Principles and Elements of Power Electronics

Devices, Drivers, Applications, and Passive Components

Barry W Williams
Professor of Electrical Engineering
University of Strathclyde
Glasgow

Table of Contents

1 Basic Semiconductor Physics and Technology

Example 1.1: Resistance of homogeneously doped silicon 2
1.1 Processes Forming and involved in forming semiconductor devices 4
 1.1.1 Alloying
 1.1.2 Diffused
Example 1.2: Constant Surface Concentration diffusion – predeposition 7
Example 1.3: Constant Total Dopant diffusion – drive in-#1 8
Example 1.4: Constant Total Dopant diffusion – drive in-#2 8
 1.1.3 Epitaxy growth - deposition
 1.1.4 Ion-implantation and damage annealing
Example 1.5: Ion implantation 14

1.2 Thin film deposition 15
 1.2.1 Chemical Vapour Deposition (CVD)
 1.2.2 Physical Vapour deposition (PVD)

1.3 Thermal oxidation and the masking process 20

1.4 Polysilicon Deposition 22

1.5 Lithography – optical and electron 24
 1.5.1 Optical Lithography
 1.5.2 Electron Lithography

1.6 Etching 28
 1.6.1 Wet Chemical Etching
 1.6.2 Dry Chemical Etching

1.7 Lift-off processing 34

1.8 Resistor fabrication 35

1.9 Isolation techniques 35

1.10 Wafer cleaning 36

1.11 Planarization 37

1.12 Gettering 38

1.13 Lifetime control 38

1.14 Silicide formation 39

1.15 Ohmic contact 40

1.16 Glassivation 43

1.17 Back side metallisation and die separation 44

1.18 Wire bonding 44
Power Electronics

1.19 Types of wafer silicon
 1.19.1 Purifying silicon
 1.19.2 Crystallinity
 1.19.3 Single crystal silicon
 1.19.3i Czochralski process
 1.19.3ii Float-zone process
 1.19.3iii Ribbon silicon
 1.19.4 Multi-crystalline silicon
 1.19.5 Amorphous silicon

1.20 Silicon carbide and other wide band gap materials

1.21 Si and wide band gap materials physical and electrical properties compared

2 The pn Junction

Example 2.1: Built-in potential of an abrupt junction

2.1 The pn Junction under forward bias (steady-state)

2.2 The pn Junction under reverse bias (steady-state)
 2.2.1 Punch-through voltage
 2.2.2 Avalanche breakdown
 2.2.3 Zener breakdown

2.3 Thermal effects

Example 2.2: Diode forward bias characteristics

2.4 Models for the bipolar junction diode
 2.4.1 Piecewise-linear junction diode model
 2.4.2 Static linear diode model

Example 2.3: Using the pwf junction diode model
 2.4.2i Semiconductor physics based junction diode model
 2.4.2ii - Determination of zero bias junction capacitance, Cj
 2.4.2iii - One-sided pn diode equations

Example 2.5: Space charge layer parameter values

2.4.2iv Static diode model

2.5 The junction diode parameter values

3 Power Switching Devices and their Static Electrical Characteristics

3.1 Power diodes
 3.1.1 The pn fast-recovery diode
 3.1.2 The p-i-n diode
 3.1.3 The power Zener diode
 3.1.4 The Schottky barrier diode
 3.1.5 The silicon carbide Schottky barrier diode

3.2 Power switching transistors
 3.2.1 The bipolar npn power switching junction transistor (BJT)
 3.2.1i - BJT gain
 3.2.1ii - BJT operating states
 3.2.1iii - BJT maximum voltage - first and second breakdown
 3.2.2 The metal oxide semiconductor field effect transistor (MOSFET)
 3.2.2i - MOSFET structure and characteristics
 3.2.2ii - MOSFET drain current
 3.2.2iii - MOSFET transconductance and output conductance
 3.2.2iv - MOSFET on-state resistance
 3.2.2v - MOSFET p-channel device
 3.2.3 The insulated gate bipolar transistor (IGBT)
 3.2.3i - IGBT at turn-on
 3.2.3ii - IGBT in the on-state
 3.2.3iii - IGBT at turn-off
 3.2.3iv - IGBT latch-up
 1 - IGBT on-state SCR static latch-up
 2 - IGBT turn-off SCR dynamic latch-up
 3.2.4 Reverse blocking NPT IGBT
 3.2.5 Forward conduction characteristics
 3.2.6 PT IGBT and NPT IGBT comparison
 3.2.7 The junction field effect transistor (JFET)

3.3 Thyristors
 3.3.1 The silicon-controlled rectifier (SCR)
 3.3.1i - SCR turn-on
 3.3.1ii - SCR cathode shorts
 3.3.1iii - SCR amplifying gate
 3.3.2 The asymmetrical silicon-controlled rectifier (ASCR)
 3.3.3 The reverse-conducting thyristor (RCT)
 3.3.4 The bi-directional-conducting thyristor (BCT)
 3.3.5 The gate turn-off thyristor (GTO)
 3.3.5i - GTO turn-off mechanism
 3.3.6 The gate commutated thyristor (GCT)
 3.3.6i - GCT turn-off
 3.3.6ii - GCT turn-on
 3.3.7 The light triggered thyristor (LTT)
 3.3.8 The triac

3.4 Power packages and modules

4 Electrical Ratings and Characteristics of Power Semiconductor Switching Devices

4.1 General maximum ratings of power switching semiconductor devices
 4.1.1 Voltage ratings
 4.1.2 Forward current ratings
 4.1.3 Temperature ratings
 4.1.4 Power ratings
4.2 The fast-recovery diode 111
4.2.1 Turn-on characteristics
4.2.2 Turn-off characteristics
4.2.3 Schottky diode dynamic characteristics

4.3 The bipolar, high-voltage, power switching npn junction transistor 114
4.3.1 Transistor ratings
 4.3.1i - BJT collector voltage ratings
 4.3.1ii - BJT safe operating area (SOA)
4.3.2 Transistor switching characteristics
 4.3.2i - BJT turn-on time
 4.3.2ii - BJT turn-off time
4.3.3 BJT phenomena

4.4 The power MOSFET 119
4.4.1 MOSFET absolute maximum ratings
4.4.2 Dynamic characteristics
 4.4.2i - MOSFET device capacitances
 4.4.2ii - MOSFET switching characteristics
 1 - MOSFET turn-on
 2 - MOSFET turn-off
Example 4.1: MOSFET drain characteristics 124

4.5 The insulated gate bipolar transistor 125
4.5.1 IGBT switching
4.5.2 IGBT short circuit operation

4.6 The thyristor 127
4.6.1 SCR ratings
 4.6.1i - SCR anode ratings
 4.6.1ii - SCR gate ratings
4.6.2 Static characteristics
 4.6.2i - SCR gate trigger requirements
 4.6.2ii - SCR holding and latching currents
4.6.3 Dynamic characteristics
 4.6.3i - SCR anode at turn-on
 4.6.3ii - SCR anode at turn-off

4.7 The gate turn-off thyristor 130
4.7.1 Turn-on characteristics
4.7.2 Turn-off characteristics

4.8 Appendix: Effects on MOSFET switching of negative gate drive 132

5 Cooling of Power Switching Semiconductor Devices 135
5.1 Thermal resistances 138
5.2 Contact thermal resistance 138
 5.2.1 Thermal Interface Materials
 5.2.2 Phase Change Gasket Materials (solid to liquid)
5.3 Heat-sinking thermal resistance 142

6 High-performance Cooling for Power Electronics 179
6.1 Conduction and heat spreading 182
6.2 Heat-sinks 183
 6.2.1 Required heat-sink thermal resistance
 6.2.2 Heat-sink selection
 6.2.3 Heat sink types
 6.2.4 Heat-sink fin geometry
 6.2.5 Thermal performance graph
6.3 Heat-sink cooling enhancements 190
Switching-aid Circuits with Energy Recovery

10

10.1 Energy recovery for inductive turn-on snubber circuits-single ended

10.2 Energy recovery for capacitive turn-off snubber circuits-single ended

10.3 Unified turn-on and turn-off snubber circuit energy recovery

10.4 Inverter bridge legs

10.5 Snubbers for multi-level inverters

10.6 Snubbers for series connected devices

10.7 Snubber energy recovery for magnetically coupled based switching circuits

10.8 General passive snubber energy recovery concepts

10.9 Snubbers for rectified outputs

Device Protection

12

12.1 Protection overview - over-voltage and over-current

12.2 Over-current protection

12.3 Summary of over-current limiting devices
13.3 Overvoltage protection 421
12.3.1 Transient voltage suppression clamping devices
12.3.1i - Comparison between Zener diodes and varistors
Example 12.6: Non-linear voltage clamp 428
12.3.2 Transient voltage fold-back devices
12.3.2i The surge arrester
12.3.2ii Thyristor voltage fold-back devices
12.3.2iii Polymeric voltage variable material technologies
12.3.2iv The crowbar
12.3.3 Protection coordination
12.3.4 Summary of voltage protection devices

12.4 DC Circuit Breakers 437
12.4.1 Purely semiconductor DCCB
Example 12.7: IGBT DC circuit breaker 437
12.4.2 Hybrid DCCB: semiconductors shunted by a circuit breaker 438
12.4.3 Functionality unification

13 Naturally Commutating AC to DC Converters
- Uncontrolled Rectifiers 447

13.1 Single-phase uncontrolled converter circuits - ac rectifiers 447
13.1.1 Half-wave circuit with a resistive load, R
13.1.2 Half-wave circuit with a resistive and back emf R-E load
Example 13.1: Half-wave rectifier with resistive and back emf load 449
13.1.3 Single-phase half-wave circuit with an R-L load
13.1.3i - Inductor equal voltage area criterion
13.1.3ii - Load current zero slope criterion
13.1.4 Single-phase half-wave rectifier circuit with an R-L load and a back emf
13.1.5 Half-wave rectifier circuit with an R load and capacitor filter
Example 13.2: Half-wave rectifier with source resistance 455
13.1.6 Single-phase half-wave circuit with an R-L load and free-wheel diode
Example 13.3: Half-wave rectifier – with load free-wheel diode 458
13.1.7 Single-phase full-wave bridge rectifier circuit with a resistive load, R
13.1.8 Single-phase full-wave bridge rectifier circuit with a resistive and back emf load
Example 13.4: Full-wave rectifier with resistive and back emf load 462
13.1.9 Single-phase full-wave bridge rectifier circuit with an R-L load
13.1.9i - Single-phase full-wave bridge rectifier circuit with an output L-C filter
13.1.9ii Single-phase, full-wave bridge rectifier circuit with an R-L-E load
Example 13.5: Full-wave diode rectifier with L-C filter and continuous load current 468
13.1.9iii Single-phase full-wave bridge rectifier with highly inductive loads–constant load current
13.1.9iv Single-phase full-wave bridge rectifier circuit with a C-filter and resistive load
Example 13.6: Single-phase full-wave bridge circuit with C-filter and resistive load 471
13.1.9v - Other single-phase bridge rectifier circuit configurations

13.2 Three-phase uncontrolled rectifier converter circuits 473
13.2.1 Three-phase half-wave rectifier circuit with an inductive R-L load
13.2.2 Three-phase full-wave rectifier circuit with an inductive R-L load
13.2.2i - Three-phase full-wave bridge rectifier circuit with continuous load current
13.2.2ii - Three-phase full-wave bridge rectifier circuit with highly inductive load
13.2.2iii - Three-phase full-wave bridge rectifier circuit with highly inductive load with an EMF source
13.2.2iv - Three-phase full-wave bridge circuit with capacitively filtered load resistance
Example 13.7: Three-phase full-wave rectifier 480
Example 13.8: Rectifier average load voltage 481

13.3 Uncontrolled rectifier input current harmonics and power factor compensation 482

13.4 DC MMFs in converter transformers 484

13.5 Transformer rectifier combinations 485
13.5.1 Six-phase half wave rectified converters
13.5.1i Six-phase with neutral connection
13.5.1ii Three-phase double wye with a centre tapped inter-phase transformer
13.5.2 Three-phase full-wave rectified converters
13.5.3 Multi-phase full-wave rectified converters

13.6 Voltage multipliers 489
13.6.1 Half-wave series multipliers
13.6.2 Half-wave parallel multipliers
13.6.3 Full-wave series multipliers
Example 13.9: Half-wave voltage multiplier 493
Example 13.10: Full-wave voltage multiplier 494
13.6.4 Three-phase voltage multipliers
13.6.5 Series versus parallel voltage multipliers

13.7 Marx voltage generator 495
13.8 Definitions 498
13.9 Output pulse number 499
13.10 AC-dc converter generalised equations 500

14 Naturally Commutating AC to DC Converters
- Controlled Rectifiers 509

14.1 Single-phase full-wave half-controlled converter 510
14.1.1 Single-phase, full-wave half-controlled circuit with an R-L load
14.1.1i - Discontinuous load current
14.1.1ii - Continuous load current
14.1.2 Single-phase, full-wave, half-controlled circuit with R-L and emf load
Example 14.1: Single-phase, full-wave half-controlled rectifier 517

14.2 Single-phase controlled thyristor converter circuits 517
14.2.1 Single-phase half-wave circuit with an R-L load
14.2.1i - Case 1: Purely resistive load
14.2.1ii - Case 2: Purely inductive load
14.2.1iii - Case 3: Back emf E and R-L load
Example 14.2: Single-phase, half-wave controlled rectifier 521

14.2.2 Single-phase half-wave half-controlled 522
14.2.2i - discontinuous conduction
14.2.2ii - continuous conduction
14.2.3 Single-phase full-wave controlled rectifier circuit with an R-L load
14.2.3i - discontinuous load current
14.2.3ii - verge of continuous load current
14.2.3iii - continuous load current (and also purely inductive load)
14.2.3iv - Resistive load
Example 14.3: Controlled full-wave converter – continuous and discontinuous conduction 528
14.2.4 Single-phase full-wave, fully-controlled circuit with R-L and emf load
14.2.4i - Discontinuous load current
14.2.4ii - Continuous load current
Example 14.4: Controlled converter - continuous conduction and back emf 535
Example 14.5: Controlled converter – constant load current, back emf, and overlap 537

14.3 Three-phase half-controlled converter 537

14.4 Three-phase fully-controlled thyristor converter circuits 540

14.4.1 Three-phase half-wave, fully controlled circuit with an inductive load
Example 14.6: Three-phase half-wave controlled rectifier, with resistive load 542
14.4.2 Three-phase half-wave converter with freewheel diode
Example 14.6: Three-phase half-wave rectifier with freewheel diode 544
14.4.3 Three-phase full-wave fully-controlled circuit with an inductive load
14.4.3.i - Resistive load
14.4.3.ii - Highly inductive load – constant load current
14.4.3.iii - R-L load with load EMF
Example 14.7: Three-phase full-wave controlled rectifier with constant output current 551
14.4.4 Three-phase full-wave converter with freewheel diode
Example 14.8: Converter average load voltage 555

14.7 Overlap 556

14.6 Overlap – inversion 560
Example 14.9: Converter overlap 561

14.7 Summary 562

(i) Half-wave and full-wave, fully-controlled converter
(ii) Full-wave, half-controlled converter
(iii) Half-wave and full-wave controlled converter with load freewheel diode

14.8 Definitions 564

14.9 Output pulse number 564

14.10 AC-dc converter generalised equations 567

15

AC Voltage Regulators 577

15.1 Single-phase ac regulator 577

15.1.1 Single-phase ac regulator – phase control with line commutation
15.1.1.i - Resistive Load
15.1.1.ii - Pure inductive Load
15.1.1.iii - Load sinusoidal back emf
15.1.1.iv - Semi-controlled single-phase ac regulator
Example 15.1a: Single-phase ac regulator – #1 588
Example 15.1b: Single-phase ac regulator - #2 589
Example 15.1c: Single-phase ac regulator – pure inductive load 590
Example 15.1d: Single-phase ac regulator – #1 with ac back emf composite load 591

15.1.2 Single-phase ac regulator – integral cycle control – line commutated
Example 15.2: Integral cycle control 594
15.1.3 The solid-state relay (SSR)
15.1.3.i Principle of operation
15.1.3.ii Key power elements in solid-state relays
15.1.3.iii Solid-state relay overvoltage fault modes
15.1.3.iv Transient voltage protection devices for an SSR
15.1.3.v Solid-state relay internal protection methods
15.1.3.vi Application considerations
Example 15.3: Solid-state relay turn-on 603

15.2 Single-phase transformer tap-changer – line commutated 606
Example 15.5: Tap changing converter 608

15.3 Single-phase ac chopper regulator – commutable switches 609

15.4 Three-phase ac regulator 613
15.4.1 Fully-controlled three-phase ac regulator with wye load and isolated neutral
15.4.2 Fully-controlled three-phase ac regulator with wye load and neutral connected
15.4.3 Fully-controlled three-phase ac regulator with delta load
15.4.4 Half-controlled three-phase ac regulator
15.4.5 Other thyristor three-phase ac regulators
Example 15.6: Star-load three-phase ac regulator – untapped neutral 627
15.4.6 Solid-state soft starters
15.4.6.i The induction motor
15.4.6.ii Background to induction machine starting
15.4.6.iii Solid-state soft-starter
15.4.6.iv Soft-starter control and application

15.5 Cycloconverter 643

15.6 Three phase fixed frequency hexagonal ac to ac converter 645

15.7 The matrix converter 646
15.7.1 High frequency resonant dc to ac matrix converter 654

15.8 ac to ac conversion with a dc link 654

15.9 Power quality: load efficiency and supply current power factor 655
15.9.1 Load waveforms 655
15.9.2 Supply waveforms
Example 15.7: Power quality - load efficiency 657
Example 15.8: Power quality - squarewave distortion 657
Example 15.9: Power quality - sinusoidal source and constant current load 658
Example 15.10: Power quality - sinusoidal source and non-linear load 659

16

DC Choppers 663

16.1 DC chopper variations 663

16.2 First quadrant dc chopper 664
16.2.1 Continuous load current 664
16.2.2 Discontinuous load current
Example 16.1: DC chopper (first quadrant) with load back emf 672
Example 16.2: DC chopper with load back emf - verge of discontinuous conduction 676
Example 16.3: DC chopper with load back emf - discontinuous conduction 677

16.3 Second quadrant dc chopper 680
16.3.1 Continuous load inductor current 680
16.3.2 Discontinuous load inductor current
Power Electronics

Example 16.4: Second quadrant DC chopper - continuous inductor current 685

16.4 Two quadrant dc chopper - Q I and Q II 687

Example 16.5: Two quadrant DC chopper with load back emf 690

16.5 Two quadrant dc chopper – Q I and Q IV 693

16.5.1 dc chopper: – Q I and Q IV – multilevel output voltage switching (three level)
16.5.2 dc chopper: – Q I and Q IV – bipolar voltage switching (two level)
16.5.3 Multilevel output voltage states, dc chopper

Example 16.6: Asymmetrical, half H-bridge, dc chopper 699

16.6 Four quadrant dc chopper 701

16.6.1 Unified four quadrant dc chopper - bipolar voltage output switching
16.6.2 Unified four quadrant dc chopper - multilevel voltage output switching

Example 16.7: Four quadrant dc chopper 709

17

DC to AC Inverters - Switched Mode

17.1 dc-to-ac voltage-source inverter bridge topologies 711

17.1.1 Single-phase voltage-source inverter bridge
17.1.1i - Square-wave (bipolar) output
17.1.1ii - Quasi-square-wave (multilevel) output

Example 17.1: Single-phase H-bridge with an L-R load 117

Example 17.2: H-bridge inverter ac output factors 718

Example 17.3: Harmonic analysis of H-bridge with an L-R load 720

Example 17.4: Single-phase half-bridge with an L-R load 721

17.1.1vi - PWM-wave output
17.1.2 Three-phase voltage-source inverter bridge
17.1.2i - 180° (π) conduction
17.1.2ii - 120° (⅔π) conduction

17.1.3 Inverter ac output voltage and frequency control techniques
17.1.3i - Variable voltage dc link
17.1.3ii - Single-pulse width modulation

Example 17.5: Single-pulse width modulation 732

17.1.3iiii - Multi-pulse width modulation
17.1.3iiv - Multi-pulse, selected notchting modulation – selected harmonic elimination
17.1.3iix - Sinusoidal pulse-width modulation (SPWM)
17.1.3ix - Phase dead-banding
17.1.3iiix - Triplen injection modulation

17.1.4 Assessment of PWM modulation techniques
17.1.5 Common mode voltage
17.1.6 DC link voltage boosting

17.2 dc-to-ac controlled current-source inverters 751

17.2.1 Single-phase current source inverter
17.2.2 Three-phase current source inverter

17.3 Multi-level voltage-source inverters 755

17.3.1 Diode clamped multilevel inverter
17.3.2 Flying capacitor multilevel inverter
17.3.3 Cascaded H-bridge multilevel inverter
17.3.4 Capacitor clamped modular multilevel M2C inverter
17.3.5 PWM for multilevel inverters
17.3.4iv - Multi-pulse triangular carriers
17.3.4v - Multilevel rotating voltage space vector

17.4 Reversible dc link converters 766

17.4.1 Independent control
17.4.2 Simultaneous control
17.4.3 Inverter regeneration

17.5 Standby inverters and uninterruptible power supplies 770

17.5.1 Single-phase UPS
17.5.2 Three-phase UPS

17.6 Power filters 772

Example 17.6: L-C filter design 772

18

DC to AC Inverters - Resonant Mode

18.1 Resonant dc-ac inverters 775

18.2 L-C resonant circuits 776

18.2.1 - Series resonant L-C-R circuit
18.2.2 - Parallel resonant L-C-R circuit

18.3 Series-load, series resonant voltage-source inverters 780

18.3.1 - Series resonant inverter – single inverter leg
18.3.2 - Series resonant inverter – H-bridge voltage-source inverter
18.3.3 - Series circuit variations

18.4 Parallel-load, series-resonant voltage-source inverter – single inverter leg 784

18.5 Series-parallel-resonant voltage-source inverter – single inverter leg 785

Summary of voltage source resonant inverters

18.6 Parallel resonant current-source inverters 787

18.6.1 - Parallel resonant inverter – single inverter leg
18.6.2 - Parallel resonant inverter – H-bridge current-source inverter

Example 18.1: Half-bridge with a series L-C-R load 789

18.7 Single-switch, current source, series resonant inverter 792

19

DC to DC Converters - Switched Mode

19.1 The forward converter 796

19.1.1 Continuous inductor current
19.1.2 Discontinuous inductor current
19.1.3 Load conditions for discontinuous inductor current
19.1.4 Control methods for discontinuous inductor current
19.1.4i - fixed on-time, variable switching frequency
19.1.4ii - fixed switching frequency, variable on-time
19.1.5 Output ripple voltage
19.1.6 Apparent load resistance
Example 19.1: Buck (step-down forward) converter 802
19.1.6 Underlying operational mechanisms of the forward converter
19.1.7 Hysteresis voltage feedback control of the forward converter
Example 19.2: Hysteresis controlled buck converter 808
19.2 Flyback converters 810
19.3 The boost converter 810
19.3.1 Continuous inductor current
19.3.2 Discontinuous capacitor charging current in the switch off-state
19.3.3 Discontinuous inductor current
19.3.4 Load conditions for discontinuous inductor current
19.3.5 Control methods for discontinuous inductor current
19.3.5i - fixed on-time, variable switching frequency
19.3.5ii - fixed switching frequency, variable on-time
19.3.6 Output ripple voltage
Example 19.3: Boost (step-up flyback) converter 815
Example 19.4: Alternative boost (step-up flyback) converter 817
19.4 The buck-boost converter 818
19.4.1 Continuous choke (inductor) current
19.4.2 Discontinuous capacitor charging current in the switch off-state
19.4.3 Discontinuous choke current
19.4.4 Load conditions for discontinuous inductor current
19.4.5 Control methods for discontinuous inductor current
19.4.5i - fixed on-time, variable switching frequency
19.4.5ii - fixed switching frequency, variable on-time
19.4.6 Output ripple voltage
19.4.7 Buck-boost, flyback converter design procedure
Example 19.5: Buck-boost flyback converter 824
19.5 Flyback converters — a conceptual assessment 826
19.6 The output reversible converter 829
19.6.1 Continuous inductor current
19.6.2 Discontinuous inductor current
19.6.3 Load conditions for discontinuous inductor current
19.6.4 Control methods for discontinuous inductor current
19.6.4i - fixed on-time, variable switching frequency
19.6.4ii - fixed switching frequency, variable on-time
Example 19.6: Reversible forward converter 832
19.6.5 Comparison of the reversible converter with alternative converters
19.7 The boost-buck (Čuk) converter 834
19.7.1 Continuous inductor current
19.7.2 Discontinuous inductor current
19.7.3 Optimal inductance relationship
19.7.4 Output voltage ripple
Example 19.7: Čuk converter 836
19.8 Comparison of basic converters 837
19.8.1 Critical load current
19.8.2 Bidirectional converters
19.8.3 Isolation
19.8.3i - The isolated output, forward converter
19.8.3ii - The isolated output, flyback converter
Example 19.8: Transformer coupled flyback converter 843
Example 19.9: Transformer coupled forward converter 845
19.9 Multiple-switch, balanced, isolated converters 847
19.9.1 The push-pull converter
19.9.2 Bridge converters
20 Advanced DC to DC Converters - Switched Mode 855
20.1 Basic generic smps transfer function mapping 855
20.2 Basic generic current sourced smps 856
20.3 Generic current sourced converters, converted to voltage sourced converters 839
20.4 Thirty-three dc-to-dc voltage source converters 859
Example 20.1: C5 (Čuk) converter topological conversion to G3 and G4 topologies 861
Example 20.2: G1 and G2 converter topological conversion to G5 and G6 topologies 863
20.5 Converters with zero average capacitor voltage 864
20.6 Converters with continuous input and output current (continuous power) 867
20.6.1 Converter component ratings
20.7 Transformer isolated buck-boost dc-dc converters 872
20.8 Capacitor ripple voltage 874
20.9 Current-Doubler Rectifier 875
20.10 Tapped inductor operation 877
20.11 HV referenced dc to dc converter 883
20.12 Current sourced dc to dc converters 883
20.13 Appendix: Analysis of non-continuous inductor current operation 885
Operation with constant input voltage, \(E_i \)
Operation with constant output voltage, \(V_o \)
21 DC to DC Converters - Resonant Mode 903
21.1 Series loaded resonant dc to dc converters 904
21.1.1 Modes of operation - series resonant circuit
21.1.2 Circuit variations
21.2 Parallel loaded resonant dc to dc converters 909
21.2.1 Modes of operation- parallel resonant circuit
21.2.2 Circuit variations
21.3 Series-parallel load resonant dc to dc converters 912
21.3.1 LLC resonant tank circuit
21.3.2 LLC resonant tank circuit
21.4 Resonant coupled-load configurations 915
Example 21.1: Transformer-coupled, series-resonant, dc-to-dc converter 917
21.5 Resonant switch, dc to dc step-down voltage converters 919
21.5.1 Zero-current, resonant-switch, dc-to-dc converter
-½ wave, C_R parallel with load version
21.5.2 Zero-current, resonant-switch, dc-to-dc converter
-½ wave, C_R parallel with switch version
21.5.3 Zero-voltage, resonant-switch, dc-to-dc converter
-½ wave, C_R parallel with switch version
21.5.4 Zero-voltage, resonant-switch, dc-to-dc converter
-½ wave, C_R parallel with load version

Example 21.2: Zero-current, resonant-switch, dc-to-dc converter - ½ wave 932
Example 21.3: Zero-current, resonant-switch, dc-to-dc converter - full-wave 934
Example 21.4: Zero-voltage, resonant-switch, dc-to-dc converter - ½ wave 935

21.6 Resonant switch, dc to dc step-up voltage converters 936
21.6.1 ZCS resonant-switch, dc-to-dc step-up voltage converters
21.6.2 ZVS resonant-switch, dc-to-dc step-up voltage converters

Summary and comparison of ZCS and ZVS Converters

21.7 Appendix: Matrices of resonant switch buck, boost, and buck/boost converters 942

22 50/60Hz Transformers: Single and Three Phase
22.1 DC MMFs in converter transformers 947
22.1.1 Effect of multiple coils on multiple limb transformers
22.1.2 Single-phase toroidal core mmf imbalance cancellation -- zig-zag winding
22.1.3 Single-phase transformer connection, with full-wave rectification
22.1.4 Three-phase transformer connections
22.1.5 Three-phase transformer, half-wave rectifiers - core mmf imbalance
22.1.6 Three-phase transformer with hexa-phase rectification, mmf imbalance
22.1.7 Three-phase transformer mmf imbalance cancellation – zig-zag winding
22.1.8 Three-phase transformer full-wave rectifiers – core mmf

22.2 Auto-transformers 972
22.3 Types of Transformers 977

23 HV Direct-Current Transmission
23.1 HVDC electrical power transmission 980
23.2 HVDC configurations 980
23.2i Monopole and earth return
23.2ii Bipolar
23.2iii Tripole
23.2iv Back-to-back
23.2v Multi-terminal

23.3 Typical HVDC transmission system 983

23.4 Twelve-pulse ac line frequency converters 984
23.4.1 Rectifier mode
23.4.2 Inverter mode

23.5 Twelve-pulse ac line frequency converter operation control 992
23.5.1 Control and protection
23.5.2 HVDC Control objectives

23.6 Delta/Delta/Double polygon 18 pulse converter 996
23.6.1 Analysis of Double-Wound Polygon

23.7 Filtering and power factor correction 999
Example 23.1: Basic six-pulse converter based hvdc transmission 999
Example 23.2: 12-pulse hvdc transmission 1001

23.8 VSC-based HVDC 1002
23.8.1 VSC-Based HVDC control
23.8.2 Power control concept

23.9 HVDC Components 1006
Example 23.3: HVDC transmission with voltage source controlled dc-link #1 1012
Example 23.4: HVDC transmission with voltage source controlled dc-link #2 1013
Example 23.5: HVDC transmission with voltage source controlled dc-link #3 10153
Example 23.6: HVDC transmission with voltage source controlled dc-link #4 1017

23.10 Twelve-pulse transformer based HVDC 1018
23.11 VSC-HVDC transmission systems - modular multilevel converter, M^2C 1018

23.12 Multi-terminal VSC HVDC 1021
23.13 HVDC Earth Electrodes 1022
23.14 HVDC VSC features 1023
23.15 HVDC LCC features 1024
23.16 Features of conventional HVDC and HVAC transmission 1025
23.17 Appendix: HVDC topology classification 1026

24 HVDC Transmission Modelling
24.1 Main system components 1029
24.1.1 AC circuit breaker
24.1.2 Power converter
24.1.3 Power filter
24.1.4 Power transformer
24.1.5 Converter PWM modeling

24.2 VSC HVDC ac power flow control - HVDC PQ operating diagrams 1000
24.3 VSC: vector control, coordinate frame transformation, inner decoupled current control 1002

24.3.1 Converter and ac grid model in static frame
24.3.2 Converter and ac grid models in a rotating coordinate frame
24.3.3 Inner current controller design
24.3.4 Outer controller design
24.3.5 AC voltage control
24.3.6 Power control
24.3.7 DC voltage control
24.3.8 AC grid support
24.3.9 The complete VSC controller

24.4 VSC HVDC SIMULINK controller steady-state simulation 1007

24.5 VSC HVDC SIMULINK simulation of fault conditions 1011

24.5.1 AC faults on V_g
24.5.2 DC fault - on the dc link
24.5.3 Converter modelling for reduced dc voltage
24.5.4 Influence of the dc link capacitors

24.6 VSC HVDC interaction with ac systems 1017

24.6.1 Power flow between ac systems
24.6.2 Operation with a passive ac system

24.7 HVDC VSC harmonics and filtering 1019

24.7.1 Converter modulation
24.7.2 Multi-pulse and multilevel converters
24.7.3 Comparison of harmonic content at the ac terminals

25 FACTS Devices and Custom Controllers 1055

25.1 Flexible AC transmission systems - FACTS 1055

25.2 Power quality 1056

25.3 Principles of power transmission 1056

Example 25.1: AC transmission line VAr 1058

25.4 The theory of instantaneous power (p-q) in three-phase 1059

25.5 FACTS devices 1063

25.6 Static reactive power compensation 1064

25.7 Static shunt reactive power compensation 1065

25.7.1 Thyristor controlled reactor TCR
25.7.2 Thyristor switched capacitor TSC
25.7.3 Shunt Static VAr compensator SVC (TCR/TSC)

Example 25.2: Shunt thyristor controlled reactor specification 1070

25.8 Static series reactive power compensation 1071

25.8.1 Thyristor switched series capacitor TSSC
25.8.2 Thyristor controlled series capacitor TCSC
25.8.3 Series Static VAr compensator SVC (TCR/C)-TCSC

Example 25.3: Series thyristor controlled reactor specification – integral control 1076
Example 25.4: Series thyristor controlled reactor specification – Vernier control 1078

25.9 Self commutating FACTS devices - custom power 1083

25.9.1 Static synchronous series compensator or Dynamic Voltage Restorer - DVR
25.9.2 Static synchronous shunt compensator – STATCOM
25.9.3 Unified power flow controller - UPFC

25.10 Combined active and passive filters 1099

25.11 Summary of compensator comparison and features 1102

25.12 Summary of general advantages of AC transmission over DC transmission 1104

26 Inverter Grid Connection for Embedded Generation 1105

26.1 Distributed generation 1105

26.1.1 DG Possibilities
26.1.2 Integration and Interconnection Requirements
26.1.3 Grid ride through
26.1.4 Conventional protection

26.2 Interfacing conversion methods for dc energy sources 1110

26.3 Interfacing conversion methods for ac energy sources 1116

26.3.1 Unity Power Factor Current Control of a Sinusoidal Current Active Boost Rectifier

26.4 Back to grid (B2G) electric vehicle charging 1118

27 Energy Sources and Storage - Primary Sources 1119

27.1 Hydrocarbon attributes 1119

27.2 The fuel cell 1121

27.3 Materials and cell design 1123

27.3.1 Electrodes
27.3.2 Catalyst
27.3.3 Electrolyte
27.3.4 Interconnect
27.3.5 Stack design

27.4 Fuel cell chemistries 1126

27.4.1 Proton H+ Cation Conducting Electrolyte
27.4.2 Anion (OH-, CO3–, O2–) Conducting Electrolyte
27.5 Six main fuel cells 1129
27.6 Low-temperature fuel cell types 1129
 27.6.1 Polymer exchange membrane fuel cell
 27.6.2 Alkaline fuel cell
 27.6.3 Direct-methanol fuel cell
27.7 High-temperature fuel cell types 1132
 27.7.1 Phosphoric-acid fuel cell
 27.7.2 Molten-carbonate fuel cell
 27.7.3 Solid oxide fuel cell
27.8 Fuel cell summary 1136
27.9 Fuels 1137
27.10 Fuel reformers 1138
 27.10.1 Natural gas reforming
27.11 Hydrogen storage and generation from hydrides 1141
27.12 Fuel cell emissions 1143
27.13 Fuel cell electrical characteristics 1143
27.14 Thermodynamics 1144
 Example 27.1: Formation of water vapour 1145
 Example 27.2: Derivation of Ideal Fuel Cell Voltage 1146
 Example 27.3: Carbon fuel cell 1148
27.15 Fuel cell features 1149
27.16 Fuel cell challenges 1150
 27.16.1 Chemical Technology Challenges
 27.16.2 System Technology Challenges
27.17 Fuel cell summary 1151
27.18 Photovoltaic cells: converting photons to electrons 1154
27.19 Silicon structural physics 1154
 Example 27.4: Photons to create hole-electron pairs in silicon 1123
27.20 Semiconductor materials and structures 1156
 27.20.1 Silicon
 27.20.2 Polycrystalline thin films
 27.20.3 Single-Crystalline Thin Film
 27.20.4 Nanocrystalline
27.21 PV cell structures 1165
 27.21.1 Homojunction Device
 27.21.2 Heterojunction Device
 27.21.3 p-i-n and n-i-p Devices
 27.21.4 Multi-junction Devices
27.22 Equivalent circuit of a PV cell 1168
 27.22.1 Ideal PV cell model
 27.22.2 Practical PV cell model
 27.22.3 Maximum-power point
27.23 Photovoltaic cell efficiency factors 1171
 Example 27.5: Solar cell characteristics 1172
 Example 27.6: PV cell and module characteristics 1173
 27.23.1 Impact of temperature and insolation on I-V characteristics
 Example 27.7: PV module temperature characteristics 1175
27.24 Module (or array) series and parallel PV cell connection 1176
27.25 Battery storage 1178
27.26 The organic photovoltaic cell 1179
27.27 Summary of PV cell technology 1180
 Example 27.8: PV cell open circuit voltage and short circuit current 1182
 Example 27.9: PV cell maximum power and efficiency 1182
 Example 27.10: PV cell electron excitation 1183
 Example 27.11: Fuel cell voltage 1183
 Example 27.12: PV cell efficiency factors 1184
 Example 27.13: PV cell efficiency factors 1184
 Example 27.14: PV cell efficiency factors 1185
28 Energy Sources and Storage - Secondary Sources 1189
28.1 Batteries 1189
28.2 The secondary electro-chemical cell 1190
 28.2.1 REDOX galvanic action
 28.2.2 Intercalation action
28.3 Characteristics of secondary batteries 1194
28.4 The lead-acid battery 1197
 28.4.1 Basic lead-acid cell theory
 28.4.2 Cell/battery construction
 28.4.3 Characteristics of the flooded lead-acid cell
 28.4.4 Different lead-acid cell and battery arrangements
 28.4.5 Lead acid battery charging and storage regimes
 28.4.6 Valve-regulated battery discharge characteristics
 Example 28.1: Lead-acid battery discharge characteristics 1213
 Example 28.2: Lead acid battery life 1216
 28.4.7 Gassing and internal recombination
 28.4.8 User properties and cell type comparisons
28.5 The nickel-cadmium battery 1224
 Example 28.3: NiCd battery electrolyte life 1229
 Example 28.4: NiCd battery requirement 1232
 28.5.1 Nickel-Cadmium battery properties
28.6 The nickel-metal-hydride battery 1233
 28.6.1 Nickel-metal-hydride battery properties
 28.6.2 Nickel-metal-hydride battery characteristics
 28.6.3 Comparison between NiCd and NiMH Cells
Power Electronics

28.7 The lithium-ion battery 1240
28.7.1 Cathode variants cells
28.7.2 General Lithium-ion cell characteristics
28.7.3 General Lithium-ion cell properties
28.7.4 Cell protection circuits

28.8 Battery thermodynamics 1253

Example 28.5: Electrochemistry – battery thermodynamics 1254

28.9 Summary of key primary and secondary cell technologies 1255

28.10 The Electrochemical double layer capacitor - supercapacitor 1257
28.10.1 Double layer capacitor model
28.10.2 Cell parameter specification and measurement methods
28.10.3 Cell characteristics
28.10.4 Thermal properties
28.10.5 Estimated life duration
28.10.6 Cell voltage equalization in a series stack of ultracapacitors
28.10.7 Supercapacitor general properties
28.10.8 Pseudocapacitors

Example 28.6: Ultracapacitor module design using a given cell 1261
Example 28.7: Ultracapacitor constant current characteristics 1270

28.11 Thermoelectric modules 1272
28.11.1 Theoretical background
28.11.2 Thermoelectric materials
28.11.3 Mathematical equations for a thermoelectric module
28.11.4 Features of thermoelectric cooling - Peltier elements
28.11.5 TE cooling design

Example 28.8: Thermoelectric generator design 1288

Example 28.9: Thermoelectric power generation 1284

28.12 Appendix: Primary cells 1292

28.13 Appendix: Empirical battery model 1294

29 Capacitors
29.1 Capacitor general properties 1300
29.1.1 Capacitance
29.1.2 Volumetric efficiency
29.1.3 Equivalent circuit
29.1.4 Lifetime and failure rate

Example 29.1: Failure rate 1304

Example 29.2: Capacitor reliability 1305

29.1.5 Self-healing
29.1.6 Temperature range and capacitance dependence
29.1.7 Dielectric absorption

29.2 Liquid (organic) and solid, metal oxide dielectric capacitors 1307
29.2.1 Construction
29.2.2 Voltage ratings
29.2.3 Leakage current
29.2.4 Ripple current

Example 29.3: Capacitor ripple current rating 1312

Example 29.4: A102, capacitor service life 1314

Example 29.5: Lifetime of tantalum capacitors 1315

29.3 Plastic film dielectric capacitors 1316

29.3.1 Construction
29.3.2 Insulation
29.3.3 Electrical characteristics
29.3.4 Non-sinusoidal repetitive voltages

Example 29.7: Capacitor non-sinusoidal voltage rating 1328

Example 29.8: Capacitor power rating for non-sinusoidal voltages 1328

29.3.5 DC plastic capacitors

29.4 EMI suppression capacitors 1331
29.4.1 Class X capacitors
29.4.2 Class Y capacitors
29.4.3 Feed-through capacitors

29.5 Ceramic dielectric capacitors 1333
29.5.1 Class I dielectrics
29.5.2 Class II dielectrics
29.5.3 Applications

29.6 Mica dielectric capacitors 1336
29.6.1 Properties and applications

29.7 Capacitor type comparison based on key properties 1338

29.8 Appendix: Minimisation of stray capacitance 1338

29.9 Appendix: Capacitor lifetime derating 1340

30 Resistors
30.1 Resistor types 1342

30.2 Resistor construction 1342

30.2.1 Film resistor construction
30.2.2 Carbon composition film resistor construction

Example 30.1: Carbon film resistor 1344

30.2.3 Solid Carbon ceramic resistor construction
30.2.4 Wire-wound resistor construction
30.3 Electrical properties 1345
30.3.1 Resistor/Resistance coefficients
30.3.1i - Temperature coefficient of resistance
Example 30.2: Temperature coefficient of resistance for a thick film resistor 1348
30.3.1ii - Voltage coefficient of resistance
30.3.2 Maximum working voltage
30.3.3 Residual capacitance and residual inductance
Example 30.3: Coefficients of resistance for a solid carbon ceramic resistor 1351
30.4 Thermal properties 1351
30.4.1 Resistors with heatsinking
Example 30.4: Derating of a resistor mounted on a heatsink 1354
30.4.2 Short time or overload ratings
Example 30.5: Non-repetitive pulse rating 1355
30.5 Repetitive pulsed power resistor behaviour 1355
Example 30.6: Pulsed power resistor design 1356
30.5.1 Empirical pulse power
30.5.2 Mathematical pulse power models
Example 30.7: Solid carbon ceramic resistor power rating 1357
30.6 Stability and endurance 1359
Example 30.8: Power resistor stability 13602
30.7 Special function power resistors 1360
30.7.1 Fusible resistors
30.7.2 Circuit breaker resistors
30.7.3 Temperature sensing resistors
30.7.4 Current sense resistors
30.7.5 Thermistors
30.7.6 Light dependent resistors
30.7.7 Potentiometer (Rheostat)
30.7.8 Other specialised resistors
30.8 Appendix: Carbon ceramic electrical and mechanical data and formula 1373
30.9 Appendix: Characteristics of resistance wire 1373
30.10 Appendix: Preferred resistance values of resistors (and capacitors) 1373

31 1375
Soft Magnetic Materials - Inductors and Transformers
31.1 Inductor and transformer electrical characteristics 1376
31.1.1 Inductors
31.1.2 Transformers or magnetically coupled circuits
31.2 Magnetic material types 1378
31.2.1 Ferromagnetic materials
31.2.1i - Steel
31.2.1ii - Iron powders
31.2.1iii - Alloy powders
31.2.1iv - Nanocrystalline
31.2.2 Ferrimagnetic materials - soft ferrites
31.3 Comparison of material types 1379
31.4 Ferrite characteristics 1380
31.4.1 Dimensions and parameters
31.4.2 Permeability
31.4.2i - Initial or intrinsic permeability
31.4.2ii - Amplitude permeability and maximum permeability
31.4.2iii - Reversible or incremental permeability
31.4.2iv - Effective permeability
31.4.2v - Complex permeability
31.4.3 Coercive force and remanence
31.4.4 Core losses
31.4.4i - Core losses at low H
31.4.4ii - Core losses at high H
31.4.5 Temperature effects on core characteristics
31.4.6 Inductance stability
31.4.6i - Parameter effects
31.4.6ii - Time effects
Example 31.1: Inductance variation with time 1390
31.4.6iii - Temperature effects
Example 31.2: Temperature effect on inductance 1390
31.4.6iv - Stored energy in inductors
31.5 Ferrite inductor and choke design, when carrying dc current 1392
31.5.1 Linear inductors and chokes
Example 31.3: Inductor design with Hanna curves 1394
31.5.1i - Core temperature and size considerations
Example 31.4: Inductor design including copper loss 1397
31.5.2 Saturable inductors
31.5.3 Saturable inductor design
Example 31.5: Saturable inductor design 1401
31.5.4 Power ferrite transformer design 1405
31.6 Ferrite voltage transformer design 1405
31.6.1 Ferrite voltage transformer design
31.6.2 Ferrite current transformer
31.6.3 Current transformer design requirements
31.6.4 Current transformer design procedure
Example 31.6: Ferrite current transformer design 1412
31.7 Appendix: Soft ferrite general technical data 1414
31.8 Appendix: Technical data for a ferrite applicable to power applications 1414
31.9 Appendix: Technical data for iron, nickel, and cobalt applicable to power applications 1415
31.10 Appendix: Eddy currents, skin effect and proximity effect 1416
31.11 Appendix: Cylindrical inductor design 1417
Example 31.8: Wound strip air core inductor 1419
Example 31.9: Multi-layer air core inductor 1419
31.12 Appendix: Copper wire design data 1419
31.13 Appendix: Minimisation of stray inductance 1420
31.13.1 Reduction in wiring residual inductance
31.13.2 Reduction in component residual inductance
31.13.2i - Capacitors
31.13.2ii - Capacitors - parallel connected
31.13.2iii - Transformers
32

Hard Magnetic Materials - Permanent Magnets

32.1 Magnetic properties 1435
32.2 Classification of magnetic materials 1437
 32.2.1 Alloys
 32.2.2 Ceramics
 32.2.3 Bonded
 32.2.4 Flexible (rubber)
32.3 Properties of hard magnetic materials 1449
32.4 Permanent magnet magnetization curve (hysteresis loop) and recoil 1454
32.5 Permanent magnet model 1456
32.6 Load lines 1459
 32.6.1 Magnetic Circuit Equations
 32.6.2 Intrinsic permeance coefficient
 Example 32.1: Magnet load dependant operating point 1463
 32.6.3 Demagnetizing field
32.7 Generalising equivalent magnetic circuits 1469
32.8 Permanent magnet stability - Loss of magnetism 1471
32.9 Recoil operation and associated losses 1474
 32.9.1 Losses due to reverse magnetic fields
 32.9.2 Demagnetisation due to temperature increase
 Example 32.2: Magnet load and temperature dependant operating point 1477
32.10 Energy transfer 1479
32.11 Force of attraction within an air gap 1483
32.12 Appendix: Magnet processing and properties 1483
32.13 Appendix: Magnetic basics 1485
32.14 Appendix: Magnetic properties for sintered NdFeB and SmCo magnets 1485
32.15 Appendix: Magnetic axioms 1487

33

Contactors and Relays

33.1 Mechanical requirements for relay operation 1489
33.2 Relay Contacts
 33.2.1 Contact characteristics
 33.2.2 Contact materials
 33.2.3 Contact life – material loss and transfer
33.3 Defining relay performance 1495
33.4 AC and DC relay coils 1497
33.5 Temperature consideration of the coils in dc relays 1496
 Example 33.1: Relay coil thermal properties 1499
33.6 Relay voltage transient suppression 150
 33.6.1 Types of transient suppression utilized with dc relay coils
 33.6.2 Relay contact arc suppression protection with dc power switching relays
33.7 DC power switching 1605
33.8 Miniature Circuit Breakers 1509
 33.8.1 AC MCBs
 Example 33.2: MCB properties 51
 33.8.3 Residual Current Circuit Breaker
33.9 The physics of vacuum high-voltage relays 1522
33.10 Gas filled relays 1523
 33.10.1 SF6 as a dielectric
 33.10.2 Hydrogen as a dielectric
33.11 High voltage relay designs 1524
33.12 Contact ratings 1529
33.13 High voltage relay grounding 1530
33.14 A LV voltage, 750V dc, high-current, 350A dc, make and break relay 1531
33.15 X-ray emissions in vacuum relays 1533
33.16 Power reconstitution conservation method 1453
33.17 MV AC vacuum Interrupts for contactor, switch, and circuit-breaker application 1535
 33.17.1 Basic interruption principle
 33.17.2 Medium-Voltage AC Vacuum circuit breaker characteristics
 33.17.3 Medium-Voltage AC Vacuum circuit breaker Transient Recovery Voltage, TRV
 33.17.4 Altitude derating
 Example 33.3: Vacuum circuit breaker altitude properties 1543
33.18 Corona 1544
33.19 Appendix: Contact metals 1546
34

Transducers and Sensors

34.1 General transducer properties 1548

34.2 Current measurement 1549
 34.2.1 Current measurement: closed loop ferrite transformer
 34.2.2 Current measurement: Rogowski Coil
 34.2.3 Flux-gate Transformer
 34.2.4 Resistive Sensor
 34.2.5 Magneto-optic Sensor
 34.2.6 Integrated ac/dc current sensors

34.3 Voltage measurement 1563
 34.3.1 Differential Isolation (galvanic) Amplifier

34.4 Acceleration measurement 1565
 Example 34.1: accelerometer sensitivity and linearity 1567

34.5 Other sensors 1568

Nomenclature and symbols 1573
 Degrees of protection 1589
 IP codes according to IEC 60529 standard

IEC 947 and IEC 947-3 Standards 1590
 Selecting contactors according to IEC 947-3 standard

Glossary of terms 1591
 Glossary of Wafer Processing terminology [Chapter 1] 1591
 Glossary of Fan Cooling and other Heating and Cooling terminology [Chapters 5, 6] 1595
 Glossary of Thermoelectric terminology [Chapters 6, 28] 1601
 Glossary of Fuselink terminology (Fuseology) [Chapter 12] 1604
 Glossary of Varistor terminology [Chapter 12] 1610
 Glossary of PTC and NTC Thermistor terminology [Chapter 12] 1611
 Glossary of FACTS Terminology [Chapter 25] 1614
 Glossary of Fuel Cell terminology [Chapter 27] 1615
 Glossary of Solar Electric terminology [Chapter 27] 1619
 Glossary of Electrochemical Battery terminology [Chapter 28] 1625
 Glossary of Capacitor terminology [Chapter 29] 1632
 Glossary of Resistor Terminology [Chapter 30] 1636
 Glossary of Magnetic terminology [Chapters 31, 32] 1637
 Glossary of Relay terminology [Chapter 33] 1649
 Glossary of solenoid terminology [Chapter 33] 1662
 Glossary of resolver and synchro terminology [Chapter 34] 1665

Bibliography 1667

Physical constants 1679

INDEX 1680
The book is in five parts.

Part 1 covers power semiconductor switching devices, their static and dynamic electrical and thermal characteristics and properties. Part 2 describes device driving and protection, while Part 3 presents a number of generic applications. Part 4 covers systems and energy sources. The final part, Part 5, introduces capacitors, magnetic components, resistors, and dc relays and their characteristics relevant to power electronic applications.

The 174 non-trivial worked examples cover the key issues in power electronics.

BWW
January 2021