Multilevel Preconditioning for Data Assimilation with 4D-Var

Alison Ramage*, Kirsty Brown*, Igor Gejadze[†]

* Department of Mathematics and Statistics, University of Strathclyde

† IRSTEA, Montpelier, France

Four-dimensional Variational Assimilation (4D-Var)

4D-Var aims to find the solution of a numerical forecast model that best fits sequences of observations distributed in space over a finite time interval.

Minimise cost function

$$J(\mathbf{v}_0) = (\mathbf{v}_0 - \mathbf{v}_0^B)^T B^{-1} (\mathbf{v}_0 - \mathbf{v}_0^B) + \sum_{i=0}^n (\mathcal{H}(\mathbf{v}_i) - \mathbf{y}_i)^T R^{-1} (\mathcal{H}(\mathbf{v}_i) - \mathbf{y}_i)$$

with constraint $\mathbf{v}_i = \mathcal{M}^{i,0}(\mathbf{v}_0)$.

analysis	\mathbf{v}_0
background (short-term forecast)	\mathbf{v}_0^B
observations	y
observation operator	${\cal H}$
model dynamics	$\mathbf{v}_{i+1} = \mathcal{M}(\mathbf{v}_i)$
background error covariance matrix	В
observation error covariance matrix	R

Incremental 4D-Var

• Linearise \mathcal{H} , \mathcal{M} and solve resulting unconstrained optimisation problem iteratively:

$$\left. \bar{H}_{k-1}^{i} \equiv \left. \frac{\partial \mathcal{H}^{i}}{\partial \mathbf{v}} \right|_{\mathbf{v} = \mathbf{v}_{k-1}}, \qquad \left. \bar{M}_{k-1}^{i,0} \equiv \left. \frac{\partial \mathcal{M}^{i,0}}{\partial \mathbf{v}} \right|_{\mathbf{v} = \mathbf{v}_{k-1}} \right.$$

Hessian of the cost function is

$$\mathbb{H} = B^{-1} + \widehat{H}^T \widehat{R}^{-1} \widehat{H}$$

where
$$\widehat{H} = [(\overline{H}^0)^T, (\overline{H}^1 \overline{M}^{1,0})^T, \dots, (\overline{H}^N \overline{M}^{N,0})^T]^T$$

 $\widehat{R} = \text{bldiag}(R_i), \quad i = 1, \dots, N.$

Cannot store

■ as a matrix: action of applying
■ to a vector is available, but expensive (involves both forward and backward model solves).

Hessian system

Hessian linear system (within a Gauss-Newton method):

$$\mathbb{H}(\mathbf{u}_k)\delta\mathbf{u}_k=G(\mathbf{u}_k)$$

- Solve using Preconditioned Conjugate Gradient iteration (needs only ℍv).
- ullet Precondition ${\mathbb H}$ based on the background covariance matrix:

$$H = (B^{1/2})^T \mathbb{H} B^{1/2} = I + (B^{1/2})^T \widehat{H}^T \widehat{R}^{-1} \widehat{H} B^{1/2}$$

- For detailed information on the eigenspectrum of H, see e.g. HABEN ET AL. (2011), TABEART ET AL. (2018).
- Focus here on solving systems of the form

$$H\mathbf{u} = \mathbf{g}$$

Limited-memory approximation

- *H* amenable to limited-memory approximation.
- Find n_e leading eigenvalues and orthonormal eigenvectors using the Lanczos method (needs only $H\mathbf{v}$).
- Construct approximation

$$H \approx I + \sum_{i=1}^{n_e} (\lambda_i - 1) \mathbf{u}_i \mathbf{u}_i^T$$

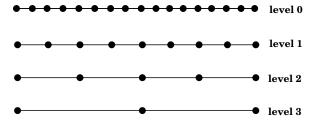
• Easy to evaluate matrix powers:

$$H^p pprox I + \sum_{i=1}^{n_e} (\lambda_i^p - 1) \mathbf{u}_i \mathbf{u}_i^T$$

• IDEA: Build a limited-memory approximation to H^{-1} for use as a preconditioner in PCG (and elsewhere).

Multilevel preconditioning

- IDEA: Build a multilevel approximation to H^{-1} based on a sequence of nested grids.
- Discretise evolution equation on a grid with m+1 nodes (level 0) to represent top-level Hessian H_0 .
- Grid level k contains $m_k = m/2^k + 1$ nodes.



Inter-grid transfers

- Write l_k for identity matrix on grid level k.
- Grid transfer based on piecewise cubic splines:
 - Restriction matrix R_c^f from k = f to k = c.
 - Prolongation matrix P_f^c from k = c to k = f.
- Construct new operators which transfer a matrix between a course grid level c and a fine grid level f.
 - From coarse to fine:

$$[H_c]_{\rightarrow f} = P_f^c (H_c - I_c) R_c^f + I_f$$

• From fine to coarse:

$$[H_f]_{\to c} = R_c^f (H_f - I_f) P_f^c + I_c$$

• Write H_k for H_0 restricted to grid level k.

Key ideas

- Build a limited-memory approximation to H^{-1} in multilevel form based on a sequence of nested grids.
- Build upwards from the coarsest level.

If
$$H$$
 is preconditioned as $\tilde{H} = P^T H P$, then
$$H^{-1} = (P \tilde{H}^{-1/2}) (\tilde{H}^{-1/2} P^T) \equiv \hat{P} \hat{P}^T.$$

• Precondition H on one level with \hat{P} from the level below.

Illustration

- Test using 1D Burgers' equation.
- 1D uniform grid with 7 sensors located at 0.3, 0.4, 0.45, 0.5, 0.55, 0.6, and 0.7 in [0,1].
- Multilevel preconditioning with four grid levels:

k	0	1	2	3
grid points	401	201	101	51

- Action of Hessian matrix H_0 available on level 0 (finest grid).
- For convenience in this talk, we will
 - assume matrices have been transferred to be the right size for multiplying together;
 - use $\stackrel{\text{sim}}{=}$ to denote a similarity transformation between matrices (which have the same eigenvalues).

Level 3 (coarsest level)

- Restrict H_0 to level 3 to obtain H_3 .
- Use preconditioner from previous level:

$$P_3 = I_3$$

• Precondition H_3 to obtain \widetilde{H}_3 :

$$\widetilde{H}_3 = P_3^T H_3 P_3 = H_3$$

• Build $P_3\widetilde{H}_3^{-1/2}$ to precondition at next level:

$$P_3\widetilde{H}_3^{-1/2}=H_3^{-1/2}$$

Level 2

- Restrict H_0 to level 2 to obtain H_2 .
- Use preconditioner from previous level:

$$P_2 = P_3 \widetilde{H}_3^{-1/2} = H_3^{-1/2}$$

• Precondition H_2 to obtain \widetilde{H}_2 :

$$\widetilde{H}_2 = P_2^\mathsf{T} H_2 P_2 = H_3^{-1/2} H_2 H_3^{-1/2} \stackrel{\mathsf{sim}}{=} H_3^{-1} H_2$$

• Build $P_2\widetilde{H}_2^{-1/2}$ to precondition at next level:

$$P_2\widetilde{H}_2^{-1/2} = H_3^{-1/2}H_2^{-1/2}H_3^{1/2} \stackrel{\text{sim}}{=} H_2^{-1/2}$$

Level 1

- Restrict H_0 to level 1 to obtain H_1 .
- Use preconditioner from previous level:

$$P_1 = P_2 \widetilde{H}_2^{-1/2} = H_2^{-1/2}$$

• Precondition H_1 to obtain \widetilde{H}_1 :

$$\widetilde{H}_1 = P_1^T H_1 P_1 = H_2^{-1/2} H_1 H_2^{-1/2} \stackrel{\text{sim}}{=} H_2^{-1} H_1$$

• Use $P_1\widetilde{H}_1^{-1/2}$ to precondition at next level:

$$P_1\widetilde{H}_1^{-1/2} = H_2^{-1/2}H_1^{-1/2}H_2^{1/2} \stackrel{\text{sim}}{=} H_1^{-1/2}$$

Level 0 (top level)

- Full top level matrix H_0 already available.
- Use preconditioner from previous level:

$$P_0 = P_1 \widetilde{H}_1^{-1/2} = H_1^{-1/2}$$

• Precondition H_0 to obtain \widetilde{H}_0 :

$$\widetilde{H}_0 = P_0^T H_0 P_0 = H_1^{-1/2} H_0 H_1^{-1/2} \stackrel{\text{sim}}{=} H_1^{-1} H_0$$

• Recover final approximation H_0^{-1} :

$$H_0^{-1} = P_0 \widetilde{H}_0^{-1} P_0^T = H_1^{-1/2} H_0^{-1} H_1^{1/2} \quad (\stackrel{\text{sim}}{=} H_0^{-1})$$

Important points

- In practice, algorithm is based on limited-memory approximation of matrices so matrix powers are easy to calculate.
- Lanczos method used to compute eigenvalues: this is cheaper and requires less storage on coarser grids.
- Choose to retain $N_e = (n_0, n_1, \dots, n_c)$ eigenvalues at each level.
- Difficult to find good values for N_e a priori.

Algorithm

algorithm:

```
\begin{split} [\Lambda,\mathcal{U}] &= \textit{mlevd}(H_0,N_e) \\ \text{for} \quad k = k_c, k_c - 1, \dots, 0 \\ \text{compute by the Lanczos method} \\ \text{and store in memory} \\ & \{\lambda_k^i, U_k^i\}, \ i = 1, \dots, n_k \text{ of } \tilde{H}_k \\ \text{using preconditioner } P_k \text{ from level } k+1 \\ \text{end} \end{split}
```

storage:

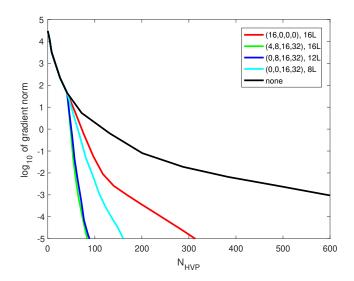
$$\begin{array}{lcl} \Lambda & = & \left[\lambda_{k_c}^1, \dots, \lambda_{k_c}^{n_{k_c}}, \lambda_{k_c-1}^1, \dots, \lambda_{k_c-1}^{n_{k_c-1}}, \dots, \lambda_0^1, \dots, \lambda_0^{n_0} \right], \\ \mathcal{U} & = & \left[U_{k_c}^1, \dots, U_{k_c}^{n_{k_c}}, U_{k_c-1}^1, \dots, U_{k_c-1}^{n_{k_c-1}}, \dots, U_0^1, \dots, U_0^{n_0} \right]. \end{array}$$

PCG iteration for one Newton step

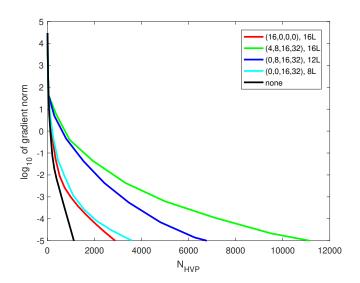
- measurement units
 - memory: length of vector on finest grid
 - cost: cost of HVP on finest grid HVP

Preconditioner	# CG iterations	storage	solve cost
none	57	0 L	57 HVP
MG(400,0,0,0)	1	400 L	402 HVP
MG(4,8,16,32)	4	16 L	34 HVP
MG(0,8,16,32)	5	12 L	14 HVP
MG(0,0,16,32)	8	8 L	10 HVP

Solve cost measured in number of HVPs



Cost including building preconditioner



Hessian decomposition

 partition domain into S subregions and compute local Hessians H^s such that

$$H(\mathbf{v}) = I + \sum_{s=1}^{S} (H^{s}(\mathbf{v}) - I)$$

- computational advantages of local Hessians:
 - fewer eigenvalues required for limited-memory approximation;
 - could be computed in parallel;
 - could use local rather than global models;
 - could be calculated at a coarser grid level.

Practical approach

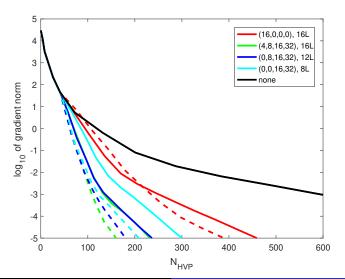
① Compute limited-memory approximations to local sensor-based Hessians on level k using n_k eigenpairs:

$$H_k^s \approx I + \sum_{i=1}^{n_k} (\lambda_i - 1) \mathbf{u}_i \mathbf{u}_i^T$$

- 2 Assemble these to form H_a .
- **3** Apply mlevd to H_a based on a fixed N_e .
- Advantage:
 - Local Hessians cheaper to compute.
- Disadvantages:
 - Additional user-specified parameter(s) k, n_k needed.
 - More memory required as local Hessians must also be stored.
- Can use multilevel approximation of local Hessians to reduce memory costs.

Cost including building preconditioner

 Local Hessians with 8 eigenvalues at level 0 (solid lines) or level 1 (dashed lines).



Concluding remarks

- Algorithm based solely on repeated use of Lanczos at each level (for limited-memory approximations).
- Difficult to identify the correct number of eigenvalues to use at each level.
- Full algorithm is not practical, but we have developed practical implementations based on Hessian decompositions.
- Also works well for other configurations (e.g. moving sensors, different initial conditions), and other models (e.g. 1D shallow water equations).
- Potential for extension to higher dimensions and other applications.

Brown, Gejadze & Ramage,

A Multilevel Approach for Computing the Limited-Memory Hessian and its Inverse in Variational Data Assimilation, SIAM Journal on Scientific Computing 38(5), 2016.