Efficient iterative solvers for director-based models of LCDs

Alison Ramage Mathematics and Statistics University of Strathclyde Glasgow, Scotland

Eugene C. Gartland, Jr. Mathematics Kent State University Ohio, USA

Liquid Crystals

• occur between solid crystal and isotropic liquid states

liquid

Liquid Crystals

• occur between solid crystal and isotropic liquid states

- may have different equilibrium configurations
- switch between stable states by altering applied voltage, magnetic field, boundary conditions,

Liquid Crystal Displays

Modelling: Director-based Models

- director: average direction of molecular alignment unit vector $\mathbf{n} = (\cos \theta \cos \phi, \cos \theta \sin \phi, \sin \theta)$
- order parameter: measure of orientational order

$$S = \frac{1}{2} < 3\cos^2\theta_m - 1 >$$

Finding Equilibrium Configurations

• minimise the free energy

$$\mathcal{F} = \int_{V} F_{bulk}(\theta, \phi, \nabla \theta, \nabla \phi) + \int_{\mathcal{S}} F_{surface}(\theta, \phi) \, d\mathcal{S}$$

 $F_{bulk} = F_{elastic} + F_{electrostatic}$

Finding Equilibrium Configurations

• minimise the free energy

$$\mathcal{F} = \int_{V} F_{bulk}(\theta, \phi, \nabla \theta, \nabla \phi) + \int_{\mathcal{S}} F_{surface}(\theta, \phi) \, d\mathcal{S}$$

 $F_{bulk} = F_{elastic} + F_{electrostatic}$

 if fixed boundary conditions are applied, surface energy term can be ignored

Finding Equilibrium Configurations

• minimise the free energy

$$\mathcal{F} = \int_{V} F_{bulk}(\theta, \phi, \nabla \theta, \nabla \phi) + \int_{\mathcal{S}} F_{surface}(\theta, \phi) \, d\mathcal{S}$$

 $F_{bulk} = F_{elastic} + F_{electrostatic}$

 if fixed boundary conditions are applied, surface energy term can be ignored

• solutions with least energy are physically relevant

Elastic Energy

• Frank-Oseen elastic energy

$$F_{elastic} = \frac{1}{2} K_1 (\nabla \cdot \mathbf{n})^2 + \frac{1}{2} K_2 (\mathbf{n} \cdot \nabla \times \mathbf{n})^2 + \frac{1}{2} K_3 (\mathbf{n} \times \nabla \times \mathbf{n})^2 + \frac{1}{2} (K_2 + K_4) \nabla \cdot [(\mathbf{n} \cdot \nabla) \mathbf{n} - (\nabla \cdot \mathbf{n}) \mathbf{n}]$$

• Frank elastic constants

K_1	splay
K_2	twist
K_3	bend
$K_2 + K_4$	saddle-splay

One-Constant Approximation

• set

$$K = K_1 = K_2 = K_3, \qquad K_4 = 0$$

One-Constant Approximation

• set

$$K = K_1 = K_2 = K_3, \qquad K_4 = 0$$

vector identities

$$(\nabla \times \mathbf{n})^2 = (\mathbf{n} \cdot \nabla \times \mathbf{n})^2 + (\mathbf{n} \times \nabla \times \mathbf{n})^2$$
$$\nabla(\mathbf{n} \cdot \mathbf{n}) = 0$$
$$[(\nabla \cdot \mathbf{n})^2 + (\nabla \times \mathbf{n})^2] + \nabla \cdot [(\mathbf{n} \cdot \nabla)\mathbf{n} - (\nabla \cdot \mathbf{n})\mathbf{n}] = \|\nabla \mathbf{n}\|^2$$

One-Constant Approximation

• set

$$K = K_1 = K_2 = K_3, \qquad K_4 = 0$$

vector identities

$$(\nabla \times \mathbf{n})^2 = (\mathbf{n} \cdot \nabla \times \mathbf{n})^2 + (\mathbf{n} \times \nabla \times \mathbf{n})^2$$
$$\nabla(\mathbf{n} \cdot \mathbf{n}) = 0$$
$$[(\nabla \cdot \mathbf{n})^2 + (\nabla \times \mathbf{n})^2] + \nabla \cdot [(\mathbf{n} \cdot \nabla)\mathbf{n} - (\nabla \cdot \mathbf{n})\mathbf{n}] = \|\nabla \mathbf{n}\|^2$$

• elastic energy

$$F_{elastic} = \frac{1}{2} K \|\nabla \mathbf{n}\|^2$$

Electrostatic Energy

- applied electric field \mathbf{E} of magnitude E
- electrostatic energy

$$F_{electrostatic} = -\frac{1}{2}\epsilon_0\epsilon_\perp E^2 - \frac{1}{2}\epsilon_0\epsilon_a (\mathbf{n}\cdot\mathbf{E})^2$$

- dielectric anisotropy $\epsilon_a = \epsilon_{\parallel} \epsilon_{\perp}$
- permittivity of free space ϵ_0

Model Problem: Twisted Nematic Device

• two parallel plates distance *d* apart

• strong anchoring parallel to plate surfaces (n fixed)

• rotate one plate through $\pi/2$ radians

• electric field $\mathbf{E} = (0, 0, E(z))$, voltage V

Equilibrium Equations 1

• equilibrium equations on $z \in [0, d]$

$$F = \frac{1}{2} \int_0^d \left\{ K \| \nabla \mathbf{n} \|^2 - \epsilon_0 \epsilon_\perp E^2 - \epsilon_0 \epsilon_a (\mathbf{n} \cdot \mathbf{E})^2 \right\} dz$$

- director $\mathbf{n} = (u, v, w)$, $|\mathbf{n}| = 1$
- electric potential *U*: $E = \frac{dU}{dz}$
- unknowns u, v, w, U

Equilibrium Equations 2

- nondimensionalise: $\bar{z} = \frac{z}{d}, \qquad \bar{U} = \frac{U}{V}$
- nondimensionalised equilibrium equations on $z \in [0, 1]$

$$F = \frac{1}{2} \int_0^1 \left[(u_z^2 + v_z^2 + w_z^2) - \alpha^2 \pi^2 (\beta + w^2) U_z^2 \right] dz$$

• dimensionless parameters

$$\alpha^2 = \frac{\epsilon_0 \epsilon_a V^2}{K\pi^2}, \qquad \beta = \frac{\epsilon_\perp}{\epsilon_a}$$

• boundary conditions:

at
$$z = 0$$
: $\mathbf{n} = (1, 0, 0)$, at $z = 1$: $\mathbf{n} = (0, 1, 0)$

Off State

cester, March 2011 – p.12/44

On State

Critical Voltage

• switching occurs at

$$V_c = \frac{\pi}{2} \sqrt{\frac{3K}{\epsilon_0 \epsilon_a}}$$

Discrete Free Energy

- grid of N + 1 points z_k a distance Δz apart, n = N 1 unknowns for each variable
- piecewise linear approximation, weighted average

$$F \simeq \frac{\Delta z}{2} \sum_{k=0}^{N-1} \left\{ \left[\frac{u_{k+1} - u_k}{\Delta z} \right]^2 + \left[\frac{v_{k+1} - v_k}{\Delta z} \right]^2 + \left[\frac{w_{k+1} - w_k}{\Delta z} \right]^2 - \alpha^2 \pi^2 \left(\beta + \left[\frac{w_k^2 + w_{k+1}^2}{2} \right] \right) \left[\frac{U_{k+1} - U_k}{\Delta z} \right]^2 \right\}$$

equivalent to mid-point finite differences, linear finite elements

• discrete free energy

$$F \simeq \frac{\Delta z}{2} f(u_1, \dots, u_n, v_1, \dots, v_n, w_1, \dots, w_n, U_1, \dots, U_n)$$

• minimise *F* subject to pointwise constraint

$$u_j^2 + v_j^2 + w_j^2 = 1, \qquad j = 1, \dots, n$$

 constraints are applied via Lagrange multipliers: minimise

$$G = \frac{\Delta z}{2} \begin{bmatrix} f & -\lambda_1 (u_1^2 + v_1^2 + w_1^2 - 1) - \dots \\ \lambda_n (u_n^2 + v_n^2 + w_n^2 - 1) \end{bmatrix}$$

$\frac{\partial G}{\partial u_k}, \frac{\partial G}{\partial v_k}, \frac{\partial G}{\partial w_k}, \frac{\partial G}{\partial U_k}, \frac{\partial G}{\partial \lambda_k} \qquad \text{equal to zero}$

• set
$$\frac{\partial G}{\partial u_k}, \frac{\partial G}{\partial v_k}, \frac{\partial G}{\partial w_k}, \frac{\partial G}{\partial U_k}, \frac{\partial G}{\partial \lambda_k}$$
 equal to zero

• solve $\nabla \mathbf{G}(\mathbf{x}) = \mathbf{0}$ for $\mathbf{x} = [\mathbf{u}, \mathbf{v}, \mathbf{w}, \lambda, \mathbf{U}]$

N+1 gridpoints $\Rightarrow n = N-1$ unknowns

• set
$$\frac{\partial G}{\partial u_k}, \frac{\partial G}{\partial v_k}, \frac{\partial G}{\partial w_k}, \frac{\partial G}{\partial U_k}, \frac{\partial G}{\partial \lambda_k}$$
 equal to zero

- solve $\nabla \mathbf{G}(\mathbf{x}) = \mathbf{0}$ for $\mathbf{x} = [\mathbf{u}, \mathbf{v}, \mathbf{w}, \lambda, \mathbf{U}]$ N + 1 gridpoints $\Rightarrow n = N - 1$ unknowns
- use Newton's method: solve

$$\nabla^2 \mathbf{G}(\mathbf{x}_j) \cdot \delta \mathbf{x}_j = -\nabla \mathbf{G}(\mathbf{x}_j)$$

• set
$$\frac{\partial G}{\partial u_k}, \frac{\partial G}{\partial v_k}, \frac{\partial G}{\partial w_k}, \frac{\partial G}{\partial U_k}, \frac{\partial G}{\partial \lambda_k}$$
 equal to zero

- solve $\nabla \mathbf{G}(\mathbf{x}) = \mathbf{0}$ for $\mathbf{x} = [\mathbf{u}, \mathbf{v}, \mathbf{w}, \lambda, \mathbf{U}]$ N + 1 gridpoints $\Rightarrow n = N - 1$ unknowns
- use Newton's method: solve

$$\nabla^2 \mathbf{G}(\mathbf{x}_j) \cdot \delta \mathbf{x}_j = -\nabla \mathbf{G}(\mathbf{x}_j)$$

• $5n \times 5n$ coefficient matrix is Hessian $\nabla^2 \mathbf{G}(\mathbf{x})$

$$\nabla^{2}\mathbf{G} = \begin{bmatrix} \nabla^{2}_{\mathbf{nn}}\mathbf{G} & \nabla^{2}_{\mathbf{n\lambda}}\mathbf{G} & \nabla^{2}_{\mathbf{nU}}\mathbf{G} \\ \nabla^{2}_{\lambda\mathbf{n}}\mathbf{G} & \nabla^{2}_{\lambda\lambda}\mathbf{G} & \nabla^{2}_{\mathbf{U\lambda}}\mathbf{G} \\ \nabla^{2}_{\mathbf{Un}}\mathbf{G} & \nabla^{2}_{\lambda\mathbf{U}}\mathbf{G} & \nabla^{2}_{\mathbf{UU}}\mathbf{G} \end{bmatrix}$$

• matrix notation: $\nabla^2_{nn} \mathbf{G} = A$

$$A = \begin{bmatrix} \nabla_{\mathbf{u}\mathbf{u}}^{2}\mathbf{G} & 0 & 0\\ 0 & \nabla_{\mathbf{v}\mathbf{v}}^{2}\mathbf{G} & 0\\ 0 & 0 & \nabla_{\mathbf{w}\mathbf{w}}^{2}\mathbf{G} \end{bmatrix} = \begin{bmatrix} A_{uu} & 0 & 0\\ 0 & A_{vv} & 0\\ 0 & 0 & A_{ww} \end{bmatrix}$$

• A_{uu} , A_{vv} and A_{ww} are $n \times n$ symmetric tridiagonal blocks

• matrix notation: $\nabla^2_{nn} \mathbf{G} = A$

$$A = \begin{bmatrix} \nabla_{uu}^{2} \mathbf{G} & 0 & 0 \\ 0 & \nabla_{vv}^{2} \mathbf{G} & 0 \\ 0 & 0 & \nabla_{ww}^{2} \mathbf{G} \end{bmatrix} = \begin{bmatrix} A_{uu} & 0 & 0 \\ 0 & A_{vv} & 0 \\ 0 & 0 & A_{ww} \end{bmatrix}$$

• A_{uu} , A_{vv} and A_{ww} are $n \times n$ symmetric tridiagonal blocks

•
$$A_{uu} = A_{vv} = \frac{1}{\Delta z} \operatorname{tri}(-1, 2 - \Delta z^2 \lambda_j, -1)$$

•
$$A_{ww} = \frac{1}{\Delta z} \operatorname{tri}(-1, 2 - \Delta z^2 \lambda_j - \gamma_j, -1)$$

$$\gamma_j = \frac{\alpha^2 \pi^2}{2} [(U_{j+1} - U_j)^2 + (U_j - U_{j-1})^2]$$

Eigenvalues of A

• off state: first Newton step, linear U, constant λ

$$\lambda_j = \lambda = \frac{4}{\Delta z^2} \sin^2\left(\frac{\pi \Delta z}{4}\right)$$

• block matrices are **Toeplitz**

Eigenvalues of A

• off state: first Newton step, linear U, constant λ

$$\lambda_j = \lambda = \frac{4}{\Delta z^2} \sin^2\left(\frac{\pi \Delta z}{4}\right)$$

• block matrices are Toeplitz

•
$$\sigma_{\min}(A_{uu}) = \sigma_{\min}(A_{vv}) \simeq \frac{3\pi^2}{4}\Delta z > 0$$

 A_{uu} and A_{vv} are positive definite

•
$$\sigma_{\min}(A_{ww}) \simeq \left(\frac{3\pi^2}{4} - \alpha^2 \pi^2\right) \Delta z$$

 A_{ww} is positive definite iff $V < V_c$

Eigenvalues of A

• off state: first Newton step, linear U, constant λ

$$\lambda_j = \lambda = \frac{4}{\Delta z^2} \sin^2\left(\frac{\pi \Delta z}{4}\right)$$

block matrices are Toeplitz

•
$$\sigma_{\min}(A_{uu}) = \sigma_{\min}(A_{vv}) \simeq \frac{3\pi^2}{4}\Delta z > 0$$

 A_{uu} and A_{vv} are positive definite

•
$$\sigma_{\min}(A_{ww}) \simeq \left(\frac{3\pi^2}{4} - \alpha^2 \pi^2\right) \Delta z$$

 A_{ww} is positive definite iff $V < V_c$

• number of negative eigenvalues increases with ${\cal V}$

• matrix notation: $\nabla^2_{\mathbf{n}\lambda}\mathbf{G} = B$

• the $3n \times n$ matrix B has structure

$$B = -\Delta z \begin{bmatrix} B_u \\ B_v \\ B_w \end{bmatrix}, \qquad \begin{array}{c} B_u = \operatorname{diag}(\mathbf{u}) \\ B_v = \operatorname{diag}(\mathbf{v}) \\ B_w = \operatorname{diag}(\mathbf{w}) \end{array}$$

• matrix notation: $\nabla^2_{\mathbf{n}\lambda}\mathbf{G} = B$

• the $3n \times n$ matrix *B* has structure

$$B = -\Delta z \begin{bmatrix} B_u \\ B_v \\ B_w \end{bmatrix}, \qquad \begin{array}{c} B_u = \operatorname{diag}(\mathbf{u}) \\ B_v = \operatorname{diag}(\mathbf{v}) \\ B_w = \operatorname{diag}(\mathbf{w}) \end{array}$$

• $B^T B = \Delta z^2 I_n$ when constraints are satisfied

• $\operatorname{rank}(B) = \operatorname{rank}(B^T) = \operatorname{rank}(BB^T) = \operatorname{rank}(B^TB) = n$

- matrix notation: $\nabla^2_{\mathbf{U}\mathbf{U}}\mathbf{G} = -C$
- the $n \times n$ matrix C is symmetric and tridiagonal

- matrix notation: $\nabla^2_{\mathbf{UU}}\mathbf{G} = -C$
- the $n \times n$ matrix C is symmetric and tridiagonal

•
$$C = \frac{1}{\Delta z} \operatorname{tri}(-a_{j-\frac{1}{2}}, a_{j-\frac{1}{2}} + a_{j+\frac{1}{2}}, -a_{j+\frac{1}{2}})$$

$$a_{j-\frac{1}{2}} = \alpha^2 \pi^2 (\beta + \frac{1}{2}(w_{j-1}^2 + w_j^2)) > 0$$
$$a_{j+\frac{1}{2}} = \alpha^2 \pi^2 (\beta + \frac{1}{2}(w_j^2 + w_{j+1}^2)) > 0$$

• matrix notation: $\nabla^2_{\mathbf{UU}}\mathbf{G} = -C$

1

• the $n \times n$ matrix C is symmetric and tridiagonal

•
$$C = \frac{1}{\Delta z} \operatorname{tri}(-a_{j-\frac{1}{2}}, a_{j-\frac{1}{2}} + a_{j+\frac{1}{2}}, -a_{j+\frac{1}{2}})$$

$$a_{j-\frac{1}{2}} = \alpha^2 \pi^2 (\beta + \frac{1}{2}(w_{j-1}^2 + w_j^2)) > 0$$
$$a_{j+\frac{1}{2}} = \alpha^2 \pi^2 (\beta + \frac{1}{2}(w_j^2 + w_{j+1}^2)) > 0$$

• diagonally dominant with positive real diagonal entries

${\it C}$ is positive definite

• matrix notation: $\nabla^2_{\mathbf{n}\mathbf{U}}\mathbf{G} = D$

$$D = \frac{\alpha^2 \pi^2}{\Delta z} \begin{bmatrix} 0\\0\\D_w \end{bmatrix}$$

• the $n \times n$ matrix D_w is tridiagonal

 $D_w = \text{diag}(\mathbf{w}) \text{tri}(U_j - U_{j-1}, U_{j-1} - 2U_j + U_{j+1}, U_j - U_{j+1})$
Hessian Components 4

• matrix notation: $\nabla^2_{\mathbf{n}\mathbf{U}}\mathbf{G} = D$

$$D = \frac{\alpha^2 \pi^2}{\Delta z} \begin{bmatrix} 0\\0\\D_w \end{bmatrix}$$

• the $n \times n$ matrix D_w is tridiagonal

 $D_w = \text{diag}(\mathbf{w}) \text{tri}(U_j - U_{j-1}, U_{j-1} - 2U_j + U_{j+1}, U_j - U_{j+1})$

• D_w has complex eigenvalues in conjugate pairs and one zero eigenvalue (N even)

•
$$\operatorname{rank}(D) = n - 1$$

Full Hessian Structure

$$\nabla^{2}\mathbf{G} = \begin{bmatrix} \nabla_{\mathbf{nn}}^{2}\mathbf{G} & \nabla_{\mathbf{n\lambda}}^{2}\mathbf{G} & \nabla_{\mathbf{nU}}^{2}\mathbf{G} \\ \nabla_{\lambda\mathbf{n}}^{2}\mathbf{G} & \nabla_{\lambda\lambda}^{2}\mathbf{G} & \nabla_{\mathbf{U\lambda}}^{2}\mathbf{G} \\ \nabla_{\mathbf{Un}}^{2}\mathbf{G} & \nabla_{\lambda\mathbf{U}}^{2}\mathbf{G} & \nabla_{\mathbf{UU}}^{2}\mathbf{G} \end{bmatrix}$$

$$\nabla^2 \mathbf{G} = \begin{bmatrix} A & B & D \\ B^T & 0 & 0 \\ D^T & 0 & -C \end{bmatrix}$$

saddle-point problem

Four Saddle-Point Problems

• for unknown vector ordered as $\mathbf{x} = [\mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{U}, \lambda]$

$$H = \begin{bmatrix} A & D & B \\ D^{T} & -C & 0 \\ B^{T} & 0 & 0 \end{bmatrix} \qquad H = \begin{bmatrix} A & D & B \\ D^{T} & -C & 0 \\ B^{T} & 0 & 0 \end{bmatrix}$$

• for unknown vector ordered as $\mathbf{x} = [\mathbf{u}, \mathbf{v}, \mathbf{w}, \lambda, \mathbf{U}]$

$$H = \begin{bmatrix} A & B & D \\ B^{T} & 0 & 0 \\ D^{T} & 0 & -C \end{bmatrix} \qquad H = \begin{bmatrix} A & B & D \\ B^{T} & 0 & 0 \\ D^{T} & 0 & -C \end{bmatrix}$$

double saddle-point structure

Iterative Solution

- outer iteration: Newton's method tol=1e-4
- inner iteration: MINRES tol=1e-4
- check accuracy by calculating energy of final solution

MINRES

Paige and Saunders (1975)

Construct iterates $\mathbf{x}_k = \mathbf{x}_0 + V_k \mathbf{y}_k$ with properties

• \mathbf{x}_k minimises $\|\mathbf{r}_k\|_2 = \|\mathbf{b} - H\mathbf{x}_k\|_2$

• uses three-term recurrence relation

 $V_k = [\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k]$

 \mathbf{v}_k form an orthonormal basis for Krylov subspace $\kappa(H, \mathbf{r}_0, k) = \operatorname{span}\{\mathbf{r}_0, H\mathbf{r}_0, \dots, H^{k-1}\mathbf{r}_0\}$

- use Lanczos method to find \mathbf{v}_k
- solve resulting least squares problem for y_k using Givens rotations and QR factorisation

Convergence of MINRES

• at step k:

Convergence of MINRES

• at step k:

• symmetric intervals: $[-\lambda_b, -\lambda_a] \cup [\lambda_a, \lambda_b]$

$$k \propto \frac{\lambda_b}{\lambda_a}$$

Matrix Conditioning

- eigenvalues of *H* lie in $[\lambda_{\min}, \lambda_s] \cup [\lambda_{s+1}, \lambda_{\max}]$
- estimate of matrix conditioning:

N	condest	$\lambda_{\min}(H)$	$\lambda_s(H)$	$\lambda_{s+1}(H)$	$\lambda_{\max}(H)$
8	1.64e+6	-6.68e+2	-5.40e-4	1.88e-1	3.07e+1
16	2.58e+7	-1.44e+3	-6.26e-5	2.19e-1	6.33e+1
32	4.09e+8	-2.98e+3	-7.68e-6	1.28e-1	1.28e+2
64	6.51e+9	-6.07e+3	-9.56e-7	6.60e-2	2.56e+2
128	1.04e+11	-1.23e+4	-1.20e-7	3.33e-2	5.12e+2
256	1.66e+12	-2.46e+4	-1.50e-8	1.67e-2	1.03e+3
	$O(N^4)$	O(N)	$O(N^{-3})$	$O(N^{-1})$	O(N)

• Newton system:

$$\begin{bmatrix} A & B & D \\ B^T & 0 & 0 \\ D^T & 0 & -C \end{bmatrix} \begin{bmatrix} \delta \mathbf{n} \\ \delta \lambda \\ \delta \mathbf{U} \end{bmatrix} = \begin{bmatrix} -\nabla_{\mathbf{n}} G \\ -\nabla_{\lambda} G \\ -\nabla_{\mathbf{U}} G \end{bmatrix}$$

• Newton system:

$$\begin{bmatrix} A & B & D \\ B^T & 0 & 0 \\ D^T & 0 & -C \end{bmatrix} \begin{bmatrix} \delta \mathbf{n} \\ \delta \lambda \\ \delta \mathbf{U} \end{bmatrix} = \begin{bmatrix} -\nabla_{\mathbf{n}} G \\ -\nabla_{\lambda} G \\ -\nabla_{\mathbf{U}} G \end{bmatrix}$$

 Idea: use information about nullspace of B to eliminate constraint blocks

• Newton system:

$$\begin{bmatrix} A & B & D \\ B^T & 0 & 0 \\ D^T & 0 & -C \end{bmatrix} \begin{bmatrix} \delta \mathbf{n} \\ \delta \lambda \\ \delta \mathbf{U} \end{bmatrix} = \begin{bmatrix} -\nabla_{\mathbf{n}} G \\ -\nabla_{\lambda} G \\ -\nabla_{\mathbf{U}} G \end{bmatrix}$$

- Idea: use information about nullspace of B to eliminate constraint blocks
- use $Z \in \mathbb{R}^{3n \times 2n}$ whose columns form a basis for the nullspace of B^T

$$B^T Z = Z^T B = 0$$

• $\operatorname{rank}(Z) = 2n$

• Newton system:

$$\begin{bmatrix} A & B & D \\ B^T & 0 & 0 \\ D^T & 0 & -C \end{bmatrix} \begin{bmatrix} \delta \mathbf{n} \\ \delta \lambda \\ \delta \mathbf{U} \end{bmatrix} = \begin{bmatrix} -\nabla_{\mathbf{n}} G \\ -\nabla_{\lambda} G \\ -\nabla_{\mathbf{U}} G \end{bmatrix}$$

- Idea: use information about nullspace of B to eliminate constraint blocks
- use $Z \in \mathbb{R}^{3n \times 2n}$ whose columns form a basis for the nullspace of B^T

$$B^T Z = Z^T B = 0$$

- $\operatorname{rank}(Z) = 2n$
- system size will reduce from $5n \times 5n$ to $3n \times 3n$

- $A\delta \mathbf{n} + B\delta\lambda + D\delta \mathbf{U} = -\nabla_{\mathbf{n}}G \tag{1}$
 - $B^T \delta \mathbf{n} = -\nabla_\lambda G \tag{2}$
 - $D^T \delta \mathbf{n} C \delta \mathbf{U} = -\nabla_{\mathbf{U}} G \tag{3}$

- $A\delta \mathbf{n} + B\delta\lambda + D\delta \mathbf{U} = -\nabla_{\mathbf{n}}G \tag{1}$
 - $B^T \delta \mathbf{n} = -\nabla_\lambda G \tag{2}$
 - $D^T \delta \mathbf{n} C \delta \mathbf{U} = -\nabla_{\mathbf{U}} G \tag{3}$
- write solution of (2) as

$$\delta \mathbf{n} = \widehat{\delta \mathbf{n}} + Z \mathbf{z}$$

- particular solution satisfies $B^T \widehat{\delta \mathbf{n}} = -\nabla_{\lambda} G$
- $Z\mathbf{z} \in \mathbb{R}^{2n}$ lies in nullspace of B^T

- $A\delta \mathbf{n} + B\delta\lambda + D\delta \mathbf{U} = -\nabla_{\mathbf{n}}G \tag{1}$
 - $B^T \delta \mathbf{n} = -\nabla_\lambda G \tag{2}$
 - $D^T \delta \mathbf{n} C \delta \mathbf{U} = -\nabla_{\mathbf{U}} G \tag{3}$
- write solution of (2) as

$\delta \mathbf{n} = \widehat{\delta \mathbf{n}} + Z \mathbf{z}$

- particular solution satisfies $B^T \widehat{\delta \mathbf{n}} = -\nabla_{\lambda} G$
- $Z\mathbf{z} \in \mathbb{R}^{2n}$ lies in nullspace of B^T
- find $\widehat{\delta \mathbf{n}}$ via $\widehat{\delta \mathbf{n}} = -B(B^T B)^{-1} \nabla_{\lambda} G$
- here $B^T B$ is diagonal so solve is cheap

• reduced system:

$$\begin{bmatrix} Z^T A Z & Z^T D \\ D^T Z & -C \end{bmatrix} \begin{bmatrix} \mathbf{z} \\ \delta \mathbf{U} \end{bmatrix} = \begin{bmatrix} -Z^T (\nabla_{\mathbf{n}} G + A \widehat{\delta \mathbf{n}}) \\ -\nabla_{\mathbf{U}} G - D^T \widehat{\delta \mathbf{n}} \end{bmatrix}$$

• reduced system:

$$\begin{bmatrix} Z^T A Z & Z^T D \\ D^T Z & -C \end{bmatrix} \begin{bmatrix} \mathbf{z} \\ \delta \mathbf{U} \end{bmatrix} = \begin{bmatrix} -Z^T (\nabla_{\mathbf{n}} G + A \widehat{\delta \mathbf{n}}) \\ -\nabla_{\mathbf{U}} G - D^T \widehat{\delta \mathbf{n}} \end{bmatrix}$$

recover full solution from

$$\delta \mathbf{n} = Z\mathbf{z} + \widehat{\delta \mathbf{n}}$$

$$\delta \lambda = (B^T B)^{-1} B^T (-\nabla_{\mathbf{n}} G - A\delta \mathbf{n} - D\delta \mathbf{U})$$

• reduced system:

$$\begin{bmatrix} Z^T A Z & Z^T D \\ D^T Z & -C \end{bmatrix} \begin{bmatrix} \mathbf{z} \\ \delta \mathbf{U} \end{bmatrix} = \begin{bmatrix} -Z^T (\nabla_{\mathbf{n}} G + A \widehat{\delta \mathbf{n}}) \\ -\nabla_{\mathbf{U}} G - D^T \widehat{\delta \mathbf{n}} \end{bmatrix}$$

recover full solution from

$$\delta \mathbf{n} = Z\mathbf{z} + \widehat{\delta \mathbf{n}}$$

$$\delta \lambda = (B^T B)^{-1} B^T (-\nabla_{\mathbf{n}} G - A\delta \mathbf{n} - D\delta \mathbf{U})$$

• here $B^T B$ is diagonal so solve is cheap

Nullspace of B^T I

• permute entries of B:

Nullspace of B^T I

• permute entries of B:

• eigenvectors of orthogonal projection

$$I - \mathbf{n}_{j} \otimes \mathbf{n}_{j} = \begin{bmatrix} 1 - u_{j}^{2} & -v_{j}u_{j} & -w_{j}u_{j} \\ -u_{j}v_{j} & 1 - v_{j}^{2} & -w_{j}v_{j} \\ -u_{j}w_{j} & -v_{j}w_{j} & 1 - w_{j}^{2} \end{bmatrix}$$

will be orthogonal to n_j

Nullspace of B^T II

• eigenvectors of orthogonal projection: e.g.

$$\mathbf{l}_{j} = \begin{bmatrix} -\frac{v_{j}}{u_{j}} \\ 1 \\ 0 \end{bmatrix}, \qquad \mathbf{m}_{j} = \begin{bmatrix} -\frac{w_{j}}{u_{j}} \\ 0 \\ 1 \end{bmatrix} \qquad (u_{j} \neq 0)$$

• orthonormalise:

$$\mathbf{l}_{j} = \frac{1}{\sqrt{u_{j}^{2} + v_{j}^{2}}} \begin{bmatrix} -v_{j} \\ u_{j} \\ 0 \end{bmatrix}, \qquad \mathbf{m}_{j} = \frac{1}{\sqrt{u_{j}^{2} + v_{j}^{2}}} \begin{bmatrix} -u_{j}w_{j} \\ -v_{j}w_{j} \\ u_{j}^{2} + v_{j}^{2} \end{bmatrix}$$

• at least one of u_j, v_j, w_j nonzero as $|\mathbf{n}_j| = 1$

Nullspace of B^T III

Nullspace of B^T III

• consider $B^T Z \mathbf{p}$ where $\mathbf{p} = [p_1, q_1, p_2, q_2, \dots, p_n, q_n]^T$:

$$B^{T}Z\mathbf{p} = \begin{bmatrix} \mathbf{n}_{1}^{T} & & \\ & \mathbf{n}_{2}^{T} & \\ & & \ddots & \\ & & & & \mathbf{n}_{n}^{T} \end{bmatrix} \begin{bmatrix} p_{1}\mathbf{l}_{1} + q_{1}\mathbf{m}_{1} \\ p_{2}\mathbf{l}_{2} + q_{2}\mathbf{m}_{2} \\ \vdots \\ p_{n}\mathbf{l}_{n} + q_{n}\mathbf{m}_{n} \end{bmatrix} = 0$$

• columns of Z form a basis for nullspace of B^T

Leicester, March 2011 - p.34/44

Condition of Reduced System

- eigenvalues of \mathcal{H} lie in $[\lambda_{\min}, \lambda_s] \cup [\lambda_{s+1}, \lambda_{\max}]$
- estimate of matrix conditioning:

N	condest	$\lambda_{\min}(\mathcal{H})$	$\lambda_s(\mathcal{H})$	$\lambda_{s+1}(\mathcal{H})$	$\lambda_{\max}(\mathcal{H})$
8	1.28e+3	-7.44e+2	-2.13e+1	1.71e+0	3.39e+3
16	1.51e+4	-1.51e+3	-9.77e+0	8.14e-1	1.89e+4
32	2.13e+5	-3.06e+3	-4.77e+0	4.04e-1	1.40e+5
64	3.29e+6	-6.20e+3	-2.37e+0	2.02e-1	1.10e+6
128	4.97e+7	-1.24e+4	-1.18e+0	1.01e-1	8.78e+6
256	7.84e+8	-2.50e+4	-5.91e-1	5.05e-2	7.02e+7
	$O(N^4)$	O(N)	$O(N^{-1})$	$O(N^{-1})$	$O(N^3)$

Preconditioning

Idea: instead of solving $\mathcal{H}\mathbf{x} = \mathbf{b}$, solve

 $\mathcal{P}^{-1}\mathcal{H}\mathbf{x} = \mathcal{P}^{-1}\mathbf{b}$

for some preconditioner $\ensuremath{\mathcal{P}}$

Choose \mathcal{P} so that (i) eigenvalues of $\mathcal{P}^{-1}\mathcal{H}$ are well clustered (ii) $\mathcal{P}\mathbf{u} = \mathbf{r}$ is easily solved

Preconditioning

Idea: instead of solving $\mathcal{H}\mathbf{x} = \mathbf{b}$, solve

 $\mathcal{P}^{-1}\mathcal{H}\mathbf{x} = \mathcal{P}^{-1}\mathbf{b}$

for some preconditioner $\ensuremath{\mathcal{P}}$

Choose \mathcal{P} so that (i) eigenvalues of $\mathcal{P}^{-1}\mathcal{H}$ are well clustered (ii) $\mathcal{P}\mathbf{u} = \mathbf{r}$ is easily solved

Extreme cases:

- $\mathcal{P} = \mathcal{H}$: good for (i), bad for (ii)
- $\mathcal{P} = I$: good for (ii), bad for (i)

Solving the Reduced System

• write $\bar{A} = Z^T A Z$ and $\bar{D} = Z^T D$: $\mathcal{H} = \begin{bmatrix} \bar{A} & \bar{D} \\ \bar{D}^T & -C \end{bmatrix}$

Solving the Reduced System

- write $\bar{A} = Z^T A Z$ and $\bar{D} = Z^T D$: $\mathcal{H} = \begin{bmatrix} \bar{A} & \bar{D} \\ \bar{D}^T & -C \end{bmatrix}$
- block preconditioner:

$$\mathcal{P} = \left[\begin{array}{cc} \bar{A} & 0\\ 0 & C \end{array} \right]$$

Solving the Reduced System

- write $\bar{A} = Z^T A Z$ and $\bar{D} = Z^T D$: $\mathcal{H} = \begin{bmatrix} \bar{A} & \bar{D} \\ \bar{D}^T & -C \end{bmatrix}$
- block preconditioner:

$$\mathcal{P} = \left[\begin{array}{cc} \bar{A} & 0\\ 0 & C \end{array} \right]$$

• preconditioned matrix:

$$\tilde{\mathcal{H}} = \mathcal{P}^{-1/2} \mathcal{H} \mathcal{P}^{-1/2} = \begin{bmatrix} I & M^T \\ M & -I \end{bmatrix}$$

$$M = C^{-1/2} \bar{D} \bar{A}^{-1/2}$$

Preconditioned Spectrum

$$\tilde{\mathcal{H}} = \mathcal{P}^{-1/2} \mathcal{H} \mathcal{P}^{-1/2} = \begin{bmatrix} I & M^T \\ M & -I \end{bmatrix}$$

- $M = C^{-1/2} Z^T D (Z^T A Z)^{-1/2}$
- rank(M) = n 1
- non-zero singular values σ_k

Preconditioned Spectrum

$$\tilde{\mathcal{H}} = \mathcal{P}^{-1/2} \mathcal{H} \mathcal{P}^{-1/2} = \begin{bmatrix} I & M^T \\ M & -I \end{bmatrix}$$

- $M = C^{-1/2} Z^T D (Z^T A Z)^{-1/2}$
- rank(M)=n-1
- non-zero singular values σ_k
- 3n eigenvalues of $\tilde{\mathcal{H}}$ are

(i) 1 with multiplicity
$$n+1$$

(ii) -1 with multiplicity 1
(iii) $\pm \sqrt{1 + \sigma_k^2}$ for $k = 1, \dots, n-1$

Sample Eigenvalue Plots

Estimate of MINRES convergence

• eigenvalues in two symmetric intervals

 $[-\beta, -1] \cup [1, \beta], \qquad \beta = \sqrt{1 + \sigma_{\max}^2}$

Estimate of MINRES convergence

• eigenvalues in two symmetric intervals

 $[-\beta, -1] \cup [1, \beta], \qquad \beta = \sqrt{1 + \sigma_{\max}^2}$

• to achieve $\|\mathbf{r}_k\| \leq \epsilon \|\mathbf{r}_0\|$ need

$$k \simeq \frac{1}{2}\sqrt{1 + \sigma_{\max}^2} \ln\left(\frac{2}{\epsilon}\right)$$

Diagonal Preconditioning

$$H = \begin{bmatrix} A & B & D \\ B^T & 0 & 0 \\ D^T & 0 & -C \end{bmatrix}$$

 $\mathcal{D} = \begin{bmatrix} D_A & 0 & 0\\ 0 & \Delta z^3 I & 0\\ 0 & 0 & D_C \end{bmatrix} \qquad \begin{array}{c} D_A &= \operatorname{diag}(A)\\ D_C &= \operatorname{diag}(C) \end{array}$

Diagonal Preconditioning

$$H = \begin{bmatrix} A & B & D \\ B^T & 0 & 0 \\ D^T & 0 & -C \end{bmatrix}$$

$$\mathcal{D} = \begin{bmatrix} D_A & 0 & 0 \\ 0 & \Delta z^3 I & 0 \\ 0 & 0 & D_C \end{bmatrix} \qquad \begin{array}{c} D_A &= \operatorname{diag}(A) \\ D_C &= \operatorname{diag}(C) \end{array}$$

• estimated condition of $\mathcal{D}^{-1}H$ is $O(N^2)$

 $\lambda_{\min} = -2, \ \lambda_s = O(N^{-2}), \ \lambda_{s+1} = O(N^{-2}), \ \lambda_{\max} = 2$
Iteration Counts

• diagonal scaling

N	8	16	32	64	128	256
first Newton step	15	40	117	382	1293	5126
last Newton step	37	134	414	1617	7466	34755

Iteration Counts

• diagonal scaling

N	8	16	32	64	128	256
first Newton step	15	40	117	382	1293	5126
last Newton step	37	134	414	1617	7466	34755

reduced block preconditioning

N	8	16	32	64	128	256
first Newton step	5	5	5	5	5	5
last Newton step	5	5	5	5	5	5

independent of problem size and Newton iteration

Computing Time

- elapsed time (tic/toc)
- A: full direct, B: reduced direct, C: reduced block

Computing Time

- elapsed time (tic/toc)
- A: full direct, B: reduced direct, C: reduced block

N	A	В	С
8	7.54e-02	7.17e-02	2.85e-03
16	7.67e-03	7.37e-03	2.60e-03
32	1.11e-02	1.06e-02	3.51e-03
64	1.67e-02	1.56e-02	4.95e-03
128	3.55e-02	3.30e-02	8.62e-03
256	1.18e-01	1.26e-01	1.26e-02
512	4.89e-01	4.40e-01	2.26e-02
1024	1.40e+00	1.37e+00	4.64e-02
2048	5.25e+00	5.15e+00	1.12e-01
4096	2.11e+01	2.12e+01	1.78e-01

Conclusions and the Future

- Reduced block preconditioner is very efficient for this problem.
- Nullspace method is ideal for this simple 1D director model.

Conclusions and the Future

- Reduced block preconditioner is very efficient for this problem.
- Nullspace method is ideal for this simple 1D director model.
- Can the convergence analysis be pushed further?
- Does the same method work well for more complicated liquid crystal cells?
- What about 2D models?
- Reduced block preconditioner is cheap to invert here: could approximate solves (e.g. multigrid) be used for other problems with less structure?

Conclusions and the Future

- Reduced block preconditioner is very efficient for this problem.
- Nullspace method is ideal for this simple 1D director model.
- Can the convergence analysis be pushed further?
- Does the same method work well for more complicated liquid crystal cells?
- What about 2D models?
- Reduced block preconditioner is cheap to invert here: could approximate solves (e.g. multigrid) be used for other problems with less structure?

THANKS!