriction: transpose of prolongation P^T
- smoothing: line Gauss-Seidel S_A
- ν steps of pre-smoothing, no post-smoothing
- two-grid iteration matrix $M = (I PA_c^{-1}P^TA_f)S_A^{\nu}$
- error equation

$$\mathbf{e}_k = M\mathbf{e}_{k-1} = M^k \mathbf{e}_0$$

Two-Grid Convergence Analysis

AIM: find an upper bound for

$$||M||_2 = ||(I - PA_c^{-1}P^TA_f)S_A^{\nu}||_2$$

Two-Grid Convergence Analysis

AIM: find an upper bound for

$$||M||_2 = ||(I - PA_c^{-1}P^TA_f)S_A^{\nu}||_2$$

• Approach 1: bound $||M||_2$ directly

Two-Grid Convergence Analysis

AIM: find an upper bound for

$$||M||_2 = ||(I - PA_c^{-1}P^TA_f)S_A^{\nu}||_2$$

• Approach 1: bound $||M||_2$ directly

• Approach 2: write

$$M = (A_f^{-1} - PA_c^{-1}P^T)(A_f S_A^{\nu}) = M_A M_S$$

and bound $||M_A||_2$, $||M_S||_2$ separately

Transformation: Coefficient Matrix (1)

$$N_f^2$$
 elements, n_f^2 unknowns $(n_f = N_f - 1)$
 $\hat{V}_f = [\mathbf{v}_1 \mathbf{v}_2 \dots \mathbf{v}_{n_f}], \quad V_f = \text{diag}(\hat{V}_f, \dots, \hat{V}_f)$

$$M_1 \hat{V}_f = \hat{V}_f \Lambda, \qquad M_2 \hat{V}_f = \hat{V}_f \Sigma, \qquad M_3 \hat{V}_f = \hat{V}_f \Gamma$$

$$V_f^T A_f V_f = \hat{T}_f = \begin{bmatrix} \Lambda & \Sigma & & 0 \\ \Gamma & \Lambda & \Sigma & & \\ & \ddots & \ddots & \ddots & \\ & & \Gamma & \Lambda & \Sigma \\ 0 & & & \Gamma & \Lambda \end{bmatrix}$$

Transformation: Coefficient Matrix (2)

permute into tridiagonal form:

$$\Pi_{f}^{T}\hat{T}_{f}\Pi_{f} = T_{f} = \begin{bmatrix} T_{1} & & 0 \\ & T_{2} & & \\ & \ddots & & \\ & & T_{n_{f}-1} \\ 0 & & & T_{n_{f}} \end{bmatrix}$$
$$T_{j} = \texttt{tridiag}(\gamma_{j}, \lambda_{j}, \sigma_{j})$$

 $A_f = Q_f T_f Q_f^T \qquad Q_f = V_f \Pi_f$

Transformation: Coefficient Matrix (2)

permute into tridiagonal form:

$$\Pi_{f}^{T}\hat{T}_{f}\Pi_{f} = T_{f} = \begin{bmatrix} T_{1} & & 0 \\ & T_{2} & & \\ & \ddots & & \\ & & T_{n_{f}-1} & \\ 0 & & & T_{n_{f}} \end{bmatrix}$$
$$T_{j} = \texttt{tridiag}(\gamma_{j}, \lambda_{j}, \sigma_{j})$$
$$A_{f} = Q_{f}T_{f}Q_{f}^{T} \qquad Q_{f} = V_{f}\Pi_{f}$$

coarse grid: $A_c = Q_c T_c Q_c^T$ $Q_c = V_c \Pi_c$

Transformation: Smoothing Matrix

block matrix splitting: $A_f = D_A - L_A - U_A$

Gauss-Seidel smoothing matrix:

$$S_A = (D_A - L_A)^{-1} U_A = I - (D_A - L_A)^{-1} A_f$$

transformation:

$$S_A = Q_f S_T Q_f^T$$

where $S_T = I - (D_T - L_T)^{-1}T_f$ is block-diagonal

Transformation: Prolongation Matrix

2D prolongation matrix: $P = L \otimes L$

transformation: $Q_f = (I_f \otimes \hat{V}_f) \Pi_f$, $Q_c = (I_c \otimes \hat{V}_c) \Pi_c$

$$\bar{P} = Q_f^T P Q_c = \mathcal{A}^T \otimes L$$

Transformation: Iteration Matrix (1)

$$M = (I - PA_c^{-1}P^T A_f)S_A^{\nu}$$

$$= (I - PQ_c T_c^{-1}Q_c^T P^T Q_f T_f Q_f^T)S_A^{\nu}$$

$$= Q_f (I - \bar{P}T_c^{-1}\bar{P}^T T_f)Q_f^T (Q_f S_T Q_f^T)^{\nu}$$

$$= Q_f \left(I - \bar{P}T_c^{-1}\bar{P}^T T_f\right)S_T^{\nu}Q_f^T$$

$$\Rightarrow M = Q_f \bar{M}Q_f^T$$

where $\bar{M} = \left(I - \bar{P}T_c^{-1}\bar{P}^TT_f\right)S_T^{\nu}$

 Q_f is orthogonal:

 $\|M\|_2 = \|\bar{M}\|_2$

Transformed Iteration Matrix (2)

Transformed Iteration Matrix (2)

The Story So Far...

- $n_f^2 \times n_f^2$ two-grid iteration matrix M
- Fourier transformation converts 2D problem to a set of n_f problems with 1D structure
- $||M||_2$ can be found from norms of N_c smaller problems n_c of size $2n_f \times 2n_f$, 1 of size $n_f \times n_f$

The Story So Far...

- $n_f^2 \times n_f^2$ two-grid iteration matrix M
- Fourier transformation converts 2D problem to a set of n_f problems with 1D structure
- $||M||_2$ can be found from norms of N_c smaller problems n_c of size $2n_f \times 2n_f$, 1 of size $n_f \times n_f$
- IDEA: analyse periodic versions of these new problems n_c of size $2N_f \times 2N_f$, 1 of size $N_f \times N_f$
- gain insight into Dirichlet problem behaviour?

Periodic version

• replace B_j , C_j by periodic versions, e.g.

$$B_{j}^{per} = \left[I - \bar{P}_{j}^{per} (T_{c}^{per})_{j}^{-1} (\bar{P}_{j}^{per})^{T} (T_{f}^{per})_{j}\right] S_{j}^{per}$$

- transform using coarse grid periodic eigenvectors
- each B_j , C_j becomes block diagonal with 2×2 blocks
- permute into block diagonal form

• 2-norm given by maximum 2-norm of the 4×4 blocks

• with periodic approximation, when $P_h > 1$

$$\|M^{per}\|_2 = \frac{\sqrt{3 + \cos\left(2\pi h\right)}}{\sqrt{2}(5^{\nu})}$$

independent of ϵ

• with periodic approximation, when $P_h > 1$

$$\|M^{per}\|_2 = \frac{\sqrt{3 + \cos\left(2\pi h\right)}}{\sqrt{2}(5^{\nu})}$$

• as *h* is small in practice,

$$\|M^{per}\|_2 \simeq \frac{\sqrt{2}}{5^{\nu}}$$

• with periodic approximation, when $P_h > 1$

$$\|M^{per}\|_2 = \frac{\sqrt{3 + \cos\left(2\pi h\right)}}{\sqrt{2}(5^{\nu})}$$

• as *h* is small in practice,

$$\|M^{per}\|_2 \simeq \frac{\sqrt{2}}{5^{\nu}}$$

• when $P_h < 1$, analysis is more detailed

• with periodic approximation, when $P_h > 1$

$$\|M^{per}\|_2 = \frac{\sqrt{3 + \cos\left(2\pi h\right)}}{\sqrt{2}(5^{\nu})}$$

• as *h* is small in practice,

$$\|M^{per}\|_2 \simeq \frac{\sqrt{2}}{5^{\nu}}$$

• when $P_h < 1$, analysis is more detailed

Does this periodic-type analysis correctly predict Dirichlet problem behaviour?

Model Problem Results (1)

- $\log_{10}(\|M\|_2) \operatorname{vs} \log_2(\epsilon)$
- $P_h \ge 1$ only
- periodic: dotted lines
- Dirichlet: solid lines
- h fixed for each line

•
$$h = \frac{1}{8}$$
 to $h = \frac{1}{512}$

- $\nu = 1$
- periodic $\rightarrow \frac{\sqrt{2}}{5} \simeq 0.2828$
- Dirichlet $\rightarrow 0.2$

Model Problem Results (2)

- $\log_{10}(\|M\|_2) \operatorname{vs} \log_2(\epsilon)$
- $P_h < 1$ only
- periodic: dotted lines
- Dirichlet: solid lines
- h fixed for each line

•
$$h = \frac{1}{8}$$
 to $h = \frac{1}{512}$

- $\nu = 1$
- not a good match!

MG Iteration Counts

 $P_h < 1$ $P_h \ge 1$

MG-like convergence for any value of P_h

Explanation?

- for $P_h < 1$, iteration matrix M has one 'bad' eigenvalue
- artificially 'removing' this eigenvalue gives

 periodic-type analysis does not capture the effect of this eigenvalue

Remarks

• Linear algebra gives useful insight into convergence of two-grid iteration.

Remarks

- Linear algebra gives useful insight into convergence of two-grid iteration.
- Separate approximation and smoothing matrices:
 - periodic-type analysis for smoothing matrix norm is representative of Dirichlet problem behaviour for all values of P_h ,
 - periodic-type analysis for approximation matrix norm is representative of Dirichlet problem behaviour for $P_h \ge 1$: for $P_h < 1$, one 'bad' eigenvalue again causes trouble.

Remarks

- Linear algebra gives useful insight into convergence of two-grid iteration.
- Separate approximation and smoothing matrices:
 - periodic-type analysis for smoothing matrix norm is representative of Dirichlet problem behaviour for all values of P_h ,
 - periodic-type analysis for approximation matrix norm is representative of Dirichlet problem behaviour for P_h ≥ 1: for P_h < 1, one 'bad' eigenvalue again causes trouble.
- Replacing the Dirichlet condition by a Neumann condition on the outflow boundary leads to similar computational results.