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Four-dimensional Variational Assimilation (4D-Var)

4D-Var aims to find the solution of a numerical forecast
model that best fits sequences of observations distributed in
space over a finite time interval.

Minimise cost function
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analysis v, background v
b , observations yo

background and observation error covariance matrices B , Ri

observation operators Hi

model propagator Mi ,0 ≡ M(ti , t0)≡
1∏

k=i

M(tk , tk−1)
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Incremental 4D-Var: sequence of cost functions

Linearise Hi , Mi ,0: introduce tangent linear (Jacobian)
matrices

H
k−1
i ≡ ∂Hi

∂v

∣∣∣∣
v=vk−1

, M
k−1
i ,0 ≡ ∂Mi ,0

∂v

∣∣∣∣
v=vk−1

Hessian of the cost function is

H = B
−1 + Ĥ

T
R̂

−1
Ĥ

where
Ĥ = [HT

0 , (H1M1,0)
T , . . . , (HNMN,0)

T ]T

R̂ = bldiag(Ri ), i = 1, . . . ,N.

Cannot store H as a matrix: action of applying H to a vector
is available, but expensive (involves both forward and
backward model solves).
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Preconditioned Conjugate Gradient Method

Solve Hv = g at each Gauss-Newton step using PCG (needs
only Hv).

Choose preconditioner P so that

(i) eigenvalues of P−1/2
HP−1/2 are well clustered;

(ii)Px = r is easily solved.

Extreme cases:
P = H: good for (i), bad for (ii)
P = I : good for (ii), bad for (i)
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Preconditioned Conjugate Gradient Method

Solve Hv = g at each Gauss-Newton step using PCG (needs
only Hv).

Choose preconditioner P so that

(i) eigenvalues of P−1/2
HP−1/2 are well clustered;

(ii)Px = r is easily solved.

Extreme cases:
P = H: good for (i), bad for (ii)
P = I : good for (ii), bad for (i)

Precondition H based on the background covariance matrix:

H = (B1/2)THB
1/2 = I + (B1/2)T ĤT

R̂
−1

ĤB
1/2

Eigenvalues of H are more clustered, in a narrow band above
one, with few eigenvalues distinct enough to contribute
noticeably to the Hessian value.
Haben et al. (2011), Tabeart et al. (2018)
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Correlation matrix (1D Burgers’ equation example)

H
−1 (scaled to have unit diagonal)
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Preconditioned correlation matrix

H−1 (after first level preconditioning)
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Second level preconditioning

Storage/working with H still expensive: introduce second level
preconditioning for H.

Construct a multilevel approximation to H−1/2 based on a
sequence of nested grids.

Discretise evolution equation on a grid with m + 1 nodes
(level 0) to represent Hessian H0

Grid level k contains mk = m/2k + 1 nodes.

level 0

level 1

level 2
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Limited-memory approximation

Find ne leading eigenvalues and orthonormal eigenvectors
using the Lanczos method (needs only Hv).

Construct approximation

H ≈ I +

ne∑

i=1

(λi − 1)uiu
T
i

Easy to evaluate matrix powers:

H
p ≈ I +

ne∑

i=1

(λp
i − 1)uiu

T
i
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Grid transfers with “correction”

Grid transfer based on piecewise cubic splines:

Restriction matrix R f
c from k = f to k = c .

Prolongation matrix P
c
f from k = c to k = f .

Identity matrix Ik on grid level k .

Construct new operators which transfer a matrix between a
course grid level c and a fine grid level f .

From coarse to fine:

Hc→f = P
c
f (Hc − Ic)R

f
c + If

From fine to coarse:

Hf→c = R
f
c (Hf − If )P

c
f + Ic
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Outline of multilevel concept

Given a symmetric positive definite operator H0 available on the
finest grid level in matrix-vector product form:

1 represent H0 on the coarsest grid level as H0→k ;

2 use a local preconditioner Bk+1
k to obtain

H̃0→k = (Bk+1
k )TH0→kB

k+1
k

with improved eigenvalue clustering;

3 build a limited memory approximation H̃
−1/2
0→k from nk

eigenvalues of H̃0→k found using the Lanczos method;

4 project this to the level above to be used as local
preconditioner at the next coarsest level;

5 move up one grid level and repeat.
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Algorithm

use Ne = (n0, n1, . . . , nc) eigenvalues at each level

[Λ,U ]=mlevd(H0,Ne)
for k = kc , kc − 1, . . . , 0

compute by the Lanczos method

and store in memory

{λi
k ,U

i
k}, i = 1, . . . , nk of H̃0→k

using preconditioner B
k+1
k

end

storage:

Λ =
[
λ1
kc
, . . . , λ

nkc
kc

, λ1
kc−1, . . . , λ

nkc−1

kc−1 , . . . , λ
1
0, . . . , λ

n0
0

]
,

U =
[
U

1
kc
, . . . ,U

nkc
kc

,U1
kc−1, . . . ,U

nkc−1

kc−1 , . . . ,U
1
0 , . . . ,U

n0
0

]
.
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Example

Test using 1D Burgers’ equation with initial condition

f (x) = 0.1 + 0.35

[
1 + sin

(
4πx +

3π

2

)]
, 0 < x < 1

1D uniform grid with 7 sensors located at 0.3, 0.4, 0.45, 0.5,
0.55, 0.6, and 0.7 in [0, 1].

Multilevel preconditioning with four grid levels:

k 0 1 2 3

grid points 401 201 101 51
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Assessing approximation accuracy

Riemannian distance:

δ(A,B) =
∥∥ln(B−1

A)
∥∥
F
=

(
n∑

i=1

ln
2λi

)1/2

Compare eigenvalues of H−1 and H̃−1 on the finest grid level
k = 0 using

D =
δ(H−1, H̃−1)

δ(H−1, I )

Vary number of eigenvalues chosen on each grid level

Ne = (n0, n1, n2, n3)
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Eigenvalues of the inverse Hessian

Exact (blue circles), approximated (red stars)
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Eigenvalues of the inverse Hessian

Exact (blue circles), approximated (red stars)
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Eigenvalues of the inverse Hessian

Exact (blue circles), approximated (red stars)

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ne = (0, 0, 29, 6)
D = 3.39e − 1

Alison Ramage, University of Strathclyde Limited-memory approximation of the inverse Hessian in 4D-Var



Fixed memory ratio

Fixed memory ratio R =

kc∑

k=0

nk

2k

R
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PCG iteration for one Newton step

measurement units

memory: length of vector on finest grid L
cost: cost of HVP on finest grid HVP

Preconditioner # CG iterations storage cost

none 57 0 L 57 HVP

MG(400,0,0,0) 1 400 L 402 HVP

MG(4,8,16,32) 4 16 L 34 HVP

MG(0,8,16,32) 5 12 L 14 HVP

MG(0,0,16,32) 8 8 L 10 HVP
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Solve cost measured in number of HVPs
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Cost including building preconditioner
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All is not lost. . .

Cost-effective implementations are available!

Algorithm 1: partition domain into subregions and
approximate the Hessian using an assembly of local Hessians.

Fewer eigenvalues required for limited-memory representation
of each local Hessian.
Local Hessians can be computed in parallel, using local rather
than global models, and at any grid level.

Algorithm 2: use the multilevel algorithm to approximate each
limited-memory local Hessian based on local inverse Hessians.

Reduces memory requirements of Algorithm 1.
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Version 1: cost including building preconditioner
Local Hessians with 8 eigenvalues at level 0 (solid lines) or
level 1 (dashed lines).
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Version 2: cost including building preconditioner
Local Hessians with 8 eigenvalues at level 0 (solid lines) or
level 1 (dashed lines) with (8,4,0,0) MG approx.
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Conclusions and extensions

Similar results with other configurations (e.g. moving sensors,
different initial conditions).

Multilevel preconditioning looks promising for constructing a
good limited-memory approximation to H−1.

The balance between restrictions on memory/cost limitations
may vary between particular applications.

Identifying globally appropriate values for (n0, n1, n2, n3) and
other parameters is tricky, but “rules of thumb” can be
developed.

Future investigations:

application to shallow water equations;
problems in higher dimensions;
extension to other operators;
applications for other sensor systems.
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Multilevel algorithm for H−1

Represent H0 at a given level (k , say):

H0→k = R
0
k (H0 − I0)P

k
0 + Ik

Precondition to improve eigenvalue spectrum:

H̃0→k = (Bk+1
k )TH0→kB

k+1
k

Find nk eigenvalues/eigenvectors of H̃0→k using the Lanczos
method.

Approximate H̃
−1/2
0→k :

H̃
−1/2
0→k ≈ Ik +

nk∑

i=1

(
1√
λi

− 1

)
uiu

T
i
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Preconditioners

Construct Bk+1
k on level k + 1, apply on level k .

On coarsest grid, level k + 1 does not exist so set Bk+1
k = Ik .

For other levels, construct preconditioners recursively:

B
k+1
k =

[
B

k+2
k+1 H̃

−1/2
0→k+1

]
→k

, B
k+1
k

T
=
[
H̃

−1/2
0→k+1B

k+2
k+1

T
]
→k

Square brackets represent projection to the correct grid level
using “corrected” grid transfers, e.g.

[Ak+1]→k = R
k+1
k (Ak+1 − Ik+1)P

k
k+1 + Ik
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Hessian decomposition

partition domain into subregions and compute local Hessians
Hs such that

H(v) = I +

S∑

s=1

(Hs (v) − I )

fewer eigenvalues required for limited-memory representation
of each Hs

local Hessians can be computed

in parallel;
using local rather than global models;
at any grid level:

Hl(vl ) = Il +

S∑

s=1

(H s
l (vl )− Il )
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Practical approach: Version 1

Compute limited-memory approximations to local
sensor-based Hessians on level l using nl eigenpairs.

Assemble these to form Ha, then apply mlevd to Ha based on
a fixed Ne .

Local Hessians cheaper to compute.

Additional user-specified parameter(s) l , nl needed.

More memory required as local Hessians must also be stored.

Alison Ramage, University of Strathclyde Limited-memory approximation of the inverse Hessian in 4D-Var



Practical approach: version 2

Can reduce memory requirements further by using a multilevel
approximation of each limited-memory local Hessian on level l
using nl eigenpairs.

Approximate local Hessians by applying mlevd to local inverse
Hessians based on N l

e .

Assemble these to form a reduced-memory assembled Hessian
Hrm
a .

Use mlevd again on Hrm
a based on Ne .
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