23.1 We have
\[\Delta \nabla y_m = \Delta (y_m - y_{m-1}) = y_{m+1} - y_m - (y_m - y_{m-1}) = y_{m+1} - 2y_m + y_{m-1} \]
and
\[\nabla \Delta y_m = \nabla (y_{m+1} - y_m) = y_{m+1} - y_m - (y_m - y_{m-1}) = y_{m+1} - 2y_m + y_{m-1}. \]
So \(\Delta \nabla = \nabla \Delta. \)

Also,
\[(\Delta - \nabla)(y_m) = (y_{m+1} - y_m) - (y_m - y_{m-1}) = y_{m+1} - 2y_m + y_{m-1}. \]
So \(\Delta \nabla = \Delta - \nabla. \)

Also,
\[\delta^2 y_m = \delta(\delta y_m) = \delta(y_{m+\frac{1}{2}} - y_{m-\frac{1}{2}}) = y_{m+1} - y_m - (y_m - y_{m-1}) = y_{m+1} - 2y_m + y_{m-1}. \]
So \(\delta^2 = \Delta \nabla. \)

Also,
\[\mu \delta y_m = \mu(\delta y_m) = \mu(y_{m+\frac{1}{2}} - y_{m-\frac{1}{2}}) = \frac{1}{2}(y_{m+1} - y_m + (y_m - y_{m-1})) = \frac{1}{2}(y_m - y_{m-1}). \]
So \(\mu \delta = \Delta_0. \)

Similarly,
\[\delta \mu y_m = \delta(\mu y_m) = \delta(\frac{1}{2}(y_{m+\frac{1}{2}} + y_{m-\frac{1}{2}})) = \frac{1}{2}(y_{m+1} + y_m - (y_m + y_{m-1})) = \frac{1}{2}(y_m - y_{m-1}). \]
So \(\delta \mu = \Delta_0. \)

Also,
\[\Delta^2 y_m = \Delta(\Delta y_m) = \Delta(y_{m+1} - y_{m-1}) = y_{m+2} - y_{m+1} - (y_{m+1} - y_m) = y_{m+2} - 2y_{m+1} + y_m. \]
and
\[\delta^2 E y_m = \delta^2 (E y_m) = \delta^2 (y_{m+1}) = y_{m+2} - 2y_{m+1} + y_m. \]
So \(\Delta^2 = \delta^2 E \).

Further,
\[E \delta^2 y_m = E(\delta^2 y_m) = E(y_{m+1} - 2y_m + y_{m-1}) = y_{m+2} - 2y_{m+1} + y_m. \]
So \(\Delta^2 = E \delta^2 \).

23.3 First row of (23.9):
\[U_{1}^{i+1} = (1 - 2\nu)U_{1}^{i} + \nu U_{2}^{i} + p_{1}^{i} = (1 - 2\nu)U_{1}^{i} + \nu U_{2}^{i} + \nu a(ik). \]
Generally,
\[U_{j}^{i+1} = (1 - 2\nu)U_{j}^{i} + \nu U_{j+1}^{i} + U_{j-1}^{i}. \]

Last row of (23.9):
\[U_{N_{x}-1}^{i+1} = (1 - 2\nu)U_{N_{x}-1}^{i} + \nu U_{N_{x}-2}^{i} + p_{N_{x}-1}^{i} = (1 - 2\nu)U_{N_{x}-1}^{i} + \nu U_{N_{x}-2}^{i} + \nu b(ik). \]
Hence, the formulation is correct.

23.5 Following the FTCS analysis, we have for BTCS
\[R_{j}^{i} = \left(\frac{\partial u}{\partial t} - \frac{4}{k} \frac{\partial^2 u}{\partial t^2} + O(k^2) \right) - \left(\frac{\partial^2 u}{\partial t^2} - \frac{1}{12} h^2 \frac{\partial^4 u}{\partial x^4} + O(h^4) \right). \]
Since \(u \) satisfies the PDE (23.2), we have
\[R_{j}^{i} = -\frac{1}{k} \frac{\partial^2 u}{\partial t^2} - \frac{1}{12} h^2 \frac{\partial^4 u}{\partial x^4} + O(k^2) + O(h^4). \]

23.7 Expanding the equation in the exercise gives
\[U_{j}^{i+1} - \frac{1}{2} \nu [U_{j+1}^{i+1} - 2U_{j}^{i+1} + U_{j-1}^{i+1}] = U_{j}^{i} + \frac{1}{2} \nu [U_{j+1}^{i} - 2U_{j}^{i} + U_{j-1}^{i}], \]
which rearranges to
\[(1 + \nu)U_{j}^{i+1} = \frac{1}{2} \nu U_{j+1}^{i+1} + \frac{1}{2} \nu U_{j-1}^{i+1} + (1 - \nu)U_{j}^{i} + \frac{1}{2} \nu U_{j+1}^{i} + \frac{1}{2} \nu U_{j-1}^{i}. \]
Multiplying by 2 gives (23.18).

23.9 General row of (23.19) gives
\[(1 + \nu)U_{j}^{i+1} - \frac{1}{2} \nu U_{j+1}^{i+1} - \frac{1}{2} \nu U_{j-1}^{i+1} = (1 - \nu)U_{j}^{i} + \frac{1}{2} \nu U_{j+1}^{i} + \frac{1}{2} \nu U_{j-1}^{i}, \]
which agrees with (23.18). The vector \(r^{i} \) has \(r_{1}^{i} = \frac{1}{2} \nu [U_{0}^{i} + U_{0}^{i+1}] \) and \(r_{N_{x}-1}^{i} = \frac{1}{2} \nu [U_{N_{x}}^{i} + U_{N_{x}}^{i+1}] \), as required.

2
23.11 General row of equation in exercise is

\[\frac{1}{2} U_{j}^{i+1} + \frac{1}{2} \left\{ (1 + 2\nu) U_{j}^{i+1} - \nu U_{j-1}^{i+1} - \nu U_{j+1}^{i+1} \right\} = \frac{1}{2} U_{j}^{i} + \frac{1}{2} \left\{ (1 - 2\nu) U_{j}^{i} + \nu U_{j-1}^{i} + \nu U_{j+1}^{i} \right\}. \]

This rearranges to

\[(1 + \nu) U_{j}^{i+1} = \frac{1}{2} \nu U_{j+1}^{i+1} + \frac{1}{2} \nu U_{j-1}^{i+1} + (1 - \nu) U_{j}^{i} + \frac{1}{2} \nu U_{j-1}^{i} + \frac{1}{2} \nu U_{j+1}^{i}, \]

which is equivalent to (23.18). Also, \(\frac{1}{2} (p^i + q^i)_1 = r_1^i \) and \(\frac{1}{2} (p^i + q^i)_{N_x-1} = r^i_{N_x-1} \), as required.