A multilevel preconditioner for data assimilation with 4D-Var

Alison Ramage*, Kirsty Brown*, Igor Gejadze[†]

* Department of Mathematics and Statistics, University of Strathclyde

† IRSTEA, Montpelier, France

Data assimilation

- Data assimilation is a technique for combining information such as observational and background data with numerical models to obtain the best estimate of state of a system (initial condition).
- Numerical weather prediction is essentially an IVP: given initial conditions, forecast atmospheric evolution.
- Other application areas include hydrology, oceanography, environmental science, data analytics, sensor networks...
- Variational assimilation is used to find the optimal analysis that minimises a specific cost function.

Motivation

Four-dimensional Variational Assimilation (4D-Var)

Minimise cost function

$$J(\mathbf{x}_{0}) = (\mathbf{x}_{0} - \mathbf{x}_{0}^{B})^{T} B^{-1}(\mathbf{x}_{0} - \mathbf{x}_{0}^{B}) + \sum_{i=0}^{n} (\mathcal{H}(\mathbf{x}_{i}) - \mathbf{y}_{i})^{T} R^{-1} (\mathcal{H}(\mathbf{x}_{i}) - \mathbf{y}_{i})$$

with constraint $\mathbf{x}_i = \mathcal{M}_{0 \to i} \mathbf{x}_0$.

analysis \mathbf{x}_0 background (short-term forecast) \mathbf{x}_0^B observations \mathbf{y} observation operator \mathcal{H} model dynamics $\mathbf{x}_{i+1} = \mathcal{M}(\mathbf{x}_i)$ background error covariance matrixBobservation error covariance matrixR

Incremental 4D-Var

• Linearise \mathcal{H} , \mathcal{M} using the tangent linear hypothesis and solve resulting unconstrained optimisation problem iteratively.

• Hessian of the cost function

$$\mathbb{H} = \widehat{B}^{-1} + \widehat{H}^T \widehat{R}^{-1} \widehat{H}$$

incorporates the tangent linear operator M and its adjoint.

- AIM: construct a limited-memory approximation to ℍ⁻¹ using only matrix-vector multiplication for use as preconditioning in a Gauss-Newton method.

• Linear system (within a Gauss-Newton method):

 $\mathbb{H}(\mathbf{u}_k)\delta\mathbf{u}_k = G(\mathbf{u}_k)$

- Solve using Preconditioned Conjugate Gradient iteration (needs only ℍ𝔽).
- Precondition based on the background covariance matrix:

 $H = (\widehat{B}^{1/2})^T \mathbb{H} \widehat{B}^{1/2} = I + (\widehat{B}^{1/2})^T \widehat{H}^T \widehat{R}^{-1} \widehat{H} \widehat{B}^{1/2}$

• Eigenvalues of *H* are usually clustered in a narrow band above one, with few eigenvalues distinct enough to contribute noticeably to the Hessian value.

[HABEN ET AL., COMPUTERS & FLUIDS 46 (2011)]

• *H* amenable to limited-memory approximation.

Limited-memory approximation

- Find n_e leading eigenvalues and orthonormal eigenvectors using the Lanczos method (needs only ℍv).
- Construct approximation

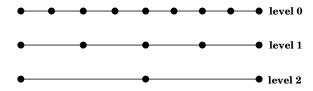
$$H\approx I+\sum_{i=1}^{n_e}(\lambda_i-1)\mathbf{u}_i\mathbf{u}_i^T$$

• Easy to evaluate matrix powers:

$$H^p \approx I + \sum_{i=1}^{n_e} (\lambda_i^p - 1) \mathbf{u}_i \mathbf{u}_i^T$$

Second level preconditioning

- IDEA: Construct a multilevel approximation to H^{-1} based on a sequence of nested grids.
- Discretise evolution equation on a grid with m + 1 nodes (level 0) to represent Hessian H_0
- Grid level k contains $m_k = m/2^k + 1$ nodes.



• Identity matrix I_k on grid level k.

Grid transfers with "correction"

- Grid transfer based on piecewise cubic splines:
 - Restriction matrix R_c^f from k = f to k = c.
 - Prolongation matrix P_f^c from k = c to k = f.
- Construct new operators which transfer a matrix between a course grid level *c* and a fine grid level *f*.

• From coarse to fine:

$$A_{c\to f} = P_f^c (A_c - I_c) R_c^f + I_f$$

• From fine to coarse:

$$A_{f\to c} = R_c^f (A_f - I_f) P_f^c + I_c$$

Outline of multilevel concept

- Given a symmetric positive definite operator A₀ available on the finest grid level in matrix-vector product form:
- **(**) represent A_0 on the coarsest grid level;
- use a local preconditioner to improve the eigenvalue distribution;
- build a limited memory approximation to its inverse using the Lanczos method (which forms the basis of the local preconditioner at the next coarsest level);
- move up one grid level and repeat.

Multilevel algorithm for H^{-1}

• Represent H_0 at a given level (k, say):

$$H_{0\to k} = R_k^0 (H_0 - I_0) P_0^k + I_k$$

• Precondition to improve eigenvalue spectrum:

$$\tilde{H}_{0\to k} = (B_k^{k+1})^T H_{0\to k} B_k^{k+1}$$

- Find n_k eigenvalues/eigenvectors of $\tilde{H}_{0 \rightarrow k}$ using the Lanczos method.
- Approximate $\tilde{H}_{0 \to k}^{-1/2}$:

$$\tilde{H}_{0 \to k}^{-1/2} \approx I_k + \sum_{i=1}^{n_k} \left(\frac{1}{\sqrt{\lambda_i}} - 1\right) \mathbf{u}_i \mathbf{u}_i^T$$

- Construct B_k^{k+1} on level k + 1, apply on level k.
- On coarsest grid, level k + 1 does not exist so set $B_k^{k+1} = I_k$.
- For other levels, construct preconditioners recursively:

$$B_{k}^{k+1} = \left[B_{k+1}^{k+2} \tilde{H}_{0 \to k+1}^{-1/2} \right]_{\to k}, \quad B_{k}^{k+1}{}^{\mathsf{T}} = \left[\tilde{H}_{0 \to k+1}^{-1/2} B_{k+1}^{k+2} \right]_{\to k}$$

• Square brackets represent projection to the correct grid level using "corrected" grid transfers, e.g.

$$[A_{k+1}]_{\to k} = R_k^{k+1} (A_{k+1} - I_{k+1}) P_{k+1}^k + I_k$$

Algorithm

• use $N_e = (n_0, n_1, \dots, n_c)$ eigenvalues at each level

$$\begin{split} [\Lambda,\mathcal{U}] = & \textit{mlevd}(H_0,N_e) \\ \text{for} \quad k = k_c, k_c - 1, \dots, 0 \\ & \text{compute by the Lanczos method} \\ & \text{and store in memory} \\ & \{\lambda_k^i, U_k^i\}, \ i = 1, \dots, n_k \text{ of } \tilde{H}_{0 \to k} \\ & \text{using preconditioner } B_k^{k+1} \\ \text{end} \end{split}$$

• storage:

$$\Lambda = \left[\lambda_{k_c}^1, \dots, \lambda_{k_c}^{n_{k_c}}, \lambda_{k_c-1}^1, \dots, \lambda_{k_c-1}^{n_{k_c-1}}, \dots, \lambda_0^1, \dots, \lambda_0^{n_0} \right], \\ \mathcal{U} = \left[U_{k_c}^1, \dots, U_{k_c}^{n_{k_c}}, U_{k_c-1}^1, \dots, U_{k_c-1}^{n_{k_c-1}}, \dots, U_0^1, \dots, U_0^{n_0} \right].$$

Example

• Test using 1D Burgers' equation with initial condition

$$f(x) = 0.1 + 0.35 \left[1 + \sin \left(4\pi x + \frac{3\pi}{2} \right) \right], \qquad 0 < x < 1$$

- 1D uniform grid with 7 sensors located at 0.3, 0.4, 0.45, 0.5, 0.55, 0.6, and 0.7 in [0, 1].
- Multilevel preconditioning with four grid levels:

k	0	1	2	3
grid points	401	201	101	51

Assessing approximation accuracy

• Riemannian distance:

$$\delta(A,B) = \left\| \ln(B^{-1}A) \right\|_F = \left(\sum_{i=1}^n \ln^2 \lambda_i \right)^{1/2}$$

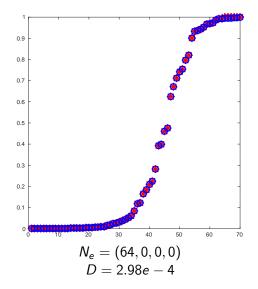
• Compare eigenvalues of H^{-1} and \tilde{H}^{-1} on the finest grid level k = 0 using

$$\mathcal{D} = rac{\delta(H^{-1}, \tilde{H}^{-1})}{\delta(H^{-1}, I)}$$

• Vary number of eigenvalues chosen on each grid level $N_e = (n_0, n_1, n_2, n_3)$

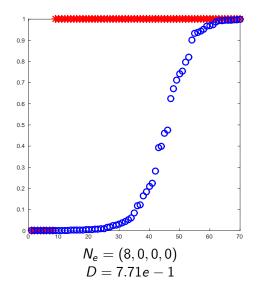
Eigenvalues of the inverse Hessian

• Exact (blue circles), approximated (red stars)



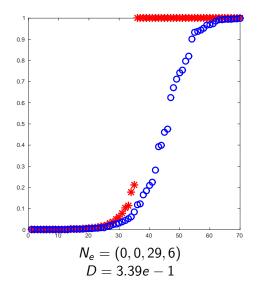
Eigenvalues of the inverse Hessian

• Exact (blue circles), approximated (red stars)



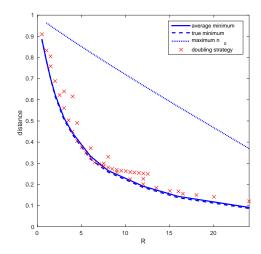
Eigenvalues of the inverse Hessian

• Exact (blue circles), approximated (red stars)



Fixed memory ratio

• Fixed memory ratio $R = \sum_{k=0}^{k_c} \frac{n_k}{2^k}$



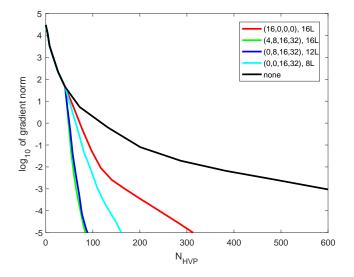
PCG iteration for one Newton step

measurement units

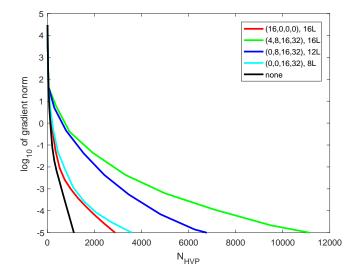
- memory: length of vector on finest grid L
- cost: cost of HVP on finest grid HVP

Preconditioner	# CG iterations	storage	cost
none	57	0 L	57 HVP
MG(400,0,0,0)	1	400 L	402 HVP
MG(4,8,16,32)	4	16 L	34 HVP
MG(0,8,16,32)	5	12 L	14 HVP
MG(0,0,16,32)	8	8 L	10 HVP

Solve cost measured in number of HVPs



Cost including building preconditioner



Hessian decomposition

 partition domain into subregions and compute local Hessians H^I such that

$$H(u) = I + \sum_{l=1}^{L} (H^{l}(u) - I)$$

- fewer eigenvalues required for limited-memory representation of each H^{l}
- local Hessians can be computed in parallel
- H^{I} need not be computed at finest grid level:

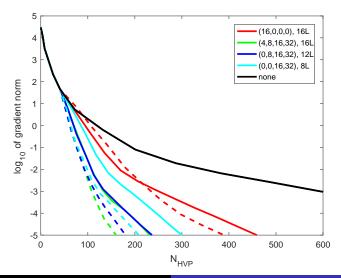
$$H_k(u_k) = I_k + \sum_{l=1}^{L} (H_k^l(u_k) - I_k)$$

could run local rather than global model

- Compute limited-memory approximations to local sensor-based Hessians on level *I* using *n_I* eigenpairs.
- Assemble these to form H_a , then apply mleved to H_a based on a fixed N_e .
- Local Hessians cheaper to compute.
- Additional user-specified parameter(s) *I*, *n_I* needed.
- More memory required as local Hessians must also be stored.

Version 1: cost including building preconditioner

• Local Hessians with 8 eigenvalues at level 0 (solid lines) or level 1 (dashed lines).



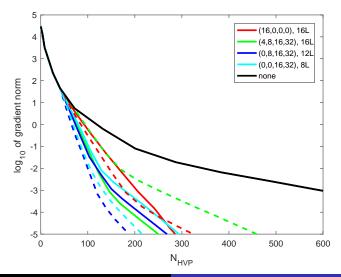
Alison Ramage, University of Strathclyde

Multilevel preconditioner for data assimilation with 4D-Var

- Can reduce memory requirements further by using a multilevel approximation of each limited-memory local Hessian on level *I* using n_I eigenpairs.
- Approximate local Hessians by applying mlevd to local inverse Hessians based on N^l_e.
- Assemble these to form a reduced-memory assembled Hessian H_a^{rm} .
- Use mlevel again on H_a^{rm} based on N_e .

Version 2: cost including building preconditioner

• Local Hessians with 8 eigenvalues at level 0 (solid lines) or level 1 (dashed lines) with (8,4,0,0) MG approx.



Alison Ramage, University of Strathclyde

Multilevel preconditioner for data assimilation with 4D-Var

Conclusions and next steps

- Similar results with other configurations (e.g. moving sensors, different initial conditions).
- Multilevel preconditioning looks promising for constructing a good limited-memory approximation to H^{-1} .
- The balance between restrictions on memory/cost limitations may vary between particular applications.
- Identifying globally appropriate values for (n₀, n₁, n₂, n₃) and other parameters is tricky, but "rules of thumb" can be developed.
- Future investigations:
 - problems in higher dimensions;
 - extension to other operators;
 - applications for other sensor systems.

It is sometimes nice in Scotland...

