A multilevel preconditioner for data assimilation with 4D-Var

Alison Ramage*, Kirsty Brown*, Igor Gejadze[†]

* Department of Mathematics and Statistics, University of Strathclyde

† IRSTEA, Montpelier, France

- Numerical weather prediction is an IVP: given initial conditions, forecast atmospheric evolution.
- Data assimilation is a technique for combining information such as observational and background data with numerical models to obtain the best estimate of the state of a system (initial condition).
- Other application areas include hydrology, oceanography, environmental science, data analytics, sensor networks...
- Variational assimilation is used to find the optimal analysis that minimises a specific cost function.

Motivation

Motivation

Physical model

• Evolution equation:

$$\begin{array}{rcl} \displaystyle \frac{\partial \varphi(t)}{\partial t} &=& F(\varphi(t)) + f(t), \\ \displaystyle \varphi(0) &=& u, \end{array}$$
$$u \in X, \quad t \in (0,T), \quad f, \varphi \in Y = L_2(0,T;X) \end{array}$$

true initial state true state evolution observation operator observation error observations background error background function

 $\begin{array}{c}
\bar{u} \\
\bar{\varphi} \\
C_{obs} : Y \to Y_{obs} \\
\xi_o \\
\varphi_{obs} = C_{obs} \bar{\varphi} + \xi_o \\
\frac{\xi_b}{\xi_b} \\
u_b = \bar{u} + \xi_b
\end{array}$

Data assimilation problem

• represent model in operator form via control-to-state mapping

 $\varphi = R^{cts}(u)$

• assume errors ξ_o , ξ_b are normal, unbiased and mutually uncorrelated with positive definite covariance operators

 $V_b(\cdot) = E[\langle \cdot, \xi_b \rangle_X \, \xi_b], \qquad V_o(\cdot) = E[\langle \cdot, \xi_o \rangle_{Y_{obs}} \, \xi_o]$

• DA problem: find $v \in X$ which minimises

 $J(v) = \frac{1}{2} \langle V_b^{-1} v, v \rangle_X + \frac{1}{2} \langle V_o^{-1} C_{obs} R^{cts}(u) v, C_{obs} R^{cts}(u) v \rangle_{Y_{obs}}$

• define associated tangent linear operator

$$R'(u)w = \lim_{ au o 0} rac{R^{cts}(u+ au w) - R^{cts}(u)}{ au}, \quad orall w \in X$$

and adjoint

 $\langle w, R'^*(u)w^* \rangle_X = \langle R'(u)w, w^* \rangle_Y, \quad \forall w \in X, \forall w^* \in Y$

• Hessian of DA problem:

$$\mathcal{H}(u) = V_b^{-1} + {R'}^*(u) C_{obs}^* V_o^{-1} C_{obs} R'(u)$$

- Represent functions using a finite-dimensional basis.
- Rewrite as an unconstrained minimisation problem using Lagrange's method.
- Incremental approach: linearise evolution operator and solve linearised problem iteratively.
- Require a discrete version of the tangent linear model (TLM) and its adjoint.
- Each iteration requires one forward solution of the TLM equations and one backward solution of the adjoint equations.

• Hessian of the cost function:

$$\mathcal{H} = V_b^{-1} + R^T C_{obs}^T V_o^{-1} C_{obs} R$$

- Discrete tangent linear operator R and its adjoint.
- $\bullet~ \mathcal{H}$ is often too large to be stored in memory.
- Action of applying \mathcal{H} to a vector is available, but expensive:
 - involves both forward and backward solves with the linearised evolution operator and its adjoint.

Why approximate \mathcal{H}^{-1} ?

- \mathcal{H}^{-1} represents an approximation of the Posterior Covariance Matrix (PCM).
- The PCM can be used to find confidence intervals and carry out *a posteriori* error analysis.
- $\mathcal{H}^{-1/2}$ can be used in ensemble forecasting.
- \mathcal{H}^{-1} , $\mathcal{H}^{-1/2}$ can be used for preconditioning in a Gauss-Newton method (focus of this talk).

AIM: construct a limited-memory approximation to \mathcal{H}^{-1} using only matrix-vector multiplication.

• Linear system (within a Gauss-Newton method):

 $\mathcal{H}(\mathbf{u}_k)\delta\mathbf{u}_k=G(\mathbf{u}_k)$

Hessian of the cost function $\mathcal{H}(\mathbf{u}_k)$ gradient of the cost function $G(\mathbf{u}_k)$

- Solve using Preconditioned Conjugate Gradient iteration (needs only Hv).
- Convergence depends on eigenvalues of the Hessian

$$\mathcal{H} = V_b^{-1} + R^T C_{obs}^T V_o^{-1} C_{obs} R.$$

• Evaluating $\mathcal{H}\mathbf{v}$ is very expensive, so we need a good preconditoner.

First level preconditioning

- Use the background covariance matrix V_b .
- Projected Hessian:

 $H = (V_b^{1/2})^T \mathcal{H} V_b^{1/2} = I + (V_b^{1/2})^T R^T C_{obs}^T V_o^{-1} C_{obs} R V_b^{1/2}$

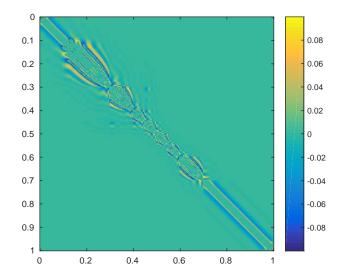
- Easy to recover $\mathcal H$ in the original space.
- Eigenvalues of *H* are usually clustered in a narrow band above one, with few eigenvalues distinct enough to contribute noticeably to the Hessian.

[Haben et al., Computers & Fluids 46 (2011)]

• This makes *H* amenable to limited-memory approximation.

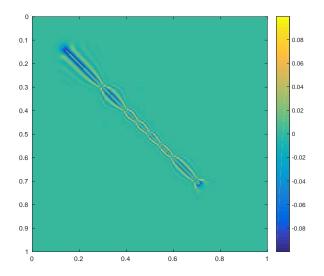
Correlation matrix

• \mathcal{H}^{-1} (scaled to have unit diagonal)



Preconditioned correlation matrix

• H^{-1} (after first level preconditioning)



Limited-memory approximation

- Find *n_e* leading eigenvalues and orthonormal eigenvectors using the Lanczos method.
- Construct approximation

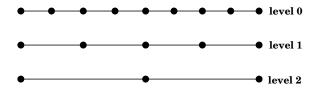
$$H\approx I+\sum_{i=1}^{n_e}(\lambda_i-1)\mathbf{u}_i\mathbf{u}_i^T$$

• Easy to evaluate matrix powers:

$$H^p \approx I + \sum_{i=1}^{n_e} (\lambda_i^p - 1) \mathbf{u}_i \mathbf{u}_i^T$$

Second level preconditioning

- IDEA: Construct a multilevel approximation to H^{-1} based on a sequence of nested grids.
- Discretise evolution equation on a grid with m + 1 nodes (level 0) to represent Hessian H_0 .
- Grid level k contains $m_k = m/2^k + 1$ nodes.



• Identity matrix I_k on grid level k.

Grid transfers with "correction"

- Grid transfer based on piecewise cubic splines:
 - Restriction matrix R_c^f from k = f to k = c.
 - Prolongation matrix P_f^c from k = c to k = f.
- Construct new operators which transfer a matrix between a coarse grid level *c* and a fine grid level *f*.

• From coarse to fine:

$$M_{c\to f} = P_f^c (M_c - I_c) R_c^f + I_f$$

• From fine to coarse:

$$M_{f\to c} = R_c^f (M_f - I_f) P_f^c + I_c$$

Given a symmetric positive definite operator A_0 available on the finest grid level in matrix-vector product form:

- represent A_0 on the coarsest grid level;
- use a local preconditioner to improve the eigenvalue distribution;
- build a limited-memory approximation to its inverse using the Lanczos method (which forms the basis of the local preconditioner at the next coarsest level);
- Move up one grid level and repeat.

Multilevel algorithm for H^{-1}

• Represent H_0 at a given level (k, say):

$$H_{0\to k} = R_k^0 (H_0 - I_0) P_0^k + I_k$$

• Precondition to improve eigenvalue spectrum:

$$\tilde{H}_{0\to k} = (B_k^{k+1})^T H_{0\to k} B_k^{k+1}$$

- Find n_k eigenvalues/eigenvectors of $\tilde{H}_{0 \rightarrow k}$ using the Lanczos method.
- Approximate $\tilde{H}_{0 \to k}^{-1/2}$:

$$\tilde{H}_{0 \to k}^{-1/2} \approx I_k + \sum_{i=1}^{n_k} \left(\frac{1}{\sqrt{\lambda_i}} - 1\right) \mathbf{u}_i \mathbf{u}_i^T$$

- Construct B_k^{k+1} on level k + 1, apply on level k.
- On coarsest grid, level k + 1 does not exist so set $B_k^{k+1} = I_k$.
- For other levels, construct preconditioners recursively:

$$B_{k}^{k+1} = \left[B_{k+1}^{k+2} \tilde{H}_{0 \to k+1}^{-1/2} \right]_{\to k}, \quad B_{k}^{k+1} = \left[\tilde{H}_{0 \to k+1}^{-1/2} B_{k+1}^{k+2} \right]_{\to k}$$

• Square brackets represent projection to the correct grid level using "corrected" grid transfers, e.g.

$$[M_{k+1}]_{\to k} = R_k^{k+1} (M_{k+1} - I_{k+1}) P_{k+1}^k + I_k$$

• We already have H_0 , so precondition to obtain

 $\tilde{H}_0 = B_0^{\mathbf{1}^{\mathsf{T}}} H_0 B_0^{\mathbf{1}}.$

- Find n_0 eigenvalues/eigenvectors of \tilde{H}_0 using the Lanczos method.
- Approximate \tilde{H}_0^{-1} :

$$\tilde{H}_0^{-1} \approx I_k + \sum_{i=1}^{n_0} \left(\frac{1}{\lambda_i} - 1\right) \mathbf{u}_i \mathbf{u}_i^T$$

• Recover projected inverse Hessian using

$$H_0^{-1} = B_0^1 \tilde{H}_0^{-1} B_0^1^T$$

Algorithm

• use $N_e = (n_0, n_1, \dots, n_c)$ eigenvalues at each level

$$\begin{split} [\Lambda,\mathcal{U}] = & \textit{mlevd}(H_0,N_e) \\ \text{for} \quad k = k_c, k_c - 1, \dots, 0 \\ & \text{compute by the Lanczos method} \\ & \text{and store in memory} \\ & \{\lambda_k^i, U_k^i\}, \ i = 1, \dots, n_k \text{ of } \tilde{H}_{0 \to k} \\ & \text{using preconditioner } B_k^{k+1} \\ \text{end} \end{split}$$

• storage:

$$\Lambda = \left[\lambda_{k_c}^1, \dots, \lambda_{k_c}^{n_{k_c}}, \lambda_{k_c-1}^1, \dots, \lambda_{k_c-1}^{n_{k_c-1}}, \dots, \lambda_0^1, \dots, \lambda_0^{n_0} \right], \\ \mathcal{U} = \left[U_{k_c}^1, \dots, U_{k_c}^{n_{k_c}}, U_{k_c-1}^1, \dots, U_{k_c-1}^{n_{k_c-1}}, \dots, U_0^1, \dots, U_0^{n_0} \right].$$

Example

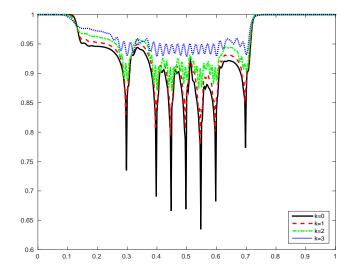
• Test using 1D Burgers' equation with initial condition

$$f(x) = 0.1 + 0.35 \left[1 + \sin \left(4\pi x + \frac{3\pi}{2} \right) \right], \qquad 0 < x < 1$$

- 1D uniform grid with 7 sensors located at 0.3, 0.4, 0.45, 0.5, 0.55, 0.6, and 0.7 in [0, 1].
- Multilevel preconditioning with four grid levels:

k	0	1	2	3
grid points	401	201	101	51

Diagonal of H^{-1}



Assessing approximation accuracy

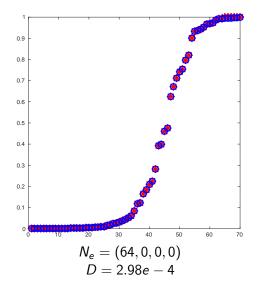
• Riemannian distance:

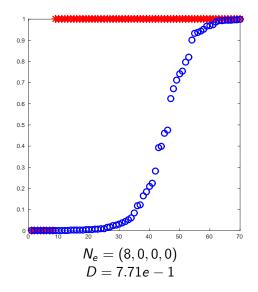
$$\delta(A,B) = \left\| \ln(B^{-1}A) \right\|_F = \left(\sum_{i=1}^n \ln^2 \lambda_i \right)^{1/2}$$

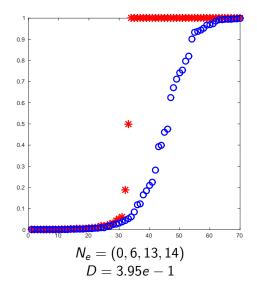
• Compare eigenvalues of H^{-1} and \tilde{H}^{-1} on the finest grid level k = 0 using

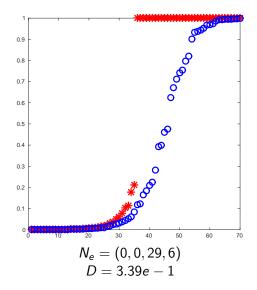
$$\mathcal{D} = rac{\delta(H^{-1}, \tilde{H}^{-1})}{\delta(H^{-1}, I)}$$

• Vary number of eigenvalues chosen on each grid level $N_e = (n_0, n_1, n_2, n_3)$



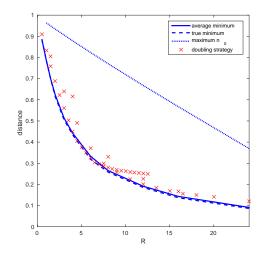






Fixed memory ratio

• Fixed memory ratio $R = \sum_{k=0}^{k_c} \frac{n_k}{2^k}$



PCG iteration for one Newton step

measurement units

- memory: length of vector on finest grid L
- cost: cost of HVP on finest grid M

Preconditioner	# CG iterations	storage	cost
none	57	0L	57M
MG(400,0,0,0)	1	400L	402M
MG(4,8,16,32)	4	16L	34M
MG(0,8,16,32)	5	12L	14M
MG(0,0,16,32)	8	8L	10M

Hessian decomposition

 partition domain into subregions and compute local Hessians H^I such that

$$H(u) = I + \sum_{l=1}^{L} (H^{l}(u) - I)$$

- fewer eigenvalues required for limited-memory representation of each H^{l}
- local Hessians can be computed in parallel
- H^{I} need not be computed at finest grid level:

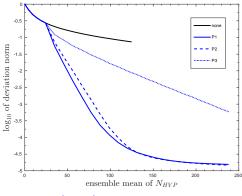
$$H_k(u_k) = I_k + \sum_{l=1}^{L} (H_k^l(u_k) - I_k)$$

could run local rather than global model

- Compute limited-memory approximations to local sensor-based Hessians on level *I* using *n_I* eigenpairs.
- Assemble these to form H_a , then apply mleved to H_a based on a fixed N_e .
- Local Hessians cheaper to compute.
- Additional user-specified parameter(s) *I*, *n_I* needed.
- More memory required as local Hessians must also be stored.

Numerical results

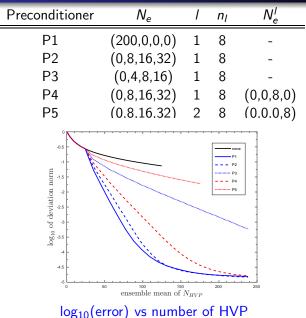
Preconditioner	N _e	1	n _l
P1	(200,0,0,0)	1	8
P2	(0,8,16,32)	1	8
P3	(0,4,8,16)	1	8



log₁₀(error) vs number of HVP

- Can reduce memory requirements further by using a multilevel approximation of each limited-memory local Hessian on level *I* using n_I eigenpairs.
- Approximate local Hessians by applying mlevd to local inverse Hessians based on N^l_e.
- Assemble these to form a reduced-memory assembled Hessian H_a^{rm} .
- Use mlevel again on H_a^{rm} based on N_e .

Numerical results



Alison Ramage, University of Strathclyde Multilevel preconditioner for data assimilation with 4D-Var

Conclusions and next steps

- Similar results with other configurations (e.g. moving sensors, different initial conditions).
- Multilevel preconditioning looks promising for constructing a good limited-memory approximation to H⁻¹.
- The balance between restrictions on memory/cost limitations may vary between particular applications.
- Identifying globally appropriate values for (n_0, n_1, n_2, n_3) and other parameters is tricky.

• Now ready for two dimensions!

It is sometimes nice in Scotland...

Alison Ramage, University of Strathclyde Multilevel preconditioner for data assimilation with 4D-Var

... you should come to visit!

27th Biennial Numerical Analysis Conference University of Strathclyde, Glasgow, Scotland June 27th-30th 2017

http://numericalanalysisconference.org.uk/

Alison Ramage, University of Strathclyde Multilevel preconditioner for data assimilation with 4D-Var