Multigrid Solution of Discrete Convection-Diffusion Equations

Alison Ramage Dept of Mathematics University of Strathclyde Glasgow, Scotland

Howard Elman Dept of Computer Science University of Maryland College Park, MD, USA

Convection-Diffusion in 2D

$$egin{aligned} &-\epsilon
abla^2 u(x,y) + \mathrm{w.}
abla u(x,y) &= f(x,y) & ext{in} \quad \Omega \in \mathbb{R}^2 \ &u(x,y) &= g & ext{on} \quad \partial \Omega \end{aligned}$$

divergence-free convective velocity ('wind') \mathbf{w}

diffusion parameter $\epsilon << 1$

discretisation parameter *h*

mesh Péclet number
$$P_h = rac{\|\mathbf{w}\|h}{2\epsilon}$$

Boundary Layers and Oscillations

• Galerkin finite element method

 $\epsilon(
abla u_h,
abla v_h)+(\mathrm{w}\cdot
abla u_h,v_h)=(f,v_h)\quad orall v_h\in V_h$

solution features:

• oscillations observed in discrete solutions for $P_h > 1$

Streamline Diffusion Method

streamline diffusion FEM, square bilinear elements

$$egin{aligned} \epsilon(
abla u_h,
abla v_h) &+ & (\mathrm{w} \cdot
abla u_h, v_h) + rac{\delta h}{||\mathrm{w}||} (\mathrm{w} \cdot
abla u_h, \mathrm{w} \cdot
abla v_h) \ &= & (f, v_h) + rac{\delta h}{||\mathrm{w}||} (f, \mathrm{w} \cdot
abla v_h) \quad orall v_h \in V_h \end{aligned}$$

Streamline Diffusion Method

streamline diffusion FEM, square bilinear elements

$$egin{aligned} \epsilon(
abla u_h,
abla v_h) &+ & (\mathrm{w} \cdot
abla u_h, v_h) + rac{\delta h}{||\mathrm{w}||} (\mathrm{w} \cdot
abla u_h, \mathrm{w} \cdot
abla v_h) \ &= & (f, v_h) + rac{\delta h}{||\mathrm{w}||} (f, \mathrm{w} \cdot
abla v_h) \quad orall v_h \in V_h \end{aligned}$$

•
$$P_h \leq 1$$
: $\delta = 0$ Galerkin FEM

•
$$P_h > 1$$
: $\delta = rac{1}{2} - rac{\epsilon}{h}$

• fine grid (*h*), coarse grid (2*h*)

- fine grid (*h*), coarse grid (2*h*)
- decompose a grid function into components in two subspaces

approximate inverse operator

for components in subspace 1

smoothing iteration

rapidly reduces error components in subspace 2

- fine grid (*h*), coarse grid (2*h*)
- decompose a grid function into components in two subspaces

approximate inverse operator

for components in subspace 1

smoothing iteration

rapidly reduces error components in subspace 2

recursive process on nested grids

- fine grid (h), coarse grid (2h)
- decompose a grid function into components in two subspaces

approximate inverse operator

for components in subspace 1

smoothing iteration

rapidly reduces error components in subspace 2

- recursive process on nested grids
- optimal in the sense of obtaining convergence rate independent of h

Issues for Convection-Diffusion

- approximation: choice of discretisation
 - oscillations on coarser grids?
 - grid transfer operators?

Issues for Convection-Diffusion

- approximation: choice of discretisation
 - oscillations on coarser grids?
 - grid transfer operators?
- **smoothing**: choice of relaxation method
 - direction of flow?
 - circular flows?

Issues for Convection-Diffusion

- approximation: choice of discretisation
 - oscillations on coarser grids?
 - grid transfer operators?
- **smoothing**: choice of relaxation method
 - direction of flow?
 - circular flows?
- multigrid can be implemented effectively for convection-diffusion problems

Convergence Analysis

- standard Poisson-type convergence analysis fails
- ideas for convection-diffusion less well-developed

Convergence Analysis

- standard Poisson-type convergence analysis fails
- ideas for convection-diffusion less well-developed
- various successful approaches
 - perturbation arguments

Bank (1981), Bramble, Pasciak and Xu (1988), Mandel (1986), Wang (1993)

• matrix-based methods

Reusken (2002), Olshanskii and Reusken (2002)

• two-grid method: N_f (fine grid), N_c (coarse grid)

- two-grid method: N_f (fine grid), N_c (coarse grid)
- coefficient matrices: A_f (fine grid), A_c (coarse grid)

direct discretisation on coarse grid

- two-grid method: N_f (fine grid), N_c (coarse grid)
- coefficient matrices: A_f (fine grid), A_c (coarse grid)

- prolongation: bilinear interpolation **P**
- restriction: transpose of prolongation P^T

- two-grid method: N_f (fine grid), N_c (coarse grid)
- coefficient matrices: A_f (fine grid), A_c (coarse grid)

- prolongation: bilinear interpolation **P**
- restriction: transpose of prolongation P^T

- smoothing: line Gauss-Seidel S_A
- ν steps of pre-smoothing, no post-smoothing

Multigrid Convergence

- algebraic error $\mathbf{e}_k = \hat{\mathbf{u}} \mathbf{u}_k$
- two-grid iteration matrix $M = (I PA_c^{-1}P^TA_f)S_A^{\nu}$
- error equation $e_k = Me_{k-1} = M^k e_0$
- convergence?

 $\|\mathbf{e}_k\| \le \|M\|^k \|\mathbf{e}_0\|$

convergence if $\|M\| < 1$

Two-Grid Convergence Analysis

AIM: find an upper bound for

$$\|M\|_2 = \|(I - PA_c^{-1}P^TA_f)S_A^{\nu}\|_2$$

Two-Grid Convergence Analysis

AIM: find an upper bound for

$$\|M\|_2 = \|(I - PA_c^{-1}P^TA_f)S_A^{\nu}\|_2$$

• Approach 1: write

$$M = (A_f^{-1} - PA_c^{-1}P^T)(A_f S_A^{\nu}) = M_A M_S$$

and bound $\|M_A\|_2$, $\|M_S\|_2$ separately

Two-Grid Convergence Analysis

AIM: find an upper bound for

$$\|M\|_2 = \|(I - PA_c^{-1}P^TA_f)S_A^{\nu}\|_2$$

• Approach 1: write

 $M = (A_f^{-1} - PA_c^{-1}P^T)(A_f S_A^{\nu}) = M_A M_S$

and bound $\|M_A\|_2$, $\|M_S\|_2$ separately

• Approach 2: bound $||M||_2$ directly

Model Problem

grid-aligned flow with vertical wind and f = 0

$$-\epsilon
abla^2 u(x,y) + (0,1) \cdot
abla u(x,y) = 0$$

Dirichlet boundary conditions

square bilinear elements

Computational Molecule

parameters h, ϵ, δ

 $\begin{array}{rcl} M_{2}: & -\frac{1}{12}[(2\delta-1)h+4\epsilon] & -\frac{1}{3}[(2\delta-1)h+\epsilon] & -\frac{1}{12}[(2\delta-1)h+4\epsilon] \\ & & & & & \uparrow & \swarrow \\ M_{1}: & \frac{1}{3}(\delta h-\epsilon) & \leftarrow & \frac{4}{3}(\delta h+2\epsilon) & \rightarrow & \frac{1}{3}(\delta h-\epsilon) \\ & & \swarrow & \downarrow & \searrow \\ & & & \downarrow & \searrow \\ M_{3}: & -\frac{1}{12}[(2\delta+1)h+4\epsilon] & -\frac{1}{3}[(2\delta+1)h+\epsilon] & -\frac{1}{12}[(2\delta+1)h+4\epsilon] \end{array}$

symmetric stencil

Coefficient Matrix

Coefficient Matrix

eigenvectors and eigenvalues:

$$egin{aligned} M_1 \mathrm{v}_j &= \lambda_j \mathrm{v}_j, \ \lambda_j &= m_{1c} + 2m_{1r}\cosrac{j\pi}{N_f} \ M_2 \mathrm{v}_j &= \sigma_j \mathrm{v}_j, \ \sigma_j &= m_{2c} + 2m_{2r}\cosrac{j\pi}{N_f} \ M_3 \mathrm{v}_j &= \gamma_j \mathrm{v}_j, \ \gamma_j &= m_{3c} + 2m_{3r}\cosrac{j\pi}{N_f} \end{aligned}$$

$$\mathrm{v}_j = \sqrt{rac{2}{N_f}} \left[\sin rac{j\pi}{N_f}, \quad \sin rac{2j\pi}{N_f}, \quad \dots, \sin rac{(N_f-1)j\pi}{N_f}
ight]^T$$

Transformation: Coefficient Matrix (1)

$$egin{aligned} N_f^2 & ext{elements}, & n_f^2 & ext{unknowns} & (n_f = N_f - 1) \ & \hat{V}_f = ig[ext{v}_1 ext{v}_2\dots ext{v}_{n_f}ig], & V_f = ext{diag}(\hat{V}_f,\dots,\hat{V}_f) \end{aligned}$$

$$M_1 \hat{V}_f = \hat{V}_f \Lambda, \qquad M_2 \hat{V}_f = \hat{V}_f \Sigma, \qquad M_3 \hat{V}_f = \hat{V}_f \Gamma$$

Transformation: Coefficient Matrix (1)

$$egin{aligned} N_f^2 & ext{elements}, & n_f^2 & ext{unknowns} & (n_f = N_f - 1) \ & \hat{V}_f = ig[ext{v}_1 ext{v}_2\dots ext{v}_{n_f}ig], & V_f = ext{diag}(\hat{V}_f,\dots,\hat{V}_f) \end{aligned}$$

$$M_1 \hat{V}_f = \hat{V}_f \Lambda, \qquad M_2 \hat{V}_f = \hat{V}_f \Sigma, \qquad M_3 \hat{V}_f = \hat{V}_f \Gamma$$

Transformation: Coefficient Matrix (2)

permute into tridiagonal form:

$$\Pi_f^T \hat{T}_f \Pi_f = T_f = egin{bmatrix} T_1 & & 0 \ & T_2 & & \ & & T_{n_f-1} \ & & & T_{n_f} \end{bmatrix} \ T_j = ext{tridiag}(oldsymbol{\gamma}_j,oldsymbol{\lambda}_j,\sigma_j)$$

 $A_f = Q_f T_f Q_f^T \qquad Q_f = V_f \Pi_f$

Transformation: Coefficient Matrix (2)

permute into tridiagonal form:

$$egin{aligned} \Pi_f^T \hat{T}_f \Pi_f &= T_f = egin{bmatrix} T_1 & & 0 \ & T_2 & & \ & T_{n_f-1} & \ & 0 & & T_{n_f} \end{bmatrix} \ & T_j &= ext{tridiag}(\gamma_j, oldsymbol{\lambda}_j, \sigma_j) \ & A_f &= oldsymbol{Q}_f T_f oldsymbol{Q}_f^T & oldsymbol{Q}_f &= V_f \Pi_f \ & ext{coarse grid:} \quad A_c &= oldsymbol{Q}_c T_c oldsymbol{Q}_c^T & oldsymbol{Q}_c &= V_c \Pi_c \end{aligned}$$

Transformation: Smoothing Matrix

block matrix splitting: $A_f = D_A - L_A - U_A$

Gauss-Seidel smoothing matrix:

$$S_A = (D_A - L_A)^{-1} U_A = I - (D_A - L_A)^{-1} A_f$$

Transformation: Smoothing Matrix

block matrix splitting: $A_f = D_A - L_A - U_A$

Gauss-Seidel smoothing matrix:

$$S_A = (D_A - L_A)^{-1} U_A = I - (D_A - L_A)^{-1} A_f$$

transformation:

$$S_A = Q_f S_T Q_f^T$$

where $S_T = I - (D_T - L_T)^{-1}T_f$ is block-diagonal

Transformation: Prolongation Matrix

2D prolongation matrix:
$$P = L \otimes L$$

 $L^{T} = \begin{bmatrix} \frac{1}{2} & 1 & \frac{1}{2} \\ & \frac{1}{2} & 1 & \frac{1}{2} \\ & & \ddots & \\ & & & \ddots & \\ & & & & \frac{1}{2} & 1 & \frac{1}{2} \end{bmatrix}$

Transformation: Prolongation Matrix

2D prolongation matrix: $P = L \otimes L$

transformation: $Q_f = (I_f \otimes \hat{V_f}) \Pi_f, \quad Q_c = (I_c \otimes \hat{V_c}) \Pi_c$

$$ar{P} = Q_f^T P Q_c = \mathcal{A}^T \otimes L$$

Transformation: Iteration Matrix (1)

$$M = (I - PA_c^{-1}P^T A_f)S_A^{\nu}$$

= $(I - PQ_cT_c^{-1}Q_c^T P^T Q_fT_fQ_f^T)S_A^{\nu}$
= $Q_f(I - \bar{P}T_c^{-1}\bar{P}^T T_f)Q_f^T(Q_fS_TQ_f^T)^{\nu}$
= $Q_f\left(I - \bar{P}T_c^{-1}\bar{P}^T T_f\right)S_T^{\nu}Q_f^T$
 $\Rightarrow M = Q_f\bar{M}Q_f^T$

where $ar{M} = \left(I - ar{P} T_c^{-1} ar{P}^T T_f
ight) S_T^{
u}$

Transformation: Iteration Matrix (1)

$$M = (I - PA_c^{-1}P^T A_f)S_A^{\nu}$$

= $(I - PQ_cT_c^{-1}Q_c^T P^T Q_fT_fQ_f^T)S_A^{\nu}$
= $Q_f(I - \bar{P}T_c^{-1}\bar{P}^T T_f)Q_f^T(Q_fS_TQ_f^T)^{\nu}$
= $Q_f\left(I - \bar{P}T_c^{-1}\bar{P}^T T_f\right)S_T^{\nu}Q_f^T$
 $\Rightarrow M = Q_f\bar{M}Q_f^T$

where $ar{M} = \left(I - ar{P} T_c^{-1} ar{P}^T T_f
ight) S_T^{
u}$

 Q_f is orthogonal:

$$\|M\|_2=\|ar{M}\|_2$$

Transformation: Iteration Matrix (2)

Transformation: Iteration Matrix (2)

The Story So Far...

- $n_f^2 imes n_f^2$ two-grid iteration matrix M
- Fourier transformation converts 2D problem to a set of n_f problems with 1D structure
- $\|M\|_2$ can be found from norms of N_c smaller problems n_c of size $2n_f imes 2n_f$, 1 of size $n_f imes n_f$

The Story So Far...

- $n_f^2 imes n_f^2$ two-grid iteration matrix M
- Fourier transformation converts 2D problem to a set of n_f problems with 1D structure
- $\|M\|_2$ can be found from norms of N_c smaller problems n_c of size $2n_f imes 2n_f$, 1 of size $n_f imes n_f$
- IDEA: analyse semiperiodic version of the problem n_c of size $2N_f imes 2N_f$, 1 of size $N_f imes N_f$
- gain insight into Dirichlet problem behaviour?

Semiperiodic problem

• B_j , C_j are replaced by periodic versions, e.g.

$$B_{j}^{per} = [I - ar{P}_{j}^{per} (T_{c}^{per})_{j}^{-1} (ar{P}_{j}^{per})^{T} (T_{f}^{per})_{j}] \ S_{j}^{per}$$

Semiperiodic problem

• B_j , C_j are replaced by periodic versions, e.g.

 $B_{j}^{per} = [I - \bar{P}_{j}^{per} (T_{c}^{per})_{j}^{-1} (\bar{P}_{j}^{per})^{T} (T_{f}^{per})_{j}] S_{j}^{per}$

- transform using coarse grid periodic eigenvectors
- B_j^{per} , C_j^{per} become block diagonal with 2×2 blocks

Semiperiodic problem

• B_j , C_j are replaced by periodic versions, e.g.

 $B_{j}^{per} = [I - \bar{P}_{j}^{per} (T_{c}^{per})_{j}^{-1} (\bar{P}_{j}^{per})^{T} (T_{f}^{per})_{j}] S_{j}^{per}$

- transform using coarse grid periodic eigenvectors
- B_j^{per} , C_j^{per} become block diagonal with 2×2 blocks
- permute into block diagonal form

• 2-norm given by maximum 2-norm of the 4×4 blocks

Analytic result

• with semiperiodic approximation, when $P_h > 1$

$$\|M^{per}\|_2 = \frac{\sqrt{3 + \cos\left(2\pi h\right)}}{\sqrt{2}(5^{\nu})}$$

• as *h* is small in practice,

$$\|M^{per}\|_2\simeq rac{\sqrt{2}}{5^{
u}}$$

Analytic result

• with semiperiodic approximation, when $P_h > 1$

$$\|M^{per}\|_2 = \frac{\sqrt{3 + \cos\left(2\pi h\right)}}{\sqrt{2}(5^{\nu})}$$

• as h is small in practice,

$$\|M^{per}\|_2 \simeq \frac{\sqrt{2}}{5^{\nu}}$$

• when $P_h < 1$, analysis is more detailed but good approximations to $\|M^{per}\|_2$ can be derived

Analytic result

• with semiperiodic approximation, when $P_h > 1$

$$\|M^{per}\|_2 = \frac{\sqrt{3 + \cos\left(2\pi h\right)}}{\sqrt{2}(5^{\nu})}$$

• as h is small in practice,

$$\|M^{per}\|_2 \simeq \frac{\sqrt{2}}{5^{\nu}}$$

• when $P_h < 1$, analysis is more detailed but good approximations to $\|M^{per}\|_2$ can be derived

Question: Does this semiperiodic analysis correctly predict Dirichlet problem behaviour?

Model Problem Results (1)

- $\|M\|_2$ vs P_h
- $P_h \geq 1$ only
- semiperiodic: dashed line
- Dirichlet: solid lines
- h fixed for each line

•
$$h=rac{1}{8}$$
 to $h=rac{1}{512}$

- $\nu = 1$
- semiperiodic: $\frac{\sqrt{2}}{5} \simeq 0.28$

• Dirichlet
$$\rightarrow \frac{\sqrt{2}}{5}$$

Model Problem Results (2)

- $\|M\|_2$ vs P_h
- $P_h < 1$ only
- semiperiodic: dashed line
- Dirichlet: solid lines
- *h* fixed for each line

•
$$h=rac{1}{8}$$
 to $h=rac{1}{512}$

- $\nu = 1$
- not a good match
- MG may diverge!

Observations

•
$$\|M\|_2 = \sqrt{|\lambda_1(M^*M)|}$$

Observations

- $\|M\|_2 = \sqrt{|\lambda_1(M^*M)|}$
- for $P_h < 1$, matrix blocks have one 'bad' eigenvalue

 $\sqrt{|\lambda(\mathcal{M}_1^*\mathcal{M}_1)|}$ for fixed $P_h=0.38$

Alternative Bound?

• artificially 'remove' this eigenvalue: use $\sqrt{|\lambda_2(M^*M)|}$

Alternative Bound?

• artificially 'remove' this eigenvalue: use $\sqrt{|\lambda_2(M^*M)|}$

Outlying eigenvalue

- in practice, the effect of this outlying eigenvalue is transient
- the eigenvector corresponding to the outlying eigenvalue is large only on grid lines very close to the inflow boundary
- after a few MG iterations, it is smooth and so is easily eliminated by coarse grid correction

Outlying eigenvalue

- in practice, the effect of this outlying eigenvalue is transient
- the eigenvector corresponding to the outlying eigenvalue is large only on grid lines very close to the inflow boundary
- after a few MG iterations, it is smooth and so is easily eliminated by coarse grid correction
- these effects do not have an impact on practical MG performance

MG Iteration Counts

• MG-like convergence for any value of P_h

Further Remarks

- Separate approximation and smoothing matrices:
 - semiperiodic analysis for smoothing matrix norm is representative of Dirichlet problem behaviour for all values of *P_h*,
 - semiperiodic analysis for approximation matrix norm is representative of Dirichlet problem behaviour for *P_h* ≥ 1: for *P_h* < 1, 'bad' eigenvalues again cause trouble.

Further Remarks

- Separate approximation and smoothing matrices:
 - semiperiodic analysis for smoothing matrix norm is representative of Dirichlet problem behaviour for all values of *P_h*,
 - semiperiodic analysis for approximation matrix norm is representative of Dirichlet problem behaviour for *P_h* ≥ 1: for *P_h* < 1, 'bad' eigenvalues again cause trouble.
- Replacing the Dirichlet condition by a Neumann condition on the outflow boundary leads to similar computational results.

Conclusions

- Linear algebra can be used to give a useful insight into convergence of two-grid iteration.
- We have obtained bounds on the multigrid convergence factor for a problem with semiperiodic boundary conditions.
- Boundary effects associated with a Dirichlet condition on the inflow boundary appear to be transient.
- Semiperiodic analysis gives an accurate description of MG behaviour for the full Dirichlet problem.