Element-based preconditioners for problems in geomechanics

Alison Ramage
Dept of Mathematics
University of Strathclyde
Glasgow, Scotland

University of Strathclyde Glasgow

- Charles Augarde

School of Engineering, University of Durham, England

- Jochen Staudacher

Simulations in Geomechanics

- soil-structure interaction problems
- large 3D simulations of complicated geometries
- soil behaviour dominated by irrecoverable deformations: elasto-plastic models
- saturated soils, undrained (incompressible)
- previous work in structural engineering: elastic models
- most soil models assume elastic behaviour at small strains
- AIM: study effects of adding plasticity

Linear elasticity: Lamé equation

$$
-(\lambda+\mu) \nabla(\nabla \cdot \mathbf{u})-\mu \nabla^{2} \mathbf{u}=\mathbf{f} \quad \text { in } \quad \Omega
$$

- displacement $\mathbf{u}(x, y)=\left[u_{1}, u_{2}\right]^{T}$, body force $\mathbf{f}(x, y)$
- Lamé constants λ and μ

$$
-\nabla \cdot \mathbf{S}(\mathbf{u})=\mathrm{f} \quad \text { in } \quad \Omega
$$

- linearised strain $\mathbf{E}(\mathbf{u})=\frac{1}{2}\left[\begin{array}{cc}2 \frac{\partial u_{1}}{\partial x} & \frac{\partial u_{2}}{\partial x}+\frac{\partial u_{1}}{\partial y} \\ \frac{\partial u_{2}}{\partial x}+\frac{\partial u_{1}}{\partial y} & 2 \frac{\partial u_{2}}{\partial y}\end{array}\right]$
- stress $\mathbf{S}(\mathbf{u})=2 \mu \mathbf{E}(\mathbf{u})+\lambda \operatorname{tr}(\mathbf{E}(\mathbf{u})) \mathbf{I}$

Finite Element Approximation

- Dirichlet boundary value problem

$$
-\nabla \cdot \mathbf{S}(\mathbf{u})=\mathrm{f} \text { in } \Omega, \quad \mathrm{u}=0 \text { on } \Gamma
$$

- total of M nodes, n degrees of freedom
- Galerkin finite elements: shape functions
- shape derivative matrix

$$
\mathbf{B}=\left[\begin{array}{cccccccc}
\frac{\partial \phi_{1}}{\partial x} & \frac{\partial \phi_{2}}{\partial x} & \cdots & \frac{\partial \phi_{M}}{\partial x} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{\partial \phi_{1}}{\partial y} & \frac{\partial \phi_{2}}{\partial y} & \cdots & \frac{\partial \phi_{M}}{\partial y} \\
\frac{\partial \phi_{1}}{\partial y} & \frac{\partial \phi_{2}}{\partial y} & \cdots & \frac{\partial \phi_{M}}{\partial y} & \frac{\partial \phi_{1}}{\partial x} & \frac{\partial \phi_{2}}{\partial x} & \cdots & \frac{\partial \phi_{M}}{\partial x}
\end{array}\right]
$$

Global Stiffness Matrix

- constitutive matrix

$$
\mathbf{E}^{e l}=\left[\begin{array}{ccc}
2 \mu+\lambda & \lambda & 0 \\
\lambda & 2 \mu+\lambda & 0 \\
0 & 0 & \mu
\end{array}\right]
$$

Young's modulus E, Poisson's ratio ν

$$
\mathbf{E}^{e l}=\frac{E}{(1-2 \nu)(1+\nu)}\left[\begin{array}{ccc}
1-\nu & \nu & 0 \\
\nu & 1-\nu & 0 \\
0 & 0 & \frac{1}{2}-\nu
\end{array}\right]
$$

- global stiffness matrix

$$
\mathbf{K}=\int_{\Omega} \mathbf{B}^{T} \mathbf{E}^{e l} \mathbf{B} d \Omega
$$

Element Stiffness Matrix

- $n_{e} \times n_{e}$ element matrix \mathbf{K}_{e}, e.g. linear triangles

$$
\begin{gathered}
\mathbf{K}_{e}=\bar{E}\left[\begin{array}{cccccc}
\frac{3}{2}-2 \nu & \frac{1}{2} & \nu-1 & \nu-\frac{1}{2} & \nu-\frac{1}{2} & -\nu \\
\frac{1}{2} & \frac{3}{2}-2 \nu & -\nu & \nu-\frac{1}{2} & \nu-\frac{1}{2} & \nu-1 \\
\nu-1 & -\nu & 1-\nu & 0 & 0 & v \\
\nu-\frac{1}{2} & \nu-\frac{1}{2} & 0 & \frac{1}{2}-\nu & \frac{1}{2}-\nu & 0 \\
\nu-\frac{1}{2} & \nu-\frac{1}{2} & 0 & \frac{1}{2}-\nu & \frac{1}{2}-\nu & 0 \\
-\nu & \nu-1 & \nu & 0 & 0 & 1-\nu
\end{array}\right] \\
\bar{E}=\frac{E}{2(1-2 \nu)(1+\nu)}
\end{gathered}
$$

- eigenvalues

$$
\frac{E}{h^{2}(1+\nu)}\left\{0,0,0,1, \frac{2(\nu-1) \pm \sqrt{1-2 \nu+4 \nu^{2}}}{2(2 \nu-1)}\right\}
$$

Stiffness Matrix Assembly

- $n_{e} \times n$ Boolean connectivity matrix \mathbf{C}_{e}

$$
\overline{\mathbf{K}}_{\mathbf{e}}=\mathbf{C}_{e}^{T} \mathbf{K}_{e} \mathbf{C}_{e} \text { for } e=1, \ldots, E, \quad \mathbf{K}=\sum_{e=1}^{E} \overline{\mathbf{K}}_{\mathbf{e}}
$$

- two observations:
- order nodal displacements

$$
\mathbf{u}=\left[u_{1}, u_{2}, \ldots, u_{M}, v_{1}, v_{2}, \ldots, v_{M}\right]^{T}
$$

block stiffness matrix $\quad \mathbf{K}=\left[\begin{array}{ll}\mathbf{K}_{x x} & \mathbf{K}_{x y} \\ \mathbf{K}_{x y}^{T} & \mathbf{K}_{y y}\end{array}\right]$
same block structure applies to each \mathbf{K}_{e}

- for linear elasticity $\kappa(\mathbf{K})=O\left(h^{-2}\right)$

Element-based Preconditioners

- connectivity and element matrices stored
- global stiffness matrix (preconditioner) never assembled
- preconditioning matrix $\mathbf{P}=\sum_{e=1}^{E} \mathbf{C}_{e}^{T} \mathbf{P}_{e} \mathbf{C}_{e}$
- diagonal scaling (DIAG)

$$
\begin{aligned}
\mathbf{P}_{D I A G}= & \operatorname{diag}(\mathbf{K})=\sum_{\mathrm{e}=1}^{\mathrm{E}} \mathbf{C}_{\mathrm{e}}^{\mathrm{T}} \operatorname{diag}\left(\mathbf{K}_{\mathrm{e}}\right) \mathbf{C}_{\mathrm{e}} \\
& \kappa\left(\mathbf{P}_{D I A G}^{-1} \mathbf{K}\right)=O\left(h^{-2}\right)
\end{aligned}
$$

- true for any preconditioner of the form $\sum_{e=1}^{E} \mathbf{C}_{e}^{T} \mathbf{Q}_{e} \mathbf{C}_{e}$ for some $n_{e} \times n_{e}$ matrices \mathbf{Q}_{e}

Element-by-element methods (EBE)

- Hughes, Levit and Winget (1983)
- regularise assembly of each element $\overline{\mathbf{K}}_{e}$

$$
\begin{gathered}
\tilde{\mathbf{K}}_{e}=\mathbf{I}_{n}+\mathbf{D}^{-1 / 2}\left(\overline{\mathbf{K}}_{e}-\overline{\mathbf{D}}_{e}\right) \mathbf{D}^{-1 / 2} \\
\mathbf{D}=\operatorname{diag}(\mathbf{K}), \overline{\mathbf{D}}_{e}=\operatorname{diag}\left(\overline{\mathbf{K}}_{\mathrm{e}}\right)
\end{gathered}
$$

- factorise $\tilde{\mathbf{K}}_{e}=\mathbf{L}_{e} \mathbf{D}_{e} \mathbf{L}_{e}^{T}$

$$
\begin{gathered}
\mathbf{P}_{E B E}=\mathbf{D}^{1 / 2}\left[\prod_{e=1}^{E} \mathbf{L}_{e}\right]\left[\prod_{e=1}^{E} \mathbf{D}_{e}\right]\left[\prod_{e=E}^{1} \mathbf{L}_{e}^{T}\right] \mathbf{D}^{1 / 2} \\
\kappa\left(\mathbf{P}_{E B E}^{-1} \mathbf{K}\right)=O\left(h^{-2}\right)
\end{gathered}
$$

- can be applied directly to elasticity problems

Element-based Symmetric Gauss-Seidel (SGS)

- EBE requires additional storage for factorisations
- split

$$
\tilde{\mathbf{K}}_{e}=\mathbf{I}_{n}-\mathbf{L}_{e}-\mathbf{L}_{e}^{T}
$$

$$
\begin{gathered}
\mathbf{L}_{e}=\text { strict lower triangle of } \tilde{\mathbf{K}}_{e}, \mathbf{D}=\operatorname{diag}(\mathbf{K}) \\
\mathbf{P}_{S G S}=\mathbf{D}^{1 / 2}\left[\prod_{e=1}^{E}\left(\mathbf{I}_{n}-\mathbf{L}_{e}\right)\right]\left[\prod_{e=E}^{1}\left(\mathbf{I}_{n}-\mathbf{L}_{e}^{T}\right)\right] \mathbf{D}^{1 / 2} \\
\kappa\left(\mathbf{P}_{S G S}^{-1} \mathbf{K}\right)=O\left(h^{-2}\right)
\end{gathered}
$$

- other matrix splittings can be applied at an element level

Element matrix factorisation (EMF)

- Gustafsson and Lindskog (1986)
- Cholesky factorisation $\mathbf{K}_{e}=\overline{\mathbf{L}}_{e} \overline{\mathbf{L}}_{e}^{T}$
- assemble factors to form \mathbf{L} and D (requires a particular global and local numbering of unknowns)

$$
\begin{gathered}
\mathbf{P}(\eta)=\left[\mathbf{L}(1+\eta h)^{-1}+\mathbf{D}(1+\eta h)\right]\left[\mathbf{L}(1+\eta h)^{-1}+\mathbf{D}(1+\eta h)\right]^{T} \\
\kappa\left(\mathbf{P}_{E M F}^{-1} \mathbf{K}\right)=O\left(h^{-1}\right)
\end{gathered}
$$

- $\mu=0$ here
- can break down for linear elasticity
- similar method by Kaasschieter (1989)

Matrix Reduction Techniques

- notation of Saint-Georges et al. (1996)
- AIM: make K a Stieltjes matrix

$$
\mathbf{K}=\left\{k_{i j}\right\} \text { is SPD with } k_{i j} \leq 0 \text { for } i \neq j
$$

- C-reduction: lump positive off-diagonal entries in a row of K onto the diagonal \Rightarrow Stieltjes matrix
- D-reduction: neglect any connections between degrees of freedom of different types (take block diagonal part or separate displacement component of \mathbf{K})
- DC-reduction: perform the two reductions in sequence \Rightarrow Stieltjes matrix

Matrix reduction on an element level

IDEA: combine matrix reduction with EMF factorisation

- new methods:
- C-EMF, DC-EMF: reduced element matrix is Stieltjes \Rightarrow element Cholesky factors for EMF can be computed
- D-EMF: reduced element matrix block diagonal, each block has 1D nullspace \Rightarrow element Cholesky factors for EMF can be computed
- theoretical results:

$$
\lambda_{\min }\left(\mathbf{P}_{D C-E M F}^{-1} \mathbf{K}\right)=O(1), \quad \lambda_{\min }\left(\mathbf{P}_{D-E M F}^{-1} \mathbf{K}\right)=O(1)
$$

Iteration Counts: Elasticity

Adding Plasticity

- elasto-plastic constitutive model: yield function F, plastic potential function P, hardening/softening rule
- stress-strain relationship

$$
\sigma=\mathbf{E}^{e p} \boldsymbol{\epsilon}, \quad \mathbf{E}^{e p}=\mathbf{E}^{e l}-\mathbf{E}^{p l}
$$

- assume perfect plasticity (zero hardening/softening), associated plastic flow (yield = plastic potential)

$$
\mathbf{E}^{p l}=\frac{\mathbf{E}^{e l} \frac{\partial F}{\partial \boldsymbol{\sigma}} \frac{\partial F^{T}}{\partial \boldsymbol{\sigma}} \mathbf{E}^{e l}}{\frac{\partial F^{T}}{\partial \boldsymbol{\sigma}} \mathbf{E}^{e l} \frac{\partial F}{\partial \boldsymbol{\sigma}}}
$$

- $\mathrm{E}^{e p}$ is a rank-one update of $\mathrm{E}^{e l}$

Footing test problem

- plane strain rigid footing modelled by prescribing vertically downwards displacements on selected surface nodes
- unstructured mesh of linear strain triangles

- load applied over a number of equal incremental steps

Comparison of Methods

- diagonal scaling DIAG
- EMF with DC-reduction DC-EMF
- method of choice for elastic problems
- DC-EMF applied to the elastic part ELAS-DC-EMF
- plasticity is 'simple update' of elasticity
- IDEA: base preconditioner on the elastic part only
- $\mathbf{E}^{e l}$ does not change from load step to load step
- preconditioner P need only be calculated once at the beginning of each simulation
- snapshot at four load steps $s=1,25,50,100$

Iteration Counts: Plasticity

Iteration Counts: Plasticity

Full Simulation

- F90 geotechnical finite element code OXFEM
- modified Euler method
- one load stage comprising 100 load steps

- 5 unstructured grids: $4000 \rightarrow 30000$ unknowns

CPU times (1)

average CPU time per iteration

$$
\bar{t}_{k}=c n
$$

reduction/factorisation time

$$
t_{s}=c n^{2}
$$

CPU times (2)

total time, $\nu=0.25$

$$
\begin{gathered}
t_{\text {DIAG }}=c n^{1.5} \\
t_{D C-E M F}=c n^{2} \\
t_{E L A S-D C-E M F}=c n^{1.5}
\end{gathered}
$$

total time,$\nu=0.49$

Summary

- For purely elastic problems, D-EMF and DC-EMF offer an improvement in terms of asymptotic behaviour over traditional methods such as diagonal scaling.
- Applying DC-EMF to the elastic part of the matrix provides a promising new element-based preconditioner.
- Future research
- materials with non-associated flow rules (\Rightarrow nonsymmetric systems)
- consolidation problems
(\Rightarrow saddle-point systems)
- unsaturated soils
(\Rightarrow extra degrees of freedom)
- collaboration with OASYS Ltd

Relevant Publications

- Augarde, Ramage and Staudacher

On Element-based Preconditioners for Linear Elasticity Problems
Computers and Structures 84, pp. 2306-2315, 2006.

- Augarde, Ramage and Staudacher

Element-based Preconditioners for Elasto-Plastic
Problems
International Journal of Numerical Methods in
Engineering doi:10.1002/nme.1947, 2006.

