A Multilevel Approximation of the Inverse Hessian in 4D-Var

Alison Ramage*, Kirsty Brown*, Igor Gejadze[†]

* Department of Mathematics and Statistics, University of Strathclyde

† IRSTEA, Montpelier, France

Data assimilation

- Data assimilation is a statistical technique for combining observational data and background information (short-range forecasts) to obtain the best estimate of state of a system.
- Application areas include numerical weather prediction, hydrology, oceanography, environmental science, data analytics, sensor networks. . .
- Four dimensional data assimilation (4D-Var) aims to find the solution of a numerical forecast model that best fits sequences of observations distributed in space over a finite time interval.

Motivation

Motivation

Four-dimensional Variational Assimilation (4D-Var)

Minimise cost function

$$J(\mathbf{v}) = \frac{1}{2} [\mathbf{v} - \mathbf{v}^b]^T B^{-1} [\mathbf{v} - \mathbf{v}^b]$$

$$+ \frac{1}{2} \sum_{i=0}^{N} [\mathcal{H}_i(\mathcal{M}_{i,0}(\mathbf{v})) - \mathbf{y}_i^o]^T R_i^{-1} [\mathcal{H}_i(\mathcal{M}_{i,0}(\mathbf{v})) - \mathbf{y}_i^o]$$

analysis \mathbf{v} , background \mathbf{v}^b , observations \mathbf{y}^o background and observation error covariance matrices B, R_i observation operators \mathcal{H}_i

model propagator

$$\mathcal{M}_{i,0} \equiv \mathcal{M}(t_i,t_0) \equiv \prod_{k=1}^{1} \mathcal{M}(t_k,t_{k-1})$$

Incremental 4D-Var

- Iterative minimisation of a sequence of quadratic cost functions $J^k(\delta \mathbf{v}^k)$.
- Linearise \mathcal{H}_i , $\mathcal{M}_{i,0}$ about reference state \mathbf{v}^{k-1} :

$$\mathcal{H}_{i}(\mathbf{v}^{k-1} + \delta \mathbf{v}^{k}) \simeq \mathcal{H}_{i}(\mathbf{v}^{k-1}) + H_{i}^{k-1} \delta \mathbf{v}^{k}$$

$$\mathcal{M}_{i,0}(\mathbf{v}^{k-1} + \delta \mathbf{v}^{k}) \simeq \mathcal{M}_{i,0}(\mathbf{v}^{k-1}) + M_{i,0}^{k-1} \delta \mathbf{v}^{k}$$

• Tangent linear (Jacobian) matrices

$$H_i^{k-1} \equiv \frac{\partial \mathcal{H}_i}{\partial \mathbf{v}} \bigg|_{\mathbf{v} = \mathbf{v}^{k-1}}, \qquad M_{i,0}^{k-1} \equiv \frac{\partial \mathcal{M}_{i,0}}{\partial \mathbf{v}} \bigg|_{\mathbf{v} = \mathbf{v}^{k-1}}$$

Hessian matrix

Hessian of the cost function

$$\mathbb{H} = B^{-1} + \widehat{H}^T \widehat{R}^{-1} \widehat{H}$$

where

$$\widehat{H} = [H_0^T, (H_1 M_{1,0})^T, \dots, (H_N M_{N,0})^T]^T$$

$$\widehat{R} = \text{bldiag}(R_i), \quad i = 1, \dots, N$$

Hessian matrix

Hessian of the cost function

$$\mathbb{H} = B^{-1} + \widehat{H}^T \widehat{R}^{-1} \widehat{H}$$

where

$$\widehat{H} = [H_0^T, (H_1 M_{1,0})^T, \dots, (H_N M_{N,0})^T]^T$$

 $\widehat{R} = \text{bldiag}(R_i), i = 1, \dots, N$

- Cannot store ℍ as a matrix.

Hessian matrix

Hessian of the cost function

$$\mathbb{H} = B^{-1} + \widehat{H}^T \widehat{R}^{-1} \widehat{H}$$

where

$$\widehat{H} = [H_0^T, (H_1 M_{1,0})^T, \dots, (H_N M_{N,0})^T]^T$$

$$\widehat{R} = \text{bldiag}(R_i), \quad i = 1, \dots, N$$

- Cannot store ℍ as a matrix.
- AIM: construct a limited-memory approximation to \mathbb{H}^{-1} using only matrix-vector multiplication.

Approximating the inverse Hessian

Why approximate \mathbb{H}^{-1} ?

- \mathbb{H}^{-1} represents an approximation of the Posterior Covariance Matrix (PCM).
- The PCM can be used to find confidence intervals and carry out a posteriori error analysis.
- $\mathbb{H}^{-1/2}$ can be used in ensemble forecasting.
- \mathbb{H}^{-1} , $\mathbb{H}^{-1/2}$ can be used for preconditioning as part of a Gauss-Newton method (focus of this talk).

Hessian system

- Hessian $\mathbb{H} = B^{-1} + \widehat{H}^T \widehat{R}^{-1} \widehat{H}$
- Linear system (within a Gauss-Newton method):

$$\mathbb{H}(\mathbf{v}^{k-1})\delta\mathbf{v}^k = G(\mathbf{v}^{k-1})$$

 Solve using Preconditioned Conjugate Gradient iteration (needs only Hv).

Hessian system

- Hessian $\mathbb{H} = B^{-1} + \widehat{H}^T \widehat{R}^{-1} \widehat{H}$
- Linear system (within a Gauss-Newton method):

$$\mathbb{H}(\mathbf{v}^{k-1})\delta\mathbf{v}^k = G(\mathbf{v}^{k-1})$$

- Solve using Preconditioned Conjugate Gradient iteration (needs only ℍv).
- Precondition based on the background covariance matrix:

$$H = (B^{1/2})^T \mathbb{H} B^{1/2} = I + (B^{1/2})^T \widehat{H}^T \widehat{R}^{-1} \widehat{H} B^{1/2}$$

 Eigenvalues of H are more clustered, in a narrow band above one, with few eigenvalues distinct enough to contribute noticeably to the Hessian value.

HABEN ET AL. (2011,2014)

Limited-memory approximation

- Find n_e leading eigenvalues and orthonormal eigenvectors using the Lanczos method (needs only $H\mathbf{v}$).
- Construct approximation

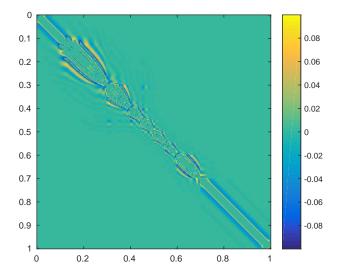
$$H \approx I + \sum_{i=1}^{n_e} (\lambda_i - 1) \mathbf{u}_i \mathbf{u}_i^T$$

• Easy to evaluate matrix powers:

$$H^p pprox I + \sum_{i=1}^{n_e} (\lambda_i^p - 1) \mathbf{u}_i \mathbf{u}_i^T$$

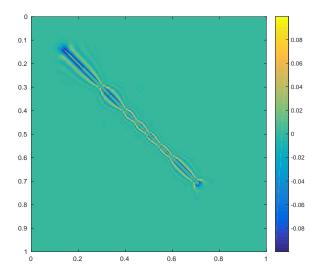
Correlation matrix (1D Burgers' equation example)

• \mathbb{H}^{-1} (scaled to have unit diagonal)



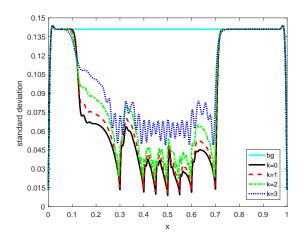
Preconditioned correlation matrix

• H^{-1} (after first level preconditioning)



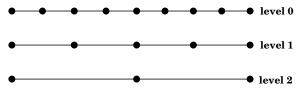
Second level preconditioning

- Storage/working with *H* still expensive.
- Introduce second level preconditioning: use a multilevel strategy.



Multilevel preconditioning

- IDEA: Construct a multilevel approximation to H^{-1} based on a sequence of nested grids.
- Discretise evolution equation on a grid with m+1 nodes (level 0) to represent Hessian H_0
- Grid level k contains $m_k = m/2^k + 1$ nodes.



• Identity matrix I_k on grid level k.

Grid transfers with "correction"

- Grid transfer based on piecewise cubic splines:
 - Restriction matrix R_c^f from k = f to k = c.
 - Prolongation matrix P_f^c from k = c to k = f.
- Construct new operators which transfer a matrix between a course grid level c and a fine grid level f.
 - From coarse to fine:

$$A_{c\to f} = P_f^c (A_c - I_c) R_c^f + I_f$$

• From fine to coarse:

$$A_{f\to c} = R_c^f (A_f - I_f) P_f^c + I_c$$

Outline of multilevel concept

Given a symmetric positive definite operator H_0 available on the finest grid level in matrix-vector product form:

- represent H_0 on the coarsest grid level;
- use a local preconditioner to improve the eigenvalue distribution;
- build a limited memory approximation to its inverse using the Lanczos method (which forms the basis of the local preconditioner at the next coarsest level);
- move up one grid level and repeat.

Multilevel algorithm for H^{-1}

• Represent H_0 at a given level (k, say):

$$H_{0\to k} = R_k^0 (H_0 - I_0) P_0^k + I_k$$

• Precondition to improve eigenvalue spectrum:

$$\tilde{H}_{0 \to k} = (B_k^{k+1})^T H_{0 \to k} B_k^{k+1}$$

- Find n_k eigenvalues/eigenvectors of $\tilde{H}_{0\to k}$ using the Lanczos method.
- Approximate $\tilde{H}_{0\to k}^{-1/2}$:

$$\tilde{H}_{0 \to k}^{-1/2} pprox I_k + \sum_{i=1}^{n_k} \left(\frac{1}{\sqrt{\lambda_i}} - 1 \right) \mathbf{u}_i \mathbf{u}_i^T$$

Preconditioners

- Construct B_k^{k+1} on level k+1, apply on level k.
- On coarsest grid, level k + 1 does not exist so set $B_k^{k+1} = I_k$.
- For other levels, construct preconditioners recursively:

$$B_k^{k+1} = \left[B_{k+1}^{k+2} \tilde{H}_{0 \to k+1}^{-1/2} \right]_{\to k}, \quad B_k^{k+1}^{T} = \left[\tilde{H}_{0 \to k+1}^{-1/2} B_{k+1}^{k+2}^{T} \right]_{\to k}$$

• Square brackets represent projection to the correct grid level using "corrected" grid transfers, e.g.

$$[A_{k+1}]_{\to k} = R_k^{k+1} (A_{k+1} - I_{k+1}) P_{k+1}^k + I_k$$

Algorithm

• use $N_e = (n_0, n_1, \dots, n_c)$ eigenvalues at each level

$$\begin{split} [\Lambda,\mathcal{U}] &= \textit{mlevd}(H_0,N_e) \\ \text{for} \quad k = k_c, k_c - 1, \dots, 0 \\ \text{compute by the Lanczos method} \\ \text{and store in memory} \\ \{\lambda_k^i, U_k^i\}, \ i = 1, \dots, n_k \text{ of } \tilde{H}_{0 \to k} \\ \text{using preconditioner } B_k^{k+1} \\ \text{end} \end{split}$$

storage:

$$\begin{array}{lcl} \Lambda & = & \left[\lambda_{k_c}^1, \dots, \lambda_{k_c}^{n_{k_c}}, \lambda_{k_c-1}^1, \dots, \lambda_{k_c-1}^{n_{k_c-1}}, \dots, \lambda_0^1, \dots, \lambda_0^{n_0}\right], \\ \mathcal{U} & = & \left[U_{k_c}^1, \dots, U_{k_c}^{n_{k_c}}, U_{k_c-1}^1, \dots, U_{k_c-1}^{n_{k_c-1}}, \dots, U_0^1, \dots, U_0^{n_0}\right]. \end{array}$$

Example

Test using 1D Burgers' equation with initial condition

$$f(x) = 0.1 + 0.35 \left[1 + \sin \left(4\pi x + \frac{3\pi}{2} \right) \right], \qquad 0 < x < 1$$

- 1D uniform grid with 7 sensors located at 0.3, 0.4, 0.45, 0.5, 0.55, 0.6, and 0.7 in [0,1].
- Multilevel preconditioning with four grid levels:

k	0	1	2	3
grid points	401	201	101	51

Assessing approximation accuracy

Riemannian distance:

$$\delta(A,B) = \|\ln(B^{-1}A)\|_F = \left(\sum_{i=1}^n \ln^2 \lambda_i\right)^{1/2}$$

ullet Compare eigenvalues of H^{-1} and \tilde{H}^{-1} on the finest grid level k=0 using

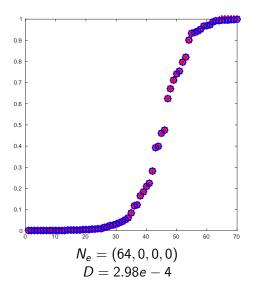
$$D = \frac{\delta(H^{-1}, \tilde{H}^{-1})}{\delta(H^{-1}, I)}$$

• Vary number of eigenvalues chosen on each grid level

$$N_e = (n_0, n_1, n_2, n_3)$$

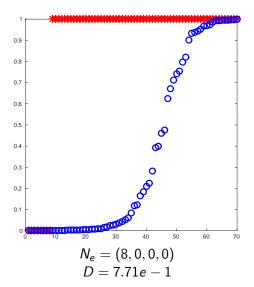
Eigenvalues of the inverse Hessian

• Exact (blue circles), approximated (red stars)



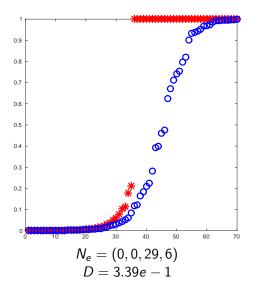
Eigenvalues of the inverse Hessian

• Exact (blue circles), approximated (red stars)



Eigenvalues of the inverse Hessian

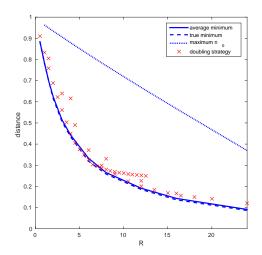
• Exact (blue circles), approximated (red stars)



Fixed memory ratio

ullet Fixed memory ratio R

$$R = \sum_{k=0}^{k_c} \frac{n_k}{2^k}$$

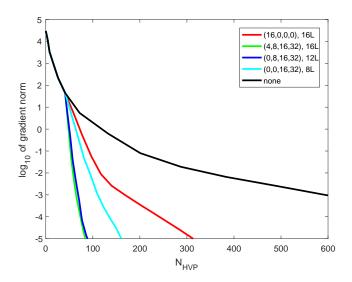


PCG iteration for one Newton step

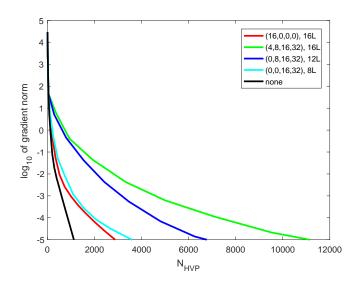
- measurement units
 - memory: length of vector on finest grid
 - cost: cost of HVP on finest grid HVF

Preconditioner	# CG iterations	storage	cost
none	57	0 L	57 HVP
MG(400,0,0,0)	1	400 L	402 HVP
MG(4,8,16,32)	4	16 L	34 HVP
MG(0,8,16,32)	5	12 L	14 HVP
MG(0,0,16,32)	8	8 L	10 HVP

Solve cost measured in number of HVPs



Cost including building preconditioner



Hessian decomposition

partition domain into subregions and compute local Hessians
 H^s such that

$$H(\mathbf{v}) = I + \sum_{s=1}^{S} (H^s(\mathbf{v}) - I)$$

- fewer eigenvalues required for limited-memory representation of each H^s
- local Hessians can be computed
 - in parallel;
 - using local rather than global models;
 - at any grid level:

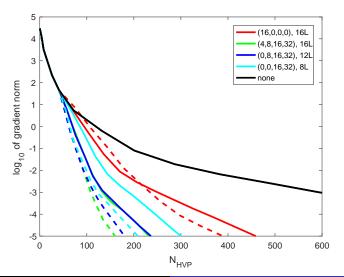
$$H_l(\mathbf{v}_l) = I_l + \sum_{s=1}^{S} (H_l^s(\mathbf{v}_l) - I_l)$$

Practical approach: Version 1

- Compute limited-memory approximations to local sensor-based Hessians on level I using n_I eigenpairs.
- Assemble these to form H_a , then apply mleved to H_a based on a fixed N_e .
- Local Hessians cheaper to compute.
- Additional user-specified parameter(s) I, n_I needed.
- More memory required as local Hessians must also be stored.

Version 1: cost including building preconditioner

 Local Hessians with 8 eigenvalues at level 0 (solid lines) or level 1 (dashed lines).

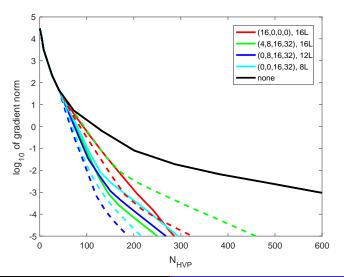


Practical approach: version 2

- Can reduce memory requirements further by using a multilevel approximation of each limited-memory local Hessian on level I using n_I eigenpairs.
- Approximate local Hessians by applying mlevd to local inverse Hessians based on N_e^I .
- Assemble these to form a reduced-memory assembled Hessian H_a^{rm} .
- Use mlevd again on H_a^{rm} based on N_e .

Version 2: cost including building preconditioner

 Local Hessians with 8 eigenvalues at level 0 (solid lines) or level 1 (dashed lines) with (8,4,0,0) MG approx.



Conclusions and next steps

- Similar results with other configurations (e.g. moving sensors, different initial conditions).
- Multilevel preconditioning looks promising for constructing a good limited-memory approximation to H^{-1} .
- The balance between restrictions on memory/cost limitations may vary between particular applications.
- Identifying globally appropriate values for (n_0, n_1, n_2, n_3) and other parameters is tricky, but "rules of thumb" can be developed.
- Future investigations:
 - problems in higher dimensions;
 - extension to other operators;
 - applications for other sensor systems.

It is sometimes nice in Scotland...

