## Adaptive Grid Methods for Q-tensor Theory of Liquid Crystals

Alison Ramage
Dept of Mathematics
University of Strathclyde
Glasgow, Scotland

University of Strathclyde Glasgow

$11 \times 1+1$

Christopher J. Newton Hewlett-Packard plc Bristol, England

This work was supported by an EPSRC Springboard Fellowship.

## Motivation

- model: $Q$-tensor model of nematic liquid crystal cell
- aim: model dynamics of defect movement
- problem: characteristic lengths with large scale differences
- uniform grid: many grid points needed to capture defect behaviour
- idea: use adaptive grid methods to ensure there is no waste of computational effort


## Adaptive Grid Methods I

- local mesh refinement
- extra nodes added locally in regions of high error
- $h$ refinement, $p$ refinement
- often requires complicated data structures which need updating frequently
- moving mesh methods
- existing node points are moved to regions of high error
- same grid connectivity maintained
- $r$ refinement
- comparatively easy extension of existing software


## Adaptive Grid Methods II

- velocity-based methods
- mesh point velocities are calculated directly
- moving finite element methods
- geometric conservation laws
- location-based methods
- mesh points are calculated directly
- equidistribution methods
- harmonic mapping
- adaptive grid on physical domain is image of uniform grid on computational domain under a suitable mapping


## Grid Mapping in 1D

- coordinates: physical $x \in[0,1]$, computational $\xi \in[0,1]$
- coordinate transformation:

$$
x=x(\xi, t), \xi \in[0,1], \quad x(0, t)=0, x(1, t)=1
$$

- uniform mesh on computational domain:

$$
\xi_{i}=\frac{i}{N}, \quad i=0,1, \ldots, N, \quad N \in \mathbb{Z}^{+}
$$

- corresponding physical mesh:

$$
\begin{aligned}
& 0=x_{0}<x_{1}<\ldots<x_{N-1}<x_{N}=1 \\
& \mathbf{x} \bullet(\ldots \bullet \bullet
\end{aligned}
$$

## Equidistribution Principle in 1D

- choose (positive) monitor function $M(x, t)$
- equidistribution principle (EP):

$$
\int_{0}^{x(\xi, t)} M(s, t) d s=\xi \int_{0}^{1} M(s, t) d s
$$

- discrete forms:

$$
\int_{x_{i}}^{x_{i+1}} M(s, t) d s=\int_{x_{i-1}}^{x_{i}} M(s, t) d s, \quad i=1, \ldots, N-1
$$

or

$$
\int_{x_{i-1}}^{x_{i}} M(s, t) d s=\frac{1}{N} \int_{0}^{1} M(s, t) d s, \quad i=1, \ldots, N
$$

## Monitor Functions

- (scaled) arc-length monitor function

$$
M(u(x, t))=\sqrt{\hat{\alpha}+\left(\frac{\partial u(x, t)}{\partial x}\right)^{2}}
$$

user-prescribed parameter $\hat{\alpha}>0$

- various other ideas e.g. Beckett and Mackenzie (2000)

$$
M(u(x, t))=\delta+\left|\frac{\partial u(x, t)}{\partial x}\right|^{\frac{1}{m}}
$$

$\delta, m$ positive constants, $\delta=\int_{0}^{1}\left|\frac{\partial u(x, t)}{\partial x}\right|^{\frac{1}{m}} d x$

## Aside on MMPDEs

- equidistribution principle differentiate EP twice with respect to $\xi$
- variational principle find Euler-Lagrange equation associated with

$$
I[x]=\frac{1}{2} \int_{0}^{1} x_{\xi}^{2}(\xi) M^{2}(x(\xi)) d \xi
$$

$$
x_{\xi \xi}+\frac{M_{\xi}}{M} x_{\xi}=0
$$

elliptic equidistribution generator

## Adaptive Grid Methods III

- dynamic methods:
- moving mesh partial differential equation (MMPDE)
- mesh equation and underlying PDE solved together
- static methods: at a fixed time,
- equation is discretised and solved on an initial mesh
- adaptive mesh is constructed based on EP for monitor function
- solution is interpolated onto new mesh
- solution - mesh generation loop


## Practical Algorithm

- Sanz-Serna and Christie, JCP 67, 1986
- 1D example:

$$
u_{t}=F\left(u, u_{x}, u_{x x}, x, t\right)
$$

plus boundary and initial conditions

- time level $t_{n}$, grid $x_{j}^{n}$, approximation $U_{j}^{n}$ to $u\left(x_{j}^{n}, t_{n}\right)$
- equidistribute solution arc-length:
(i) Use numerical scheme on grid $x_{j}^{n}$ to find $\bar{U}_{j}^{n+1}$.
(ii) Join points $\left(x_{j}^{n}, \bar{U}_{j}^{n+1}\right)$ by straight lines. Find the points on the polygon which divide its length into equal parts and project onto the $x$-axis. Compute $U_{j}^{n+1}$ via interpolation.


## Q-tensor Theory

- aim: minimise free energy density

$$
\mathcal{F}=\int_{V} F(\theta, \phi, \nabla \theta, \nabla \phi) d V
$$

- problems with multivalued angles/singularities
- tensor order parameter

$$
Q=\left[\begin{array}{ccc}
q_{1} & q_{2} & q_{3} \\
q_{2} & q_{4} & q_{5} \\
q_{3} & q_{5} & -q_{1}-q_{4}
\end{array}\right]
$$

- express free energy density as

$$
\mathcal{F}=\int_{V} F\left(q_{i}, \nabla q_{i}\right) d V, \quad i=1,2,3,4,5
$$

## 1D Model Problems

- homogeneous uniaxial alignment in $\Omega \equiv z \in[0, d]$
- $z$-axis aligned with $\mathbf{n}$

$$
Q=\sqrt{\frac{3}{2}} S\left[\begin{array}{ccc}
-\frac{1}{3} & 0 & 0 \\
0 & -\frac{1}{3} & 0 \\
0 & 0 & \frac{2}{3}
\end{array}\right]
$$

$Q$ depends only on scalar order parameter $S$

- bulk energy densities ( $\left.A_{s}, B_{s}, C_{s}, L_{1 s}, S_{e q}, F_{e q}+\mathrm{ve}\right)$

$$
\begin{array}{r}
\frac{1}{2} A_{s} S^{2}-\frac{1}{3} B_{s} S^{3}+\frac{1}{4} C_{s} S^{4}+\left(\frac{2 L_{1 s}+1}{6}\right)\left(\frac{\partial S}{\partial z}\right)^{2} \\
\frac{F_{e q}}{S_{e q}} S\left(2-\frac{1}{S_{e q}} S\right)+\left(\frac{2 L_{1 s}+1}{6}\right)\left(\frac{\partial S}{\partial z}\right)^{2} \tag{2}
\end{array}
$$

## Analytic Solutions

$$
\begin{aligned}
& \int_{0}^{S(z)} \frac{d s}{\sqrt{G(S)-G\left(S_{e q}\right)}}=z \quad G(S)=\alpha S^{2}-\frac{2 \beta}{3} S^{3}+\frac{\gamma}{2} S^{4} \\
& S(z)=S_{e q}\left(\frac{\sinh \rho z}{\tanh \rho d_{s}}-\cosh \rho z+1\right) \quad \rho=\sqrt{\left|\frac{6 F_{e q}}{S_{e q}^{2}\left(2 L_{1 s}+1\right)}\right|} \\
& \\
& d=0.1 \text { microns } \quad d=1 \text { micron }
\end{aligned}
$$

## Theoretical Accuracy

- measure of error: using linear interpolant $S_{I}$

$$
\|e\|_{L_{\infty}(0, d)}=\max _{z \in[0, d]}\left|S_{\text {exact }}(z)-S_{I}(z)\right|
$$

- for green problem, it can be shown that

$$
\|e\|_{L_{\infty}(0, d)} \leq \frac{C}{N^{2}}
$$

with both uniform and adaptive grids

- for blue problem, using practical measure

$$
l_{\infty}=\max _{j=0, \ldots, N / 2}\left|S_{f}\left(z_{j}\right)-S_{N}\left(z_{j}\right)\right|
$$

adaptive grid error is $O\left(\mathrm{~N}^{-2}\right)$

## Efficiency

- CPU times (in seconds) required to solve blue problem

|  | Adaptive Grid |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| accuracy | $N$ | solve | grid | total |
| $1 \times 10^{-4}$ | 115 | $1.9491 \mathrm{e}-1$ | $7.6075 \mathrm{e}-4$ | $1.9590 \mathrm{e}-1$ |
| $1 \times 10^{-5}$ | 258 | $2.2016 \mathrm{e}-1$ | $9.7614 \mathrm{e}-4$ | $2.2137 \mathrm{e}-1$ |
| $1 \times 10^{-6}$ | 476 | $2.4822 \mathrm{e}-1$ | $1.3882 \mathrm{e}-3$ | $2.4344 \mathrm{e}-1$ |
| $1 \times 10^{-7}$ | 817 | $2.7932 \mathrm{e}-1$ | $1.9825 \mathrm{e}-3$ | $2.8150 \mathrm{e}-1$ |


|  | Uniform Grid |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| accuracy | $N$ | total |  | \% speedup |
| $1 \times 10^{-4}$ | 174 | $1.9371 \mathrm{e}-1$ |  | -1.13 |
| $1 \times 10^{-5}$ | 338 | $2.3071 \mathrm{e}-1$ |  | 4.05 |
| $1 \times 10^{-6}$ | 568 | $2.5882 \mathrm{e}-1$ |  | 5.94 |
| $1 \times 10^{-7}$ | 1051 | $3.2753 \mathrm{e}-1$ |  | 14.05 |

## Order Reconstruction Problem I

Barberi et al., Eur. J. Phys. E (2004)

- cell surface treated at boundaries to induce alignments uniformly tilted by a specified tilt angle but oppositely directed
- two topologically different equilibrium states: mostly horizontal alignment with a slight splay, mostly vertical alignment with a bend of almost $\pi$ radians

horizontal H-state

intermediate I-state

vertical
V-state


## Order Reconstruction Problem II

- aim: model order reconstruction which takes place when an electric field is applied
- no longer purely uniaxial: need full $Q$-tensor
- 5 coupled PDEs for $q_{i} \mathbf{s}$, plus PDE for electric potential $U$
- 1D domain $z \in[0, d]$, monitor based on $T(z)=\operatorname{tr}\left(Q^{2}\right)$

$$
M(T(z))=\sqrt{\hat{\alpha}+\left(\frac{d T}{d z}\right)^{2}}
$$

- quantify order reconstruction via measure of biaxiality

$$
b=\sqrt{1-\frac{6 \operatorname{tr}\left(Q^{3}\right)^{2}}{\operatorname{tr}\left(Q^{2}\right)^{3}}}
$$

- coded using COMSOL Multiphysics


## Numerical Results



$$
V=11.3
$$


$V=11.32$

- solutions for electric field strength $V$ just below and above the critical voltage at which switching occurs
- adaptive grid with 256 quadratic elements


## Grid Trajectories



$$
V=11.3
$$


$V=11.32$

- approx. 25\% fewer points (less CPU time) needed for adaptive grid


## Exchange of Eigenvalues



## Detail of Biaxial Transition



## Solution Accuracy: Uniform Grid


(a) $N=32$.

(c) $N=128$.
(d) $N=256$.

## Solution Accuracy: Switching Times

| N | uniform | adaptive |
| :---: | :---: | :---: |
|  |  |  |
| 128 | no switching occurs | $2.064 \times 10^{-3}$ |
| 256 | $2.100 \times 10^{-3}$ | $2.064 \times 10^{-3}$ |
| 512 | $2.065 \times 10^{-3}$ | $2.064 \times 10^{-3}$ |
| 1024 | $2.064 \times 10^{-3}$ | $2.064 \times 10^{-3}$ |

- when the uniform grid is not fine enough, switching either does not occur at all or occurs at a later time


## Equidistribution in 2D

- physical $\mathbf{x}=[x, y]^{T}$, computational $\xi=[\xi, \eta]^{T}$
- minimise

$$
I[\xi]=\frac{1}{2} \int_{D}\left[(\nabla \xi)^{T} G_{1}^{-1} \nabla \xi+(\nabla \eta)^{T} G_{2}^{-1} \nabla \eta\right] d \mathbf{x}
$$

$G_{1}, G_{2}$ symmetric positive definite monitor matrices

- Euler-Lagrange equations: modified gradient flow

$$
\frac{\partial \xi}{\partial t}=\frac{P}{\tau} \nabla \cdot\left(G_{1}^{-1} \nabla \xi\right), \quad \frac{\partial \eta}{\partial t}=\frac{P}{\tau} \nabla \cdot\left(G_{2}^{-1} \nabla \eta\right)=0
$$

spatial balance operator $P$ temporal smoothing parameter $\tau$

## Equidistribution in 2D

- interchange roles of dependent/independent variables
- Winslow-type monitor matrices

$$
G_{1}=G_{2}=\left[\begin{array}{cc}
w & 0 \\
0 & w
\end{array}\right], \quad w(\mathbf{x}, t)=\sqrt{\hat{\alpha}+\left|\nabla\left[\operatorname{tr}\left(Q^{2}\right)\right]\right|^{2}}
$$

- MMPDE

$$
\begin{aligned}
& \frac{\partial \mathbf{x}}{\partial t}=P\left(a \mathbf{x}_{\xi \xi}+b \mathbf{x}_{\xi \eta}+c \mathbf{x}_{\eta \eta}+d \mathbf{x}_{\xi}+e \mathbf{x}_{\eta}\right) \\
& a, b, c, d, e \text { depend on } \omega, x_{\xi}, x_{\eta}, y_{\xi}, y_{\eta}
\end{aligned}
$$

- coded using COMSOL Multiphysics


## 2D Test Problem

Zhang et al., Liquid Crystals (2004)

- 2D test problem
- square cell $[0, d] \times[0, d]$
- variable pretilt on $x=0$, fixed pretilt on $x=d$
- periodic boundary conditions on $y=0, y=d$


## 2D Test Problem

## Zhang et al., Liquid Crystals (2004)

- 2D test problem
- square cell $[0, d] \times[0, d]$
- variable pretilt on $x=0$, fixed pretilt on $x=d$
- periodic boundary conditions on $y=0, y=d$



## Summary

- 1D model problem analysis shows
- adaptive grid error is $O\left(N^{-2}\right)$ for a simple model problem
- adaptive grid error appears to be $O\left(N^{-2}\right)$ for a more realistic model problem
- arc-length monitor function based on $\operatorname{tr}\left(Q^{2}\right)$ works well
- to obtain a specified level of accuracy, adaptive grid requires fewer points: inaccurate solutions/switching times can be obtained if uniform grid is not fine enough
- 3-year EPSRC project (from June 1st 2007) with Ainsworth, Mottram (Strathclyde) and Newton (Hewlett-Packard)
Adaptive Numerical Methods for Optoelectronic Devices
- Adaptive Grid Methods for Q-Tensor Theory of Liquid 720 Crystals: A One-Dimensional Feasibility Study Strathclyde Mathematics Research Report No. 13, 2006.
- Adaptive Solution of a One-dimensional Order 724 Reconstruction Problem in Q-Tensor Theory of Liquid Crystals Liquid Crystals, 34 (4), pp. 479-487, 2007.

