Saddle point problems in liquid crystal modelling

Alison Ramage Dept of Mathematics University of Strathclyde Glasgow, Scotland

Eugene C. Gartland, Jr. Dept of Mathematics Kent State University Ohio, USA

Liquid Crystals

• occur between solid crystal and isotropic liquid states

- may have different equilibrium configurations
- switch between stable states by altering applied voltage, magnetic field, boundary conditions, ...

Liquid Crystal Displays

SIAM Annual Meeting 2009 - p.3/27

Modelling: Director-based models

- director: average direction of molecular alignment unit vector $\mathbf{n} = (\cos \theta \cos \psi, \cos \theta \sin \psi, \sin \theta)$
- order parameter: measure of orientational order

$$S = \frac{1}{2} < 3\cos^2\theta_m - 1 >$$

Finding Equilibrium Configurations

• minimise the free energy density

$$\mathcal{F} = \int_{V} F_{bulk}(\theta, \psi, \nabla \theta, \nabla \psi) + \int_{\mathcal{S}} F_{surface}(\theta, \phi) \, d\mathcal{S}$$

 $F_{bulk} = F_{elastic} + F_{electrostatic}$

- if fixed boundary conditions are applied, surface energy term can be ignored
- solutions with least energy are physically relevant
- use calculus of variations: Euler-Lagrange equations

Model Problem: Twisted Nematic Device

• two parallel plates distance *d* apart

• strong anchoring parallel to plate surfaces (n fixed)

• rotate one plate through $\pi/2$ radians

• electric field $\mathbf{E} = (0, 0, E(z))$, voltage V

Equilibrium Equations 1

• equilibrium equations on $z \in [0, d]$

$$F = \frac{1}{2} \int_0^d \left\{ K \| \nabla \mathbf{n} \|^2 - \epsilon_0 \epsilon_\perp E^2 - \epsilon_0 \epsilon_a (\mathbf{n} \cdot \mathbf{E})^2 \right\} dz$$

- dielectric anisotropy $\epsilon_a = \epsilon_{\parallel} \epsilon_{\perp}$, permittivity of free space ϵ_0
- permittivity of free space ϵ_0
- director $\mathbf{n} = (u, v, w)$, $|\mathbf{n}| = 1$
- constraint applied via Lagrange multipliers λ
- electric potential ϕ : $E = \frac{d\phi}{dz}$
- unknowns u, v, w, ϕ, λ

Alternative Model: Q**-tensor Theory**

• tensor order parameter

$$Q = \sqrt{\frac{3}{2}} S\left(\mathbf{n} \otimes \mathbf{n} - \frac{1}{3}I\right)$$

• symmetric tensor

$$Q = \begin{bmatrix} q_1 & q_2 & q_3 \\ q_2 & q_4 & q_5 \\ q_3 & q_5 & -q_1 - q_4 \end{bmatrix}$$
$$tr(Q) = 0, \qquad tr(Q^2) = S^2$$

• five unknowns q_1, q_2, q_3, q_4, q_5

Equilibrium Equations 2

• nondimensionalised equilibrium equations on $z \in [0, 1]$

$$F = \frac{1}{2} \int_0^1 \left[(u_z^2 + v_z^2 + w_z^2) - \alpha^2 \pi^2 (\beta + w^2) \phi_z^2 - \lambda (u^2 + v^2 + w^2 - 1) \right] dz$$

• dimensionless parameters

$$\alpha^2 = \frac{\epsilon_0 \epsilon_a V^2}{K\pi^2}, \qquad \beta = \frac{\epsilon_\perp}{\epsilon_a}$$

• boundary conditions:

at
$$z = 0$$
: $\mathbf{n} = (1, 0, 0)$, at $z = 1$: $\mathbf{n} = (0, 1, 0)$

Off State

Annual Meeting 2009 – p.10/27

STAW

On State

V=1.5 0.9 -V=1.5 1.6 Theta Psi 0.8 -Phi 1.4 0.7 ~ 1.2 0.6 -1 0.5 -0.8 0.6 0.4 ~ 0.4 0.3 0.2 0.2 -0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0.1 -0 00062024

)0024 Annual Meeting 2009 – p.11/27

STAW

Critical Voltage

• switching occurs at

$$V_c = \frac{\pi}{2} \sqrt{\frac{3K}{\epsilon_0 \epsilon_a}}$$

Discrete Free Energy

- grid of N + 1 points z_k a distance Δz apart
- approximate integral by mid-point rule

$$F \simeq \frac{\Delta z}{2} \sum_{k=0}^{N-1} \left\{ \left[\frac{u_{k+1} - u_k}{\Delta z} \right]^2 + \left[\frac{v_{k+1} - v_k}{\Delta z} \right]^2 + \left[\frac{w_{k+1} - w_k}{\Delta z} \right]^2 - \alpha^2 \pi^2 \left(\beta + \left[\frac{w_k^2 + w_{k+1}^2}{2} \right] \right) \left[\frac{\phi_{k+1} - \phi_k}{\Delta z} \right]^2 - \lambda_k \left[\frac{u_k^2 + u_{k+1}^2}{2} + \frac{v_k^2 + v_{k+1}^2}{2} + \frac{w_k^2 + w_{k+1}^2}{2} - 1 \right] \right\}$$

$\frac{\partial F}{\partial u_k}, \frac{\partial F}{\partial v_k}, \frac{\partial F}{\partial w_k}, \frac{\partial F}{\partial \phi_k}, \frac{\partial F}{\partial \lambda_k} \qquad \text{equal to zero}$

• set
$$\frac{\partial F}{\partial u_k}, \frac{\partial F}{\partial v_k}, \frac{\partial F}{\partial w_k}, \frac{\partial F}{\partial \phi_k}, \frac{\partial F}{\partial \lambda_k}$$
 equal to zero

• solve $\nabla \mathbf{F}(\mathbf{x}) = \mathbf{0}$ for $\mathbf{x} = [\mathbf{u}, \mathbf{v}, \mathbf{w}, \phi, \lambda]$ N + 1 gridpoints $\Rightarrow n = N - 1$ unknowns

• set
$$\frac{\partial F}{\partial u_k}, \frac{\partial F}{\partial v_k}, \frac{\partial F}{\partial w_k}, \frac{\partial F}{\partial \phi_k}, \frac{\partial F}{\partial \lambda_k}$$
 equal to zero

- solve $\nabla \mathbf{F}(\mathbf{x}) = \mathbf{0}$ for $\mathbf{x} = [\mathbf{u}, \mathbf{v}, \mathbf{w}, \phi, \lambda]$ N + 1 gridpoints $\Rightarrow n = N - 1$ unknowns
- use Newton's method: solve

$$\nabla^2 \mathbf{F}(\mathbf{x}_j) \cdot \delta \mathbf{x}_j = -\nabla \mathbf{F}(\mathbf{x}_j)$$

• set
$$\frac{\partial F}{\partial u_k}, \frac{\partial F}{\partial v_k}, \frac{\partial F}{\partial w_k}, \frac{\partial F}{\partial \phi_k}, \frac{\partial F}{\partial \lambda_k}$$
 equal to zero

- solve $\nabla \mathbf{F}(\mathbf{x}) = \mathbf{0}$ for $\mathbf{x} = [\mathbf{u}, \mathbf{v}, \mathbf{w}, \phi, \lambda]$ N + 1 gridpoints $\Rightarrow n = N - 1$ unknowns
- use Newton's method: solve

$$\nabla^2 \mathbf{F}(\mathbf{x}_j) \cdot \delta \mathbf{x}_j = -\nabla \mathbf{F}(\mathbf{x}_j)$$

• $5n \times 5n$ coefficient matrix is Hessian $\nabla^2 \mathbf{F}(\mathbf{x}_j)$

$$\nabla^{2}\mathbf{F} = \begin{bmatrix} \nabla^{2}_{\mathbf{n}\mathbf{n}}\mathbf{F} & \nabla^{2}_{\mathbf{n}\phi}\mathbf{F} & \nabla^{2}_{\mathbf{n}\lambda}\mathbf{F} \\ \nabla^{2}_{\phi\mathbf{n}}\mathbf{F} & \nabla^{2}_{\phi\phi}\mathbf{F} & \nabla^{2}_{\phi\lambda}\mathbf{F} \\ \nabla^{2}_{\lambda\mathbf{n}}\mathbf{F} & \nabla^{2}_{\lambda\phi}\mathbf{F} & \nabla^{2}_{\lambda\lambda}\mathbf{F} \end{bmatrix}$$

• matrix notation: $\nabla_{nn}^2 \mathbf{F} = A$

$$A = \begin{bmatrix} \nabla_{uu}^{2} \mathbf{F} & 0 & 0 \\ 0 & \nabla_{vv}^{2} \mathbf{F} & 0 \\ 0 & 0 & \nabla_{ww}^{2} \mathbf{F} \end{bmatrix} = \begin{bmatrix} A_{uu} & 0 & 0 \\ 0 & A_{vv} & 0 \\ 0 & 0 & A_{ww} \end{bmatrix}$$

• A_{uu} , A_{vv} and A_{ww} are $n \times n$ symmetric tridiagonal blocks

• matrix notation: $\nabla_{nn}^2 \mathbf{F} = A$

$$A = \begin{bmatrix} \nabla_{uu}^{2} \mathbf{F} & 0 & 0 \\ 0 & \nabla_{vv}^{2} \mathbf{F} & 0 \\ 0 & 0 & \nabla_{ww}^{2} \mathbf{F} \end{bmatrix} = \begin{bmatrix} A_{uu} & 0 & 0 \\ 0 & A_{vv} & 0 \\ 0 & 0 & A_{ww} \end{bmatrix}$$

• A_{uu} , A_{vv} and A_{ww} are $n \times n$ symmetric tridiagonal blocks

•
$$A_{uu} = A_{vv} = \frac{1}{\Delta z} \operatorname{tri}(-1, 2 - \Delta z^2 \lambda_j, -1)$$

•
$$A_{ww} = \frac{1}{\Delta z} \operatorname{tri}(-1, 2 - \Delta z^2 \lambda_j - \gamma_j, -1)$$

$$\gamma_j = \frac{\alpha^2 \pi^2}{2} [(\phi_{j+1} - \phi_j)^2 + (\phi_j - \phi_{j-1})^2]$$

Eigenvalues of A

- at first Newton step (initial linear ϕ , $\lambda_j = 1$) block matrices are Toeplitz
- find eigenvalues using Fourier analysis

Eigenvalues of A

- at first Newton step (initial linear ϕ , $\lambda_j = 1$) block matrices are Toeplitz
- find eigenvalues using Fourier analysis

σ_{min}(A_{uu}) = σ_{min}(A_{vv}) ≃ Δz(π² − λ₁) > 0 A_{uu} and A_{vv} are initially positive definite
σ_{min}(A_{ww}) ≃ Δz(π²(1 − α²) − λ₁) A_{ww} is initially positive definite iff V < ²/_{√3}V_c

Eigenvalues of A

- at first Newton step (initial linear ϕ , $\lambda_j = 1$) block matrices are Toeplitz
- find eigenvalues using Fourier analysis

 σ_{min}(A_{uu}) = σ_{min}(A_{vv}) ≃ Δz(π² − λ₁) > 0
 A_{uu} and A_{vv} are initially positive definite
 σ_{min}(A_{ww}) ≃ Δz(π²(1 − α²) − λ₁)

 A_{ww} is initially positive definite iff $V < \frac{2}{\sqrt{3}}V_c$

- at subsequent Newton iterations, A_{uu} , A_{vv} , A_{ww} may all be indefinite
- number of negative eigenvalues increases with ${\cal V}$

- matrix notation: $\nabla^2_{\mathbf{n}\lambda}\mathbf{F} = B$
- the $3n \times n$ matrix B has structure

$$B = \Delta z \begin{bmatrix} B_u \\ B_v \\ B_w \end{bmatrix}, \qquad \begin{array}{c} B_u = \operatorname{diag}(\mathbf{u}) \\ B_v = \operatorname{diag}(\mathbf{v}) \\ B_w = \operatorname{diag}(\mathbf{w}) \end{array}$$

• matrix notation: $\nabla^2_{\mathbf{n}\lambda}\mathbf{F} = B$

• the $3n \times n$ matrix B has structure

$$B = \Delta z \begin{bmatrix} B_u \\ B_v \\ B_w \end{bmatrix}, \qquad \begin{array}{c} B_u = \operatorname{diag}(\mathbf{u}) \\ B_v = \operatorname{diag}(\mathbf{v}) \\ B_w = \operatorname{diag}(\mathbf{w}) \end{array}$$

•
$$\operatorname{rank}(B^T) = n$$

- $B^T B = \Delta z^2 I_n$
- information available about basis for nullspace of B^T

- matrix notation: $\nabla^2_{\phi\phi}\mathbf{F} = -C$
- the $n \times n$ matrix C is symmetric and tridiagonal

- matrix notation: $\nabla^2_{\phi\phi} \mathbf{F} = -C$
- the $n \times n$ matrix C is symmetric and tridiagonal

•
$$C = \frac{1}{\Delta z} \operatorname{tri}(-a_{j-\frac{1}{2}}, a_{j-\frac{1}{2}} + a_{j+\frac{1}{2}}, -a_{j+\frac{1}{2}})$$

 $a_{j-\frac{1}{2}} = \alpha^2 \pi^2 (\beta + \frac{1}{2}(w_{j-1}^2 + w_j^2)) > 0$
 $a_{j+\frac{1}{2}} = \alpha^2 \pi^2 (\beta + \frac{1}{2}(w_j^2 + w_{j+1}^2)) > 0$

- matrix notation: $\nabla^2_{\phi\phi} \mathbf{F} = -C$
- the $n \times n$ matrix C is symmetric and tridiagonal

•
$$C = \frac{1}{\Delta z} \operatorname{tri}(-a_{j-\frac{1}{2}}, a_{j-\frac{1}{2}} + a_{j+\frac{1}{2}}, -a_{j+\frac{1}{2}})$$

 $a_{j-\frac{1}{2}} = \alpha^2 \pi^2 (\beta + \frac{1}{2}(w_{j-1}^2 + w_j^2)) > 0$
 $a_{j+\frac{1}{2}} = \alpha^2 \pi^2 (\beta + \frac{1}{2}(w_j^2 + w_{j+1}^2)) > 0$

• diagonally dominant with positive real diagonal entries

C is positive definite

• matrix notation: $\nabla^2_{\mathbf{n}\phi}\mathbf{F} = D$

$$D = \Delta z \begin{bmatrix} 0 \\ 0 \\ \mu D_w \end{bmatrix}, \qquad \mu = \frac{\alpha^2 \pi^2}{\Delta z}$$

• matrix notation: $\nabla^2_{\mathbf{n}\phi}\mathbf{F} = D$

$$D = \Delta z \begin{bmatrix} 0\\ 0\\ \mu D_w \end{bmatrix}, \qquad \mu = \frac{\alpha^2 \pi^2}{\Delta z}$$

• the $n \times n$ matrix D_w is tridiagonal

$$D_w = \texttt{diag}(\mathbf{w})\texttt{tri}(\phi_j - \phi_{j-1}, \phi_{j-1} - 2\phi_j + \phi_{j+1}, \phi_j - \phi_{j+1})$$

• matrix notation: $\nabla^2_{\mathbf{n}\phi}\mathbf{F} = D$

$$D = \Delta z \begin{bmatrix} 0\\ 0\\ \mu D_w \end{bmatrix}, \qquad \mu = \frac{\alpha^2 \pi^2}{\Delta z}$$

• the $n \times n$ matrix D_w is tridiagonal

$$D_w = \operatorname{diag}(\mathbf{w})\operatorname{tri}(\phi_j - \phi_{j-1}, \phi_{j-1} - 2\phi_j + \phi_{j+1}, \phi_j - \phi_{j+1})$$

• D_w has complex eigenvalues (including one zero)

•
$$\operatorname{rank}(D) = n - 1$$

Full Hessian Structure

$$\nabla^{2}\mathbf{F} = \begin{bmatrix} \nabla^{2}_{\mathbf{n}\mathbf{n}}\mathbf{F} & \nabla^{2}_{\mathbf{n}\phi}\mathbf{F} & \nabla^{2}_{\mathbf{n}\lambda}\mathbf{F} \\ \nabla^{2}_{\phi\mathbf{n}}\mathbf{F} & \nabla^{2}_{\phi\phi}\mathbf{F} & \nabla^{2}_{\phi\lambda}\mathbf{F} \\ \nabla^{2}_{\lambda\mathbf{n}}\mathbf{F} & \nabla^{2}_{\lambda\phi}\mathbf{F} & \nabla^{2}_{\lambda\lambda}\mathbf{F} \end{bmatrix}$$

$$\nabla^2 \mathbf{F} = \begin{bmatrix} A & D & B \\ D^T & -C & 0 \\ B^T & 0 & 0 \end{bmatrix}$$

saddle-point problem

Four Saddle-Point Problems

• for unknown vector ordered as $\mathbf{x} = [\mathbf{u}, \mathbf{v}, \mathbf{w}, \phi, \lambda]$

$$H = \begin{bmatrix} A & D & B \\ D^{T} & -C & 0 \\ B^{T} & 0 & 0 \end{bmatrix} \qquad H = \begin{bmatrix} A & D & B \\ D^{T} & -C & 0 \\ B^{T} & 0 & 0 \end{bmatrix}$$

• for unknown vector ordered as $\mathbf{x} = [\mathbf{u}, \mathbf{v}, \mathbf{w}, \lambda, \phi]$

$$H = \begin{bmatrix} A & B & D \\ B^{T} & 0 & 0 \\ D^{T} & 0 & -C \end{bmatrix} \qquad H = \begin{bmatrix} A & B & D \\ B^{T} & 0 & 0 \\ D^{T} & 0 & -C \end{bmatrix}$$

double saddle-point structure

Iterative Solution

- outer iteration: Newton's method tol=1e-4
- inner iteration: MINRES tol=1e-4
- check accuracy by calculating energy of final solution

Matrix Conditioning

- eigenvalues of *H* lie in $[\lambda_{\min}, \lambda_s] \cup [\lambda_{s+1}, \lambda_{\max}]$
- estimate of matrix conditioning:

N	condest	$\lambda_{\min}(H)$	$\lambda_s(H)$	$\lambda_{s+1}(H)$	$\lambda_{\max}(H)$
8	1.64e+6	-6.68e+2	-5.40e-4	1.88e-1	3.07e+1
16	2.58e+7	-1.44e+3	-6.26e-5	2.19e-1	6.33e+1
32	4.09e+8	-2.98e+3	-7.68e-6	1.28e-1	1.28e+2
64	6.51e+9	-6.07e+3	-9.56e-7	6.60e-2	2.56e+2
128	1.04e+11	-1.23e+4	-1.20e-7	3.33e-2	5.12e+2
256	1.66e+12	-2.46e+4	-1.50e-8	1.67e-2	1.03e+3
	$O(N^4)$	O(N)	$O(N^{-3})$	$O(N^{-1})$	O(N)

Diagonal Preconditioning

$$H = \begin{bmatrix} A & D & B \\ D^T & -C & 0 \\ B^T & 0 & 0 \end{bmatrix}$$

$$\mathcal{D} = \begin{bmatrix} D_A & 0 & 0 \\ 0 & D_C & 0 \\ 0 & 0 & \Delta z I \end{bmatrix} \qquad \begin{array}{c} D_A = \text{diag}(A) \\ D_C = \text{diag}(C) \end{array}$$

• estimated condition of $\mathcal{D}^{-1}H$ is $O(N^2)$

 $\lambda_{\min} = -2, \ \lambda_s = O(N^{-2}), \ \lambda_{s+1} = O(N^{-2}), \ \lambda_{\max} = 2$

Constraint-type Preconditioning

$$H = \begin{bmatrix} A & B & D \\ B^T & 0 & 0 \\ \hline D^T & 0 & -C \end{bmatrix}$$

Constraint-type Preconditioning

$$H = \begin{bmatrix} A & B & D \\ B^T & 0 & 0 \\ \hline D^T & 0 & -C \end{bmatrix}$$

 Projected Preconditioned Conjugate Gradients Dollar et al. (2006)

$$C_{1} = \begin{bmatrix} D_{A} & 0 & D \\ 0 & \Delta zI & 0 \\ \hline D^{T} & 0 & -C \end{bmatrix}, \qquad C_{2} = \begin{bmatrix} A & 0 & D \\ 0 & \Delta zI & 0 \\ \hline D^{T} & 0 & -C \end{bmatrix}$$

Constraint-type Preconditioning

$$H = \begin{bmatrix} A & B & D \\ B^T & 0 & 0 \\ \hline D^T & 0 & -C \end{bmatrix}$$

 Projected Preconditioned Conjugate Gradients Dollar et al. (2006)

$$C_{1} = \begin{bmatrix} D_{A} & 0 & D \\ 0 & \Delta zI & 0 \\ \hline D^{T} & 0 & -C \end{bmatrix}, \qquad C_{2} = \begin{bmatrix} A & 0 & D \\ 0 & \Delta zI & 0 \\ \hline D^{T} & 0 & -C \end{bmatrix}$$

• estimated condition of $C_1^{-1}H$ is $O(N^2)$

 $\lambda_{\min} = O(N^{-2}), \ \lambda_s = O(1), \ \lambda_{s+1} = O(N^{-1}), \ \lambda_{\max} = 2$

• estimated condition of $C_2^{-1}H$ is $O(N^2)$

 $\lambda_{\min} = O(N^{-2}), \ \lambda_s = O(1), \ \lambda_{s+1} = 1, \ \lambda_{\max} = O(1)$

Iteration Counts

• iteration counts at first Newton step

N	8	16	32	64	128	256
\mathcal{D}	15	40	117	382	1293	5126
C_1	13	25	50	98	195	387
C_2	7	9	8	9	7	8

Iteration Counts

• iteration counts at first Newton step

N	8	16	32	64	128	256
\mathcal{D}	15	40	117	382	1293	5126
C_1	13	25	50	98	195	387
C_2	7	9	8	9	7	8

• iteration counts at last Newton step

N	8	16	32	64	128	256
\mathcal{D}	37	134	414	1617	7466	34755
C_1	22	55	226	635	2259	7166
C_2	6	14	23	43	65	114

• block tridiagonal?

- block tridiagonal?
- more sophisticated constraint preconditioning?

- block tridiagonal?
- more sophisticated constraint preconditioning?
- Schur complement approximation?

- block tridiagonal?
- more sophisticated constraint preconditioning?
- Schur complement approximation?
- augmented Lagrangian methods?

- block tridiagonal?
- more sophisticated constraint preconditioning?
- Schur complement approximation?
- augmented Lagrangian methods?
- inner/outer iteration?

- block tridiagonal?
- more sophisticated constraint preconditioning?
- Schur complement approximation?
- augmented Lagrangian methods?
- inner/outer iteration?
- connection with harmonic maps?

- block tridiagonal?
- more sophisticated constraint preconditioning?
- Schur complement approximation?
- augmented Lagrangian methods?
- inner/outer iteration?
- connection with harmonic maps?
- all suggestions welcome!