Preconditioners in Liquid Crystal Modelling

Alison Ramage Mathematics and Statistics University of Strathclyde Glasgow, Scotland

Chris Newton Hewlett-Packard Laboratories Bristol, England

Liquid Crystals

- occur between solid crystal and isotropic liquid states
- may have different equilibrium configurations
- switch between stable states by altering applied voltage, magnetic field, boundary conditions,
- used in a wide range of LCDs

Liquid Crystal Displays

Twisted Nematic Device (diagram taken from Stewart (2004))

Sample configurations

HAN cell

Pi cell

TND cell

Model: Q-tensor Theory

• symmetric traceless tensor

$$\mathbf{Q} = \sqrt{\frac{3}{2}} \left\langle \mathbf{u} \otimes \mathbf{u} - \frac{1}{3} \mathbf{I} \right\rangle$$

- local ensemble average over unit vectors u along molecular axes
- five degrees of freedom: two specifying the degree of order, three specifying the angles of the principal directions
- basis representation

$$\mathbf{Q} = \begin{bmatrix} q_1 & q_2 & q_3 \\ q_2 & q_4 & q_5 \\ q_3 & q_5 & -q_1 - q_4 \end{bmatrix}$$

Finding Equilibrium Configurations

minimise the free energy

$$F = \int_{V} F_{bulk}(\mathbf{Q}, \nabla \mathbf{Q}) \, dv + \int_{S} F_{surface}(\mathbf{Q}) \, dS$$

 $F_{bulk} = F_{elastic} + F_{thermotropic} + F_{electrostatic}$

 if fixed boundary conditions are applied, surface energy term can be ignored

 solutions with least energy are physically relevant: solve Euler-Lagrange equations

Free energy density

 elastic energy: induced by distorting the Q-tensor in space

$$F_{elastic} = \frac{1}{2}L_1(\operatorname{div} \mathbf{Q})^2 + \frac{1}{2}L_2|\nabla \times \mathbf{Q}|^2$$

 thermotropic energy: potential function which dictates which state the liquid crystal would prefer to be in (uniaxial, biaxial or isotropic)

$$F_{thermotropic} = \frac{1}{2}A(T - T^*) \text{ tr } \mathbf{Q}^2 - \frac{\sqrt{6}}{3}B \text{ tr } \mathbf{Q}^3 + \frac{1}{4}C(\text{tr } \mathbf{Q}^2)^2$$

• electrostatic energy: due to an applied electric field E (electric potential U with $\mathbf{E} = -\nabla U$)

$$F_{electrostatic} = -\frac{1}{2} \left(\epsilon_0 (\bar{\epsilon} \mathbf{I} + \epsilon_a \mathbf{Q}) \nabla U \right) \cdot \mathbf{E}$$

Thermotropic Energy

$$F_{thermotropic} = \frac{1}{2}A(T - T^*) \operatorname{tr} \mathbf{Q}^2 - \frac{\sqrt{6}}{3}B \operatorname{tr} \mathbf{Q}^3 + \frac{1}{4}C(\operatorname{tr} \mathbf{Q}^2)^2$$

• uniaxial case: $\frac{1}{2}A(T - T^*) S^2 - \frac{1}{3}B S^3 + \frac{1}{4}C S^4$

Coupled Equations

solve Euler-Lagrange equations to minimise free energy

$$\nabla \cdot \mathbf{\Gamma}^{i} = f^{i}, \qquad i = 1, \dots, 5$$
$$\nabla \cdot \mathbf{D} = 0$$

$$\Gamma_j^i = \frac{\partial F_b}{\partial q_{i,j}}, \quad f^i = \frac{\partial F_b}{\partial q_i}, \quad q_{i,j} = \frac{\partial q_i}{\partial z_j}$$

- solution vector $\mathbf{u} = [\mathbf{q}_1, \mathbf{q}_2, \mathbf{q}_3, \mathbf{q}_4, \mathbf{q}_5, \mathbf{U}]^T$
- finite element approximation, quadratic nodal elements
- linearise about \mathbf{u}_0 and iterate

Linear System At Each Step

$$(\mathcal{K} + 2a\mathcal{M} + \mathcal{N}|_{\mathbf{u}_0})\delta\mathbf{u} = -(\mathcal{K} + 2a\mathcal{M})\mathbf{u}_0 - \mathcal{R}|_{\mathbf{u}_0}$$

Saddle-point problem

$$\mathcal{A} = \begin{bmatrix} A & B_1 \\ B_2 & C \end{bmatrix}$$

- $A \text{ is } 5n \times 5n$, $B_1 \text{ is } 5n \times n$, $B_2 \text{ is } n \times 5n$
- *A* can be indefinite, *C* is positive definite

GMRES Iterations

- right preconditioning
- convergence tolerance 1e-8

N_{el}	N_{dof}	V = 0	V = 0.5	V = 1.5	V = 5
16	198	129	151	141	141
32	390	245	298	270	228
64	774	327	430	349	274
128	1542	372	546	441	395
256	3078	594	985	800	720
512	6150	1108	1821	1557	1408

• many (almost) multiple eigenvalues

Block Diagonal Preconditioner

$$\mathcal{A} = \begin{bmatrix} A & B_1 \\ B_2 & C \end{bmatrix}, \qquad \mathcal{P} = \begin{bmatrix} \bar{A} & 0 \\ 0 & -\bar{S} \end{bmatrix}$$
$$\bar{A} = \bar{A} = \bar{A}$$

 $A \approx A$, $S \approx S = C - B_2 A^{-1} B_1$

• $\bar{A} = A$, $\bar{S} = S$

N_{el}	N_{dof}	0V	0.5V	1.5V	5V
16	198	1	3	7	9
32	390	1	3	7	9
64	774	1	3	8	10
128	1542	1	3	7	10
256	3078	1	3	8	10
512	6150	1	3	7	10

• $\overline{A} = A$, $\overline{S} = C$: results exactly the same

$\label{eq:approximation for } A \\ \end{tabular}$

$$A = \begin{bmatrix} \hat{N}_{q_1}^1 & N_{q_2}^1 & N_{q_3}^1 & N_{q_4}^1 & N_{q_5}^1 \\ N_{q_1}^2 & \hat{N}_{q_2}^2 & N_{q_3}^2 & N_{q_4}^2 & N_{q_5}^2 \\ N_{q_1}^3 & N_{q_2}^3 & \hat{N}_{q_3}^3 & N_{q_4}^3 & N_{q_5}^3 \\ N_{q_1}^4 & N_{q_2}^4 & N_{q_3}^4 & \hat{N}_{q_4}^4 & N_{q_5}^4 \\ N_{q_1}^5 & N_{q_2}^5 & N_{q_3}^5 & N_{q_4}^5 & \hat{N}_{q_5}^5 \end{bmatrix}$$

$$\hat{N}_{q_i}^i = K + 2aM + N_{q_i}^i$$

 $\bar{A} = bl_diag(K)$

One dimension

GMRES, LAPACK direct solve, preconditioned GMRES

- uniform nodal finite element grid
- from 774 to 9222 degrees of freedom

One dimension

GMRES, LAPACK direct solve, preconditioned GMRES

- uniform hierarchical finite element grid
- from 774 to 9222 degrees of freedom

voltage V = 0

unpreconditioned

preconditioned

voltage V = 3

Two dimensions

preconditioned GMRES

- unstructured grids of triangles
- from 2610 to 19374 degrees of freedom

voltage V = 0

voltage V = 3

Three dimensions

preconditioned GMRES

- unstructured grids of tetrahedra
- 6306 and 26274 degrees of freedom

voltage V = 0

voltage V = 3

Observations

- Q-tensor models of liquid crystals lead to complicated algebraic equations.
- Nonlinearities involved make it difficult to identify dominant terms, with many conflicting issues.
- Issues of singularity, indefiniteness, lack of symmetry.
- Block preconditioner using the stiffness matrix performs well on uniform nodal and hierarchical meshes.
 - Convergence independent of the mesh parameter.
 - Cheap to implement using factorisation.
- Further tests required on more complicated problems and adaptive meshes.

Observations

- Q-tensor models of liquid crystals lead to complicated algebraic equations.
- Nonlinearities involved make it difficult to identify dominant terms, with many conflicting issues.
- Issues of singularity, indefiniteness, lack of symmetry.
- Block preconditioner using the stiffness matrix performs well on uniform nodal and hierarchical meshes.
 - Convergence independent of the mesh parameter.
 - Cheap to implement using factorisation.
- Further tests required on more complicated problems and adaptive meshes.

THANKS FOR YOUR ATTENTION!