Limited-memory approximation of the inverse Hessian in 4D-Var

Alison Ramage,
Mathematics and Statistics, University of Strathclyde

- 4D-Var aims to find the solution of a numerical forecast model that best fits sequences of observations distributed in space over a finite time interval.

Minimise cost function

$$
\begin{aligned}
J(\mathbf{v}) & =\frac{1}{2}\left[\mathbf{v}-\mathbf{v}^{b}\right]^{T} B^{-1}\left[\mathbf{v}-\mathbf{v}^{b}\right] \\
& +\frac{1}{2} \sum_{i=0}^{N}\left[\mathcal{H}_{i}\left(\mathcal{M}_{i, 0}(\mathbf{v})\right)-\mathbf{y}_{i}^{o}\right]^{T} R_{i}^{-1}\left[\mathcal{H}_{i}\left(\mathcal{M}_{i, 0}(\mathbf{v})\right)-\mathbf{y}_{i}^{o}\right]
\end{aligned}
$$

analysis \mathbf{v}, background \mathbf{v}^{b}, observations \mathbf{y}^{o}
background and observation error covariance matrices $\quad B, R_{i}$ observation operators \mathcal{H}_{i}
model propagator $\quad \mathcal{M}_{i, 0} \equiv \mathcal{M}\left(t_{i}, t_{0}\right) \equiv \prod_{k=i}^{1} \mathcal{M}\left(t_{k}, t_{k-1}\right)$

Incremental 4D-Var: sequence of cost functions

- Linearise $\mathcal{H}_{i}, \mathcal{M}_{i, 0}$: introduce tangent linear (Jacobian) matrices

$$
\left.H_{i}^{k-1} \equiv \frac{\partial \mathcal{H}_{i}}{\partial \mathbf{v}}\right|_{\mathbf{v}=\mathbf{v}^{k-1}},\left.\quad M_{i, 0}^{k-1} \equiv \frac{\partial \mathcal{M}_{i, 0}}{\partial \mathbf{v}}\right|_{\mathbf{v}=\mathbf{v}^{k-1}}
$$

- Hessian of the cost function is

$$
\mathbb{H}=B^{-1}+\widehat{H}^{T} \widehat{R}^{-1} \widehat{H}
$$

where

$$
\begin{aligned}
\widehat{H} & =\left[H_{0}^{T},\left(H_{1} M_{1,0}\right)^{T}, \ldots,\left(H_{N} M_{N, 0}\right)^{T}\right]^{T} \\
\widehat{R} & =\operatorname{bldiag}\left(R_{i}\right), \quad i=1, \ldots, N
\end{aligned}
$$

- Cannot store \mathbb{H} as a matrix: action of applying \mathbb{H} to a vector is available, but expensive (involves both forward and backward model solves).

Preconditioned Conjugate Gradient Method

- Solve $\mathbb{H} \mathbf{v}=\mathbf{g}$ at each Gauss-Newton step using PCG (needs only $\mathbb{H} \mathbf{v}$).
- Choose preconditioner P so that
(i) eigenvalues of $P^{-1 / 2} \mathbb{H} P^{-1 / 2}$ are well clustered;
(ii) $P \mathbf{x}=\mathbf{r}$ is easily solved.
- Extreme cases:
- $P=\mathbb{H}$: good for (i), bad for (ii)
- $P=I:$ good for (ii), bad for (i)

Preconditioned Conjugate Gradient Method

- Solve $\mathbb{H} \mathbf{v}=\mathbf{g}$ at each Gauss-Newton step using PCG (needs only $\mathbb{H} \mathbf{v}$).
- Choose preconditioner P so that
(i) eigenvalues of $P^{-1 / 2} \mathbb{H} P^{-1 / 2}$ are well clustered;
(ii) $P \mathbf{x}=\mathbf{r}$ is easily solved.
- Extreme cases:
- $P=\mathbb{H}$: good for (i), bad for (ii)
- $P=I:$ good for (ii), bad for (i)
- Precondition \mathbb{H} based on the background covariance matrix:

$$
H=\left(B^{1 / 2}\right)^{T} \mathbb{H} B^{1 / 2}=I+\left(B^{1 / 2}\right)^{T} \widehat{H}^{T} \widehat{R}^{-1} \widehat{H} B^{1 / 2}
$$

- Eigenvalues of H are more clustered, in a narrow band above one, with few eigenvalues distinct enough to contribute noticeably to the Hessian value.
Haben et al. (2011), Tabeart et al. (2018)

Correlation matrix (1D Burgers' equation example)

- \mathbb{H}^{-1} (scaled to have unit diagonal)

Preconditioned correlation matrix

- H^{-1} (after first level preconditioning)

Second level preconditioning

- Storage/working with H still expensive: introduce second level preconditioning for H.
- Construct a multilevel approximation to $H^{-1 / 2}$ based on a sequence of nested grids.
- Discretise evolution equation on a grid with $m+1$ nodes (level 0) to represent Hessian H_{0}
- Grid level k contains $m_{k}=m / 2^{k}+1$ nodes.

Limited-memory approximation

- Find n_{e} leading eigenvalues and orthonormal eigenvectors using the Lanczos method (needs only Hv).
- Construct approximation

$$
H \approx I+\sum_{i=1}^{n_{e}}\left(\lambda_{i}-1\right) \mathbf{u}_{i} \mathbf{u}_{i}^{T}
$$

- Easy to evaluate matrix powers:

$$
H^{p} \approx I+\sum_{i=1}^{n_{e}}\left(\lambda_{i}^{p}-1\right) \mathbf{u}_{i} \mathbf{u}_{i}^{T}
$$

Grid transfers with "correction"

- Grid transfer based on piecewise cubic splines:
- Restriction matrix R_{c}^{f} from $k=f$ to $k=c$.
- Prolongation matrix P_{f}^{c} from $k=c$ to $k=f$.
- Identity matrix I_{k} on grid level k.
- Construct new operators which transfer a matrix between a course grid level c and a fine grid level f.
- From coarse to fine:

$$
H_{c \rightarrow f}=P_{f}^{c}\left(H_{c}-I_{c}\right) R_{c}^{f}+I_{f}
$$

- From fine to coarse:

$$
H_{f \rightarrow c}=R_{c}^{f}\left(H_{f}-I_{f}\right) P_{f}^{c}+I_{c}
$$

Outline of multilevel concept

Given a symmetric positive definite operator H_{0} available on the finest grid level in matrix-vector product form:
(1) represent H_{0} on the coarsest grid level as $H_{0 \rightarrow k}$;
(2) use a local preconditioner B_{k}^{k+1} to obtain

$$
\tilde{H}_{0 \rightarrow k}=\left(B_{k}^{k+1}\right)^{T} H_{0 \rightarrow k} B_{k}^{k+1}
$$

with improved eigenvalue clustering;
(3) build a limited memory approximation $\tilde{H}_{0 \rightarrow k}^{-1 / 2}$ from n_{k} eigenvalues of $\tilde{H}_{0 \rightarrow k}$ found using the Lanczos method;
(3) project this to the level above to be used as local preconditioner at the next coarsest level;
(5) move up one grid level and repeat.

Algorithm

- use $N_{e}=\left(n_{0}, n_{1}, \ldots, n_{c}\right)$ eigenvalues at each level
$[\Lambda, \mathcal{U}]=\operatorname{mlevd}\left(H_{0}, N_{e}\right)$
for $\quad k=k_{c}, k_{c}-1, \ldots, 0$
compute by the Lanczos method and store in memory

$$
\left\{\lambda_{k}^{i}, U_{k}^{i}\right\}, i=1, \ldots, n_{k} \text { of } \tilde{H}_{0 \rightarrow k}
$$

using preconditioner B_{k}^{k+1}
end

- storage:

$$
\begin{aligned}
\Lambda & =\left[\lambda_{k_{c}}^{1}, \ldots, \lambda_{k_{c}}^{n_{k_{c}}}, \lambda_{k_{c}-1}^{1}, \ldots, \lambda_{k_{c}-1}^{n_{k_{c}-1}}, \ldots, \lambda_{0}^{1}, \ldots, \lambda_{0}^{n_{0}}\right] \\
\mathcal{U} & =\left[U_{k_{c}}^{1}, \ldots, U_{k_{c}}^{n_{k}}, U_{k_{c}-1}^{1}, \ldots, U_{k_{c}-1}^{n_{k_{c}-1}}, \ldots, U_{0}^{1}, \ldots, U_{0}^{n_{0}}\right] .
\end{aligned}
$$

Example

- Test using 1D Burgers' equation with initial condition

$$
f(x)=0.1+0.35\left[1+\sin \left(4 \pi x+\frac{3 \pi}{2}\right)\right], \quad 0<x<1
$$

- 1D uniform grid with 7 sensors located at $0.3,0.4,0.45,0.5$, $0.55,0.6$, and 0.7 in $[0,1]$.
- Multilevel preconditioning with four grid levels:

k	0	1	2	3
grid points	401	201	101	51

Assessing approximation accuracy

- Riemannian distance:

$$
\delta(A, B)=\left\|\ln \left(B^{-1} A\right)\right\|_{F}=\left(\sum_{i=1}^{n} \ln ^{2} \lambda_{i}\right)^{1 / 2}
$$

- Compare eigenvalues of H^{-1} and \tilde{H}^{-1} on the finest grid level $k=0$ using

$$
D=\frac{\delta\left(H^{-1}, \tilde{H}^{-1}\right)}{\delta\left(H^{-1}, I\right)}
$$

- Vary number of eigenvalues chosen on each grid level

$$
N_{e}=\left(n_{0}, n_{1}, n_{2}, n_{3}\right)
$$

- Exact (blue circles), approximated (red stars)

- Exact (blue circles), approximated (red stars)

- Exact (blue circles), approximated (red stars)

Fixed memory ratio

- Fixed memory ratio $R=\sum_{k=0}^{k_{c}} \frac{n_{k}}{2^{k}}$

PCG iteration for one Newton step

- measurement units
- memory: length of vector on finest grid L
- cost: cost of HVP on finest grid HVP

Preconditioner	\# CG iterations	storage	cost
none	57	0 L	57 HVP
$\mathrm{MG}(400,0,0,0)$	1	400 L	402 HVP
$\mathrm{MG}(4,8,16,32)$	4	16 L	34 HVP
$\mathrm{MG}(0,8,16,32)$	5	12 L	14 HVP
$\mathrm{MG}(0,0,16,32)$	8	8 L	10 HVP

Solve cost measured in number of HVPs

Cost including building preconditioner

All is not lost. . .

- Cost-effective implementations are available!
- Algorithm 1: partition domain into subregions and approximate the Hessian using an assembly of local Hessians.
- Fewer eigenvalues required for limited-memory representation of each local Hessian.
- Local Hessians can be computed in parallel, using local rather than global models, and at any grid level.
- Algorithm 2: use the multilevel algorithm to approximate each limited-memory local Hessian based on local inverse Hessians.
- Reduces memory requirements of Algorithm 1.

Version 1: cost including building preconditioner

- Local Hessians with 8 eigenvalues at level 0 (solid lines) or level 1 (dashed lines).

Version 2: cost including building preconditioner

- Local Hessians with 8 eigenvalues at level 0 (solid lines) or level 1 (dashed lines) with $(8,4,0,0)$ MG approx.

Conclusions and extensions

- Similar results with other configurations (e.g. moving sensors, different initial conditions).
- Multilevel preconditioning looks promising for constructing a good limited-memory approximation to H^{-1}.
- The balance between restrictions on memory/cost limitations may vary between particular applications.
- Identifying globally appropriate values for $\left(n_{0}, n_{1}, n_{2}, n_{3}\right)$ and other parameters is tricky, but "rules of thumb" can be developed.
- Future investigations:
- application to shallow water equations;
- problems in higher dimensions;
- extension to other operators;
- applications for other sensor systems.

Multilevel algorithm for H^{-1}

- Represent H_{0} at a given level (k, say):

$$
H_{0 \rightarrow k}=R_{k}^{0}\left(H_{0}-I_{0}\right) P_{0}^{k}+I_{k}
$$

- Precondition to improve eigenvalue spectrum:

$$
\tilde{H}_{0 \rightarrow k}=\left(B_{k}^{k+1}\right)^{T} H_{0 \rightarrow k} B_{k}^{k+1}
$$

- Find n_{k} eigenvalues/eigenvectors of $\tilde{H}_{0 \rightarrow k}$ using the Lanczos method.
- Approximate $\tilde{H}_{0 \rightarrow k}^{-1 / 2}$:

$$
\tilde{H}_{0 \rightarrow k}^{-1 / 2} \approx I_{k}+\sum_{i=1}^{n_{k}}\left(\frac{1}{\sqrt{\lambda_{i}}}-1\right) \mathbf{u}_{i} \mathbf{u}_{i}^{T}
$$

- Construct B_{k}^{k+1} on level $k+1$, apply on level k.
- On coarsest grid, level $k+1$ does not exist so set $B_{k}^{k+1}=I_{k}$.
- For other levels, construct preconditioners recursively:

$$
B_{k}^{k+1}=\left[B_{k+1}^{k+2} \tilde{H}_{0 \rightarrow k+1}^{-1 / 2}\right]_{\rightarrow k}, \quad B_{k}^{k+1}{ }^{T}=\left[\tilde{H}_{0 \rightarrow k+1}^{-1 / 2} B_{k+1}^{k+2 T}\right]_{\rightarrow k}
$$

- Square brackets represent projection to the correct grid level using "corrected" grid transfers, e.g.

$$
\left[A_{k+1}\right]_{\rightarrow k}=R_{k}^{k+1}\left(A_{k+1}-I_{k+1}\right) P_{k+1}^{k}+I_{k}
$$

Hessian decomposition

- partition domain into subregions and compute local Hessians H^{s} such that

$$
H(\mathbf{v})=I+\sum_{s=1}^{S}\left(H^{s}(\mathbf{v})-I\right)
$$

- fewer eigenvalues required for limited-memory representation of each H^{s}
- local Hessians can be computed
- in parallel;
- using local rather than global models;
- at any grid level:

$$
H_{l}\left(\mathbf{v}_{l}\right)=l_{l}+\sum_{s=1}^{s}\left(H_{l}^{s}\left(\mathbf{v}_{l}\right)-l_{l}\right)
$$

Practical approach: Version 1

- Compute limited-memory approximations to local sensor-based Hessians on level / using n_{l} eigenpairs.
- Assemble these to form H_{a}, then apply mlevd to H_{a} based on a fixed N_{e}.
- Local Hessians cheaper to compute.
- Additional user-specified parameter(s) I, n_{I} needed.
- More memory required as local Hessians must also be stored.

Practical approach: version 2

- Can reduce memory requirements further by using a multilevel approximation of each limited-memory local Hessian on level / using n_{l} eigenpairs.
- Approximate local Hessians by applying mlevd to local inverse Hessians based on N_{e}^{I}.
- Assemble these to form a reduced-memory assembled Hessian $H_{a}^{r m}$.
- Use mlevd again on $H_{a}^{r m}$ based on N_{e}.

