Preconditioning for Data Assimilation Problems

Alison Ramage*, Kirsty Brown*, Igor Gejadze†

Department of Mathematics and Statistics, University of Strathclyde
 † IRSTEA, Montpelier, France

Data assimilation

- Data assimilation is a technique for combining information such as observational and background data with numerical models to obtain the best estimate of state of a system (initial condition).
- Numerical weather prediction is essentially an IVP: given initial conditions, forecast atmospheric evolution.
- Other application areas include hydrology, oceanography, environmental science, data analytics, sensor networks...
- Variational assimilation is used to find the optimal analysis that minimises a specific cost function.

Motivation

 $\hbox{$\bigcirc$} \mathsf{Getty} \mathsf{\ Images}$

Four-dimensional Variational Assimilation (4D-Var)

4D-Var aims to find the solution of a numerical forecast model that best fits sequences of observations distributed in space over a finite time interval.

Minimise cost function

$$J(\mathbf{v}_0) = (\mathbf{v}_0 - \mathbf{v}_0^B)^T B^{-1} (\mathbf{v}_0 - \mathbf{v}_0^B) + \sum_{i=0}^n (\mathcal{H}(\mathbf{v}_i) - \mathbf{y}_i)^T R^{-1} (\mathcal{H}(\mathbf{v}_i) - \mathbf{y}_i)$$

with constraint $\mathbf{v}_i = \mathcal{M}^{i,0}(\mathbf{v}_0)$.

analysis	\mathbf{v}_0
background (short-term forecast)	\mathbf{v}_0^B
observations	y
observation operator	${\cal H}$
model dynamics	$\mathbf{v}_{i+1} = \mathcal{M}(\mathbf{v}_i)$
background error covariance matrix	В
observation error covariance matrix	R

Incremental 4D-Var

• Linearise \mathcal{H} , \mathcal{M} and solve resulting unconstrained optimisation problem iteratively:

$$\left. \bar{H}_{k-1}^{i} \equiv \left. \frac{\partial \mathcal{H}^{i}}{\partial \mathbf{v}} \right|_{\mathbf{v} = \mathbf{v}_{k-1}}, \qquad \left. \bar{M}_{k-1}^{i,0} \equiv \left. \frac{\partial \mathcal{M}^{i,0}}{\partial \mathbf{v}} \right|_{\mathbf{v} = \mathbf{v}_{k-1}} \right.$$

Hessian of the cost function is

$$\mathbb{H} = B^{-1} + \widehat{H}^T \widehat{R}^{-1} \widehat{H}$$

where
$$\widehat{H} = [(\overline{H}^0)^T, (\overline{H}^1 \overline{M}^{1,0})^T, \dots, (\overline{H}^N \overline{M}^{N,0})^T]^T$$

 $\widehat{R} = \text{bldiag}(R_i), \quad i = 1, \dots, N.$

Cannot store

 ■ as a matrix: action of applying
 ■ to a vector is available, but expensive (involves both forward and backward model solves).

Hessian system

Hessian linear system (within a Gauss-Newton method):

$$\mathbb{H}(\mathbf{u}_k)\delta\mathbf{u}_k=G(\mathbf{u}_k)$$

 Solve using Preconditioned Conjugate Gradient iteration (needs only Hv).

Hessian system

Hessian linear system (within a Gauss-Newton method):

$$\mathbb{H}(\mathbf{u}_k)\delta\mathbf{u}_k=G(\mathbf{u}_k)$$

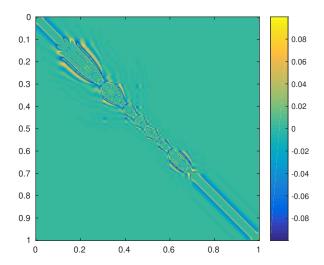
- Solve using Preconditioned Conjugate Gradient iteration (needs only ℍv).
- Precondition \mathbb{H} based on the background covariance matrix (control variable transform):

$$H = (B^{1/2})^T \mathbb{H} B^{1/2} = I + (B^{1/2})^T \widehat{H}^T \widehat{R}^{-1} \widehat{H} B^{1/2}$$

• Eigenvalues of H are bounded below by one: more details on the full eigenspectrum can be found in HABEN ET AL. (2011), TABEART ET AL. (2018).

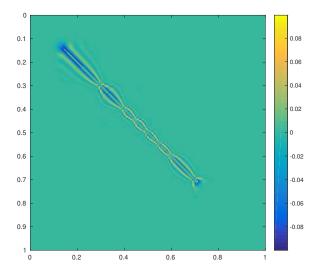
Correlation matrix

 \bullet \mathbb{H}^{-1} (scaled to have unit diagonal)



Preconditioned correlation matrix

• H^{-1} (scaled to have unit diagonal)



Limited-memory approximation

- *H* amenable to limited-memory approximation.
- Find n_e leading eigenvalues and orthonormal eigenvectors using the Lanczos method (needs only $H\mathbf{v}$).
- Construct approximation

$$H \approx I + \sum_{i=1}^{n_e} (\lambda_i - 1) \mathbf{u}_i \mathbf{u}_i^T$$

Limited-memory approximation

- *H* amenable to limited-memory approximation.
- Find n_e leading eigenvalues and orthonormal eigenvectors using the Lanczos method (needs only $H\mathbf{v}$).
- Construct approximation

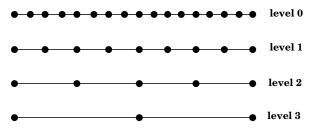
$$H pprox I + \sum_{i=1}^{n_e} (\lambda_i - 1) \mathbf{u}_i \mathbf{u}_i^T$$

- Storage/working with H still expensive.
- IDEA: Build a limited-memory approximation to H^{-1} (or $H^{-1/2}$) for use as a second level preconditioner in PCG.
- Easy to evaluate matrix powers:

$$H^p pprox I + \sum_{i=1}^{n_e} (\lambda_i^p - 1) \mathbf{u}_i \mathbf{u}_i^T$$

Multilevel preconditioning

- Construct a multilevel approximation to H^{-1} based on a sequence of nested grids.
- Discretise evolution equation on a grid with m+1 nodes (level 0) to represent full Hessian H_0 .
- Grid level k contains $m_k = m/2^k + 1$ nodes.



• Identity matrix I_k on grid level k.

Test problem 1

- Model is 1D Burgers' equation.
- 1D uniform grid with 7 sensors located at 0.3, 0.4, 0.45, 0.5, 0.55, 0.6, and 0.7 in [0,1].
- Multilevel preconditioning with four grid levels:

k	0	1	2	3
grid points	401	201	101	51

- Action of Hessian matrix H_0 available on level 0 (finest grid).
- Need grid transfer operators.
- $[M]_{\rightarrow k}$ means "matrix M transferred to grid level k".

Grid transfers with "correction"

- Grid transfer based on piecewise cubic splines:
 - Restriction matrix R_c^f from k = f to k = c.
 - Prolongation matrix P_f^c from k = c to k = f.
- Construct new operators which transfer a matrix between a course grid level c and a fine grid level f.
 - From coarse to fine:

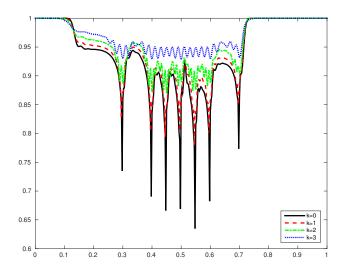
$$[H_c]_{\to f} = P_f^c (H_c - I_c) R_c^f + I_f$$

• From fine to coarse:

$$[H_f]_{\to c} = R_c^f (H_f - I_f) P_f^c + I_c$$

Motivation for multilevel framework

• Diagonal of H^{-1} :



Eigenvalues of Hessian at each level

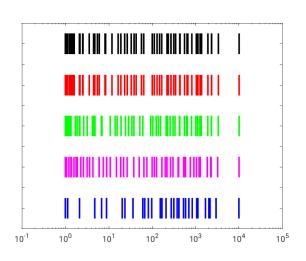
 H_0

$$H_0 = [H_0]_{\rightarrow 0}$$

$$H_1 = [H_0]_{\rightarrow 1}$$

$$H_2 = [H_0]_{\rightarrow 2}$$

$$H_3 = [H_0]_{\rightarrow 3}$$



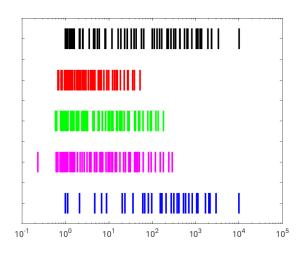
Eigenvalues of preconditioned Hessian at each level

$$[H_1^{-1}]_{\to 0}H_0$$

$$[H_2^{-1}]_{\to 1}H_1$$

$$[H_3^{-1}]_{\to 2}H_2$$

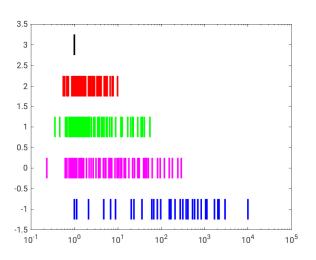
 H_3



Eigenvalues of recursively preconditioned Hessians

$$[\tilde{H}_0^{-1}]_{\to 0}H_0$$

 $[\tilde{H}_1^{-1}]_{\to 0}H_0$
 $[\tilde{H}_2^{-1}]_{\to 1}H_1$
 $[\tilde{H}_3^{-1}]_{\to 2}H_2$
 \tilde{H}_3



Limited memory versions

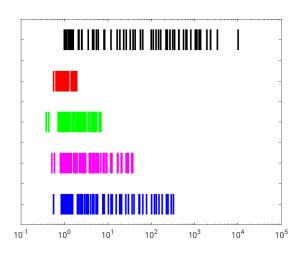
 H_0

32 per level

16 per level

8 per level

4 per level



Outline of multilevel concept

- Step 1. Start on coarsest grid level.
- Step 2. Represent H_0 on grid level k as $H_k = [H_0]_{\rightarrow k}$.
- Step 3. Precondition this to obtain $\tilde{H}_k = P_k^T H_k P_k$, noting that

$$H_k^{-1} = (P_k \tilde{H}_k^{-1/2})(\tilde{H}_k^{-1/2} P_k^T) \equiv \hat{P_k} \hat{P_k}^T.$$

- Step 4. Build a limited memory approximation to $\tilde{H}_k^{-1/2}$ from n_k eigenvalues using the Lanczos method.
- Step 5. Project \hat{P}_k to the level above to be used as preconditioner at the next coarsest level.
- Step 6. Move up one grid level and repeat from step 2.

Preconditioners

- On coarsest grid, level k+1 does not exist so set $P_k = I_k$.
- For other levels, P_k is constructed on level k+1 and applied on level k.
- Preconditioners are constructed recursively:

$$P_k = [\hat{P}_{k+1}]_{\to k} = [P_{k+1}\tilde{H}_{k+1}^{-1/2}]_{\to k}.$$

 At level 0, inverse Hessian approximation will contain eigenvalue information from all levels.

Algorithm in practice

• use $N_e = (n_0, n_1, \dots, n_{k_c})$ eigenvalues at each level

$$\begin{split} [\Lambda,\mathcal{U}] &= \textit{multilevel}(H_0,N_e) \\ \text{for} \quad k = k_c, k_c - 1, \dots, 0 \\ \text{compute by the Lanczos method} \\ & \{\lambda_k^i, U_k^i\}, \ i = 1, \dots, n_k \text{ of } \tilde{H}_{0 \to k} \\ \text{using preconditioner } P_k \\ \text{end} \end{split}$$

storage:

$$\begin{array}{lcl} \Lambda & = & \left[\lambda_{k_c}^1, \dots, \lambda_{k_c}^{n_{k_c}}, \lambda_{k_c-1}^1, \dots, \lambda_{k_c-1}^{n_{k_c-1}}, \dots, \lambda_0^1, \dots, \lambda_0^{n_0} \right], \\ \mathcal{U} & = & \left[U_{k_c}^1, \dots, U_{k_c}^{n_{k_c}}, U_{k_c-1}^1, \dots, U_{k_c-1}^{n_{k_c-1}}, \dots, U_0^1, \dots, U_0^{n_0} \right]. \end{array}$$

Assessing approximation accuracy

Riemannian distance:

$$\delta(A,B) = \|\ln(B^{-1}A)\|_F = \left(\sum_{i=1}^n \ln^2 \lambda_i\right)^{1/2}$$

ullet Compare eigenvalues of H^{-1} and \tilde{H}^{-1} on the finest grid level k=0 using

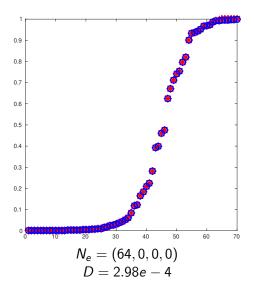
$$D = \frac{\delta(H^{-1}, \tilde{H}^{-1})}{\delta(H^{-1}, I)}$$

Vary number of eigenvalues chosen on each grid level

$$N_e = (n_0, n_1, n_2, n_3)$$

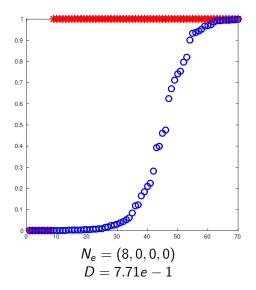
Eigenvalues of the inverse Hessian

• Exact (blue circles), approximated (red stars)



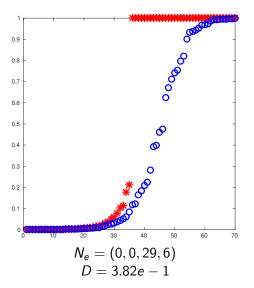
Eigenvalues of the inverse Hessian

• Exact (blue circles), approximated (red stars)



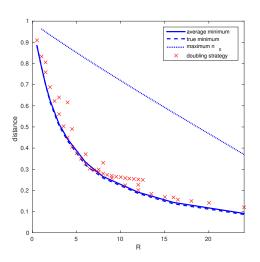
Eigenvalues of the inverse Hessian

• Exact (blue circles), approximated (red stars)



Fixed memory ratio

• Fixed memory ratio $R = \sum_{k=0}^{k_c} \frac{n_k}{2^k}$

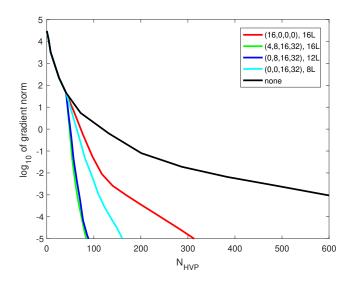


PCG iteration for one Newton step

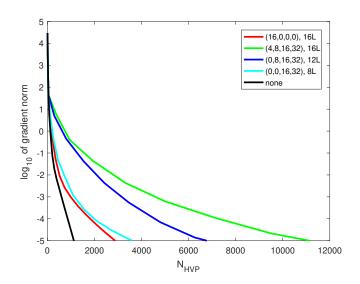
- measurement units
 - memory: length of vector on finest grid
 - cost: cost of HVP on finest grid HVP

Preconditioner	# CG iterations	storage	solve cost
none	57	0 L	57 HVP
MG(400,0,0,0)	1	400 L	402 HVP
MG(4,8,16,32)	4	16 L	34 HVP
MG(0,8,16,32)	5	12 L	14 HVP
MG(0,0,16,32)	8	8 L	10 HVP

Solve cost measured in number of HVPs



Cost including building preconditioner



Hessian decomposition

 partition domain into S subregions and compute local Hessians H^s such that

$$H(\mathbf{v}) = I + \sum_{s=1}^{S} (H^{s}(\mathbf{v}) - I)$$

- computational advantages of local Hessians:
 - fewer eigenvalues required for limited-memory approximation;
 - could be computed in parallel;
 - could use local rather than global models;
 - could be calculated at a coarser grid level.

Practical approach

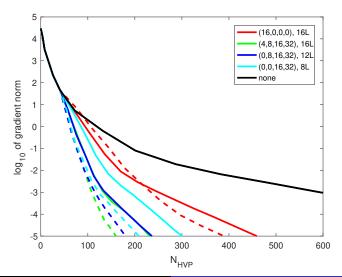
① Compute limited-memory approximations to local sensor-based Hessians on level k using n_k eigenpairs:

$$H_k^s \approx I + \sum_{i=1}^{n_k} (\lambda_i - 1) \mathbf{u}_i \mathbf{u}_i^T$$

- 2 Assemble these to form H_a .
- **3** Apply multilevel to H_a based on a fixed N_e .
- Advantage:
 - Local Hessians cheaper to compute.
- Disadvantages:
 - Additional user-specified parameter(s) k, n_k needed.
 - More memory required as local Hessians must also be stored.
- Can use multilevel approximation of local Hessians to reduce memory costs.

Cost including building preconditioner

• Local Hessians with 8 eigenvalues at level 0 (solid lines) or level 1 (dashed lines).

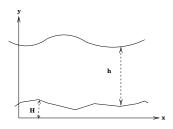


Test problem 2

• Model is 1D shallow water equations for velocity u and geopotential $\phi = gh$.

$$\frac{Du}{Dt} + \frac{\partial \phi}{\partial x} = -g \frac{\partial H}{\partial x}$$

$$\frac{D(\ln \phi)}{Dt} + \frac{\partial u}{\partial x} = 0$$



- Uniformly spaced sensors.
- Four grid multilevel structure as before.

PCG iteration for one Newton step

 Background covariance matrix B constructed using a Laplacian correlation function.

	# PCG iterations			
Preconditioner	n = 400	n = 800	n = 1600	n = 3200
none	308	1302	5,879	25,085
MG(4,0,0,0)	38	34	34	47
MG(1,2,4,8)	31	29	28	37
MG(0,2,4,16)	27	26	24	32
MG(0,0,8,16)	26	25	24	30
MG(0,0,0,32)	23	19	19	24

PCG iteration for one Newton step

 Background covariance matrix B constructed using a Second-Order Auto-Regressive (SOAR) correlation function.

	# PCG iterations			
Preconditioner	n = 400	n = 800	n = 1600	n = 3200
none	509	2,277	10,453	43,915
MG(4,0,0,0)	39	35	35	44
MG(1,2,4,8)	28	26	26	34
MG(0,2,4,16)	23	22	21	27
MG(0,0,8,16)	22	21	20	26
MG(0,0,0,32)	19	16	15	20

Concluding remarks

- Algorithm based solely on repeated use of Lanczos at each level (for limited-memory approximations).
- Difficult to identify the correct number of eigenvalues to use at each level: analysis required.
- Full algorithm may not be not practical, but we have developed practical implementations based on Hessian decompositions.
- Also works well for other configurations (e.g. moving sensors, different initial conditions).
- Potential for extension to higher dimensions and other applications.

Brown, Gejadze & Ramage, A Multilevel Approach for Computing the Limited-Memory Hessian and its Inverse in Variational Data Assimilation, SIAM Journal on Scientific Computing 38(5), 2016.