#### Efficient iterative solvers for director-based models of LCDs

Alison Ramage Mathematics and Statistics University of Strathclyde Glasgow, Scotland





Eugene C. Gartland, Jr. Mathematics Kent State University Ohio, USA

# **Liquid Crystal Displays**



Iain W. Stewart (2004)

### **Modelling: Director-based Models**



- director: average direction of molecular alignment unit vector  $\mathbf{n} = (\cos \theta \cos \phi, \cos \theta \sin \phi, \sin \theta)$
- order parameter: measure of orientational order

$$S = \frac{1}{2} < 3\cos^2\theta_m - 1 >$$

### **Finding Equilibrium Configurations**

minimise the free energy

$$\mathcal{F} = \int_{V} F_{bulk}(\theta, \phi, \nabla \theta, \nabla \phi) + \int_{\mathcal{S}} F_{surface}(\theta, \phi) \, d\mathcal{S}$$

 $F_{bulk} = F_{elastic} + F_{electrostatic}$ 

• solutions with least energy are physically relevant

 if fixed boundary conditions are applied, surface energy term can be ignored

### **Model Problem: Twisted Nematic Device**

• two parallel plates distance *d* apart



• strong anchoring parallel to plate surfaces (n fixed)

• rotate one plate through  $\pi/2$  radians

• electric field  $\mathbf{E} = (0, 0, E(z))$ , voltage V

## **Equilibrium Equations**

- director  $\mathbf{n} = (u, v, w)$ , electric potential U:  $E = \frac{dU}{dz}$
- unknowns u, v, w, U, constraint  $|\mathbf{n}| = 1$
- nondimensionalised equilibrium equations on  $z \in [0, 1]$

$$F = \frac{1}{2} \int_0^1 \left[ (u_z^2 + v_z^2 + w_z^2) - \alpha^2 \pi^2 (\beta + w^2) U_z^2 \right] dz$$

• dimensionless parameters

$$\alpha^2 = \frac{\epsilon_0 \epsilon_a V^2}{K\pi^2}, \qquad \beta = \frac{\epsilon_\perp}{\epsilon_a}$$

• boundary conditions:

at z = 0:  $\mathbf{n} = (1, 0, 0)$ , at z = 1:  $\mathbf{n} = (0, 1, 0)$ 

#### **Off State**



SPDEC, May 2014 – p. 7/2

#### **On State**



SPDEC. May 2014 – p. 8/2

### **Critical Voltage**

• switching occurs at

$$V_c = \frac{\pi}{2} \sqrt{\frac{3K}{\epsilon_0 \epsilon_a}}$$



### **Constrained Minimisation I**

- grid of N + 1 points  $z_k$  a distance  $\Delta z$  apart, n = N 1 unknowns for each variable
- discrete free energy (linear finite elements)

$$F \simeq \frac{\Delta z}{2} f(u_1, \dots, u_n, v_1, \dots, v_n, w_1, \dots, w_n, U_1, \dots, U_n)$$

• minimise F subject to pointwise constraint

$$u_j^2 + v_j^2 + w_j^2 = 1, \qquad j = 1, \dots, n$$

 constraints are applied via Lagrange multipliers: minimise

$$G = \frac{\Delta z}{2} \begin{bmatrix} f & -\lambda_1 (u_1^2 + v_1^2 + w_1^2 - 1) - \dots \\ \lambda_n (u_n^2 + v_n^2 + w_n^2 - 1) \end{bmatrix}$$

#### **Constrained Minimisation II**

• solve  $\nabla \mathbf{G}(\mathbf{x}) = \mathbf{0}$  for  $\mathbf{x} = [\mathbf{u}, \mathbf{v}, \mathbf{w}, \lambda, \mathbf{U}]$ N + 1 gridpoints  $\Rightarrow n = N - 1$  unknowns

use Newton's method: solve

$$\nabla^2 \mathbf{G}(\mathbf{x}_j) \cdot \delta \mathbf{x}_j = -\nabla \mathbf{G}(\mathbf{x}_j)$$

•  $5n \times 5n$  coefficient matrix is Hessian  $\nabla^2 \mathbf{G}(\mathbf{x})$ 

$$\nabla^2 \mathbf{G} = \begin{bmatrix} \nabla_{\mathbf{nn}}^2 \mathbf{G} & \nabla_{\mathbf{n\lambda}}^2 \mathbf{G} & \nabla_{\mathbf{nU}}^2 \mathbf{G} \end{bmatrix}$$
$$\nabla^2 \mathbf{G} = \begin{bmatrix} \nabla_{\lambda \mathbf{n}}^2 \mathbf{G} & \nabla_{\lambda \mathbf{n}}^2 \mathbf{G} & \nabla_{\lambda \mathbf{n}}^2 \mathbf{G} & \nabla_{\lambda \mathbf{n}}^2 \mathbf{G} \\ \nabla_{\lambda \mathbf{n}}^2 \mathbf{G} & \nabla_{\lambda \mathbf{n}}^2 \mathbf{G} & \nabla_{\mathbf{U} \mathbf{n}}^2 \mathbf{G} \end{bmatrix}$$

### **Hessian Components 1**

•  $\nabla^2_{\mathbf{nn}}\mathbf{G} = A$ 

$$A = \begin{bmatrix} \nabla_{\mathbf{u}\mathbf{u}}^2 \mathbf{G} & 0 & 0\\ 0 & \nabla_{\mathbf{v}\mathbf{v}}^2 \mathbf{G} & 0\\ 0 & 0 & \nabla_{\mathbf{w}\mathbf{w}}^2 \mathbf{G} \end{bmatrix}$$

A is positive definite iff  $V < V_c$ 

• 
$$\nabla^2_{\mathbf{U}\mathbf{U}}\mathbf{G} = -C$$

 ${\it C}$  is tridiagonal and positive definite

•  $\nabla^2_{\mathbf{n}\mathbf{U}}\mathbf{G} = D$ 

$$D = \frac{\alpha^2 \pi^2}{\Delta z} \begin{bmatrix} 0\\ 0\\ D_w \end{bmatrix}$$

D has complex eigenvalues in conjugate pairs

### **Hessian Components 2**

•  $\nabla^2_{\mathbf{n}\lambda}\mathbf{G} = B$ 



•  $B^T B = \Delta z^2 I_n$  when constraints are satisfied

•  $\operatorname{rank}(B) = \operatorname{rank}(B^T) = \operatorname{rank}(BB^T) = \operatorname{rank}(B^TB) = n$ 

### **Full Newton System**

$$\begin{bmatrix} A & B & D \\ B^{T} & 0 & 0 \\ D^{T} & 0 & -C \end{bmatrix} \begin{bmatrix} \delta \mathbf{n} \\ \delta \lambda \\ \delta \mathbf{U} \end{bmatrix} = \begin{bmatrix} -\nabla_{\mathbf{n}} G \\ -\nabla_{\lambda} G \\ -\nabla_{\mathbf{U}} G \end{bmatrix}$$

saddle-point problem

- iteration: Newton (outer), MINRES (inner)
- for symmetric eigenvalue intervals

 $[-\lambda_M, -\lambda_m] \cup [\lambda_m, \lambda_M]$ 

no. of MINRES iterations required for convergence is

$$k \propto rac{\lambda_M}{\lambda_m}$$

## **Minres iterations for full system**

|       |       | off state ( | $(\alpha = 0.5\alpha_c)$ | on state ( | $\alpha = 1.5 \alpha_c$ ) |
|-------|-------|-------------|--------------------------|------------|---------------------------|
| N     | d     | first step  | last step                | first step | last step                 |
| 32    | 155   | 226         | 499                      | 291        | 691                       |
| 64    | 315   | 728         | 2,004                    | 1,172      | 3,571                     |
| 128   | 635   | 2,680       | 8,528                    | 4,106      | 17,498                    |
| 256   | 1,275 | 10,253      | 41,666                   | 15,727     | 85,784                    |
| 512   | 2,555 | 38,809      | 194,753                  | 57,499     | >200,000                  |
| 1,024 | 5,115 | 150,376     | >200,000                 | >200,000   | >200,000                  |

• doubling N quadruples iteration count

### **Nullspace Method I**

- $A\delta \mathbf{n} + B\delta\lambda + D\delta \mathbf{U} = -\nabla_{\mathbf{n}}G \tag{1}$ 
  - $B^T \delta \mathbf{n} = -\nabla_\lambda G \tag{2}$
  - $D^T \delta \mathbf{n} C \delta \mathbf{U} = -\nabla_{\mathbf{U}} G \tag{3}$
- write solution of (2) as  $\delta \mathbf{n} = \overline{\delta \mathbf{n}} + Z \mathbf{z}$ 
  - nullspace matrix  $Z \in \mathbb{R}^{3n \times 2n}$  with  $B^T Z = Z^T B = 0$
  - $Z\mathbf{z} \in \mathbb{R}^{2n}$  lies in nullspace of  $B^T$
  - particular solution satisfies  $B^T \widehat{\delta \mathbf{n}} = -\nabla_{\lambda} G$
- find  $\widehat{\delta \mathbf{n}}$  via  $\widehat{\delta \mathbf{n}} = -B(B^T B)^{-1} \nabla_{\lambda} G$

### **Nullspace Method II**

• reduced system:

$$\begin{bmatrix} Z^T A Z & Z^T D \\ D^T Z & -C \end{bmatrix} \begin{bmatrix} \mathbf{z} \\ \delta \mathbf{U} \end{bmatrix} = \begin{bmatrix} -Z^T (\nabla_{\mathbf{n}} G + A \widehat{\delta \mathbf{n}}) \\ -\nabla_{\mathbf{U}} G - D^T \widehat{\delta \mathbf{n}} \end{bmatrix}$$

recover full solution from

$$\widehat{\delta \mathbf{n}} = -B(B^T B)^{-1} \nabla_{\lambda} G$$
  

$$\delta \mathbf{n} = Z \mathbf{z} + \widehat{\delta \mathbf{n}}$$
  

$$\delta \lambda = (B^T B)^{-1} B^T (-\nabla_{\mathbf{n}} G - A \delta \mathbf{n} - D \delta \mathbf{U})$$

• here  $B^T B$  is diagonal so solve is cheap

# Nullspace of $B^T$

- use eigenvectors of orthogonal projection  $I \mathbf{n}_j \otimes \mathbf{n}_j$
- construct orthonormalised vectors

$$\mathbf{l}_{j} = \frac{1}{\sqrt{u_{j}^{2} + v_{j}^{2}}} \begin{bmatrix} -v_{j} \\ u_{j} \\ 0 \end{bmatrix}, \qquad \mathbf{m}_{j} = \frac{1}{\sqrt{u_{j}^{2} + v_{j}^{2}}} \begin{bmatrix} -u_{j}w_{j} \\ -v_{j}w_{j} \\ u_{j}^{2} + v_{j}^{2} \end{bmatrix}$$

• form nullspace matrix

$$Z = \begin{bmatrix} \mathbf{l}_1 & \mathbf{m}_1 & & \\ & \mathbf{l}_2 & \mathbf{m}_2 & \\ & & \ddots & \\ & & & \mathbf{l}_n & \mathbf{m}_n \end{bmatrix}$$

### **Minres iterations for reduced system**

|       |       | off state ( $\alpha = 0.5 \alpha_c$ ) |           | on state ( | $\alpha = 1.5 \alpha_c$ ) |
|-------|-------|---------------------------------------|-----------|------------|---------------------------|
| N     | d     | first step                            | last step | first step | last step                 |
| 32    | 93    | 59                                    | 128       | 90         | 172                       |
| 64    | 189   | 187                                   | 418       | 285        | 557                       |
| 128   | 381   | 660                                   | 1,456     | 1,004      | 2,002                     |
| 256   | 765   | 2,562                                 | 5,455     | 3,650      | 7,043                     |
| 512   | 1,533 | 9,983                                 | 21,393    | 13,907     | 26,504                    |
| 1,024 | 3,069 | 41,267                                | 80,778    | 55,563     | 81,821                    |
| 2,048 | 6,141 | 171,385                               | >200,000  | >200,000   | >200,000                  |

• doubling N quadruples iteration count

## Preconditioning

Idea: instead of solving  $\mathcal{H}\mathbf{x} = \mathbf{b}$ , solve

 $\mathcal{P}^{-1}\mathcal{H}\mathbf{x} = \mathcal{P}^{-1}\mathbf{b}$ 

for some preconditioner  $\ensuremath{\mathcal{P}}$ 

Choose  $\mathcal{P}$  so that (i) eigenvalues of  $\mathcal{P}^{-1}\mathcal{H}$  are well clustered (ii)  $\mathcal{P}\mathbf{u} = \mathbf{r}$  is easily solved

Extreme cases:

- $\mathcal{P} = \mathcal{H}$ : good for (i), bad for (ii)
- $\mathcal{P} = I$ : good for (ii), bad for (i)

### **Ideal Block Preconditioner**

- block preconditioner:  $\mathcal{P} = \begin{bmatrix} Z^T A Z & 0 \\ 0 & C \end{bmatrix}$
- preconditioned matrix:

$$\tilde{\mathcal{H}} = \mathcal{P}^{-1/2} \mathcal{H} \mathcal{P}^{-1/2} = \begin{bmatrix} I & M^T \\ M & -I \end{bmatrix}$$
$$M = C^{-1/2} Z^T D (Z^T A Z)^{-1/2}$$

• 3n eigenvalues of  $\tilde{\mathcal{H}}$  are

(i) 1 with multiplicity 
$$n+1$$
  
(ii) -1 with multiplicity 1  
(iii)  $\pm \sqrt{1 + \sigma_k^2}$  for  $k = 1, \dots, n-1$ 

 $\sigma_k \equiv \text{singular value of } M$ 

# **Sample Eigenvalue Plots**

• eigenvalues in two symmetric intervals

$$[-\beta, -1] \cup [1, \beta], \qquad \beta = \sqrt{1 + \sigma_{\max}^2}$$



#### **Estimate of MINRES convergence**





•  $\sigma_{\max}$  is essentially independent of N

### **Iteration Counts**

|        | off state (a | $\alpha = 0.5 \alpha_c$ ) | on state ( $\alpha = 1.5\alpha_c$ ) |           |
|--------|--------------|---------------------------|-------------------------------------|-----------|
| N      | first step   | last step                 | first step                          | last step |
| 32     | 4            | 1                         | 5                                   | 7         |
| 64     | 4            | 1                         | 5                                   | 7         |
| 128    | 4            | 1                         | 5                                   | 7         |
| 256    | 4            | 1                         | 5                                   | 7         |
| 512    | 4            | 1                         | 5                                   | 7         |
| 1,024  | 4            | 1                         | 5                                   | 7         |
| 2,048  | 4            | 1                         | 5                                   | 7         |
| 4,096  | 4            | 1                         | 5                                   | 7         |
| 8,192  | 4            | 1                         | 5                                   | 7         |
| 16,384 | 4            | 1                         | 5                                   | 7         |
| 32,768 | 4            | 1                         | 5                                   | 7         |
| 65,536 | 4            | 1                         | 5                                   | 7         |

#### Non-"ideal" versions?

- Block systems can also be solved iteratively.
- Example: use a fixed number of PCG iterations with AMG preconditioner (HSL\_MI20).

|       | 1 PCG/AMG iteration      |      |                          |      | 3 P(         | CG/AM            | G itera      | tions           |
|-------|--------------------------|------|--------------------------|------|--------------|------------------|--------------|-----------------|
|       | off state                |      | on state                 |      | off state    |                  | on state     |                 |
|       | $(\alpha = 0.5\alpha_c)$ |      | $(\alpha = 1.5\alpha_c)$ |      | <b>(</b> α = | $0.5 \alpha_c$ ) | <b>(</b> α = | $1.5\alpha_c$ ) |
| N     | first                    | last | first                    | last | first        | last             | first        | last            |
| 32    | 6                        | 5    | 7                        | 9    | 4            | 1                | 5            | 7               |
| 128   | 7                        | 6    | 7                        | 9    | 4            | 1                | 5            | 7               |
| 512   | 7                        | 6    | 8                        | 9    | 4            | 1                | 5            | 7               |
| 2,048 | 7                        | 6    | 8                        | 9    | 4            | 2                | 5            | 7               |
| 8,192 | 7                        | 6    | 8                        | 9    | 4            | 2                | 5            | 7               |

### **Summary and other issues**

- Nullspace method plus ideal block preconditioner works very well for this simple 1D director model.
- We have also proposed a modified outer iteration (the Renormalized Newton Method) with n normalised onto the constraint manifold at each iterative step.
- Overall this gives an efficient solution algorithm for repeated solution of liquid crystal director models.
- Nullspace ideas also apply for full 2D and 3D problems.
- Issues remain re how to precondition Z<sup>T</sup>AZ for these more general cases.
- Use of spectrally equivalent preconditioned iteration looks promising.

### **Summary and other issues**

- Nullspace method plus ideal block preconditioner works very well for this simple 1D director model.
- We have also proposed a modified outer iteration (the Renormalized Newton Method) with n normalised onto the constraint manifold at each iterative step.
- Overall this gives an efficient solution algorithm for repeated solution of liquid crystal director models.
- Nullspace ideas also apply for full 2D and 3D problems.
- Issues remain re how to precondition Z<sup>T</sup>AZ for these more general cases.
- Use of spectrally equivalent preconditioned iteration looks promising.

#### THANKS!

# **Computing Time**

elapsed time in seconds (tic/toc)

| N      | full direct      | reduced direct   | ideal block      | ideal constraint |
|--------|------------------|------------------|------------------|------------------|
| 1,024  | <b>9.95e</b> -02 | <b>9.70e</b> -02 | <b>3.48e</b> -01 | <b>3.08e</b> -01 |
| 2,048  | <b>1.42e</b> -01 | <b>1.36e</b> -01 | <b>5.32e</b> -01 | <b>8.35e</b> -01 |
| 4,096  | <b>2.91e</b> -01 | <b>2.79e</b> -01 | <b>1.05e</b> +00 | <b>2.73e</b> +00 |
| 8,192  | <b>6.02e</b> -01 | <b>5.90e</b> -01 | <b>2.20e</b> +00 | <b>9.74e</b> +00 |
| 16,384 | <b>1.42e</b> +00 | <b>1.29e</b> +00 | <b>4.69e</b> +00 | <b>3.80e</b> +01 |
| 32,768 | <b>3.36e</b> +00 | <b>2.75e</b> +00 | <b>9.70e</b> +00 | <b>8.25e</b> +02 |
| 65,536 | <b>9.27e</b> +00 | <b>7.41e</b> +00 | <b>2.53e</b> +01 |                  |