Publications

Publications are listed in reverse chronological order; peer-reviewed journal contributions are assigned a number, while other publications are assigned a letter. Publications in dark grey resulted from David's undergraduate, postgraduate or postdoctoral research.

Preprints, and Papers Under Review

  • i. A Novel Approach to the Formation of Gold(I)-Difluorocarbene Species from Gold(I)-Trifluoromethyl Precursors
    S. M. P. Vanden Broeck, D. J. Nelson, A. Collado, L. Falivene, L. Cavallo, D. B. Cordes, A. M. Z. Slawin, K. Van Hecke, F. Nahra, S. P. Nolan, and C. S. J. Cazin, Submitted
  • ii. Optimization of Catalysts and Conditions in Gold Catalysis. Part I: Ligand Development
    A. Collado, D. J. Nelson, and S. P. Nolan, Submitted
  • iii. Operando Neutron Scattering - Following Reactions in Real Time Using Neutrons
    V. Skuakaskas, E. L. B. Johnson Humphrey, I. Hitchcock, A. York, J. Kelleher, E. Gibson, D. J. Nelson, and I. Silverwood, Submitted

2020

  • 55. Design Concepts for N-Heterocyclic Carbenes [DOI]
    F. Nahra, D. J. Nelson, and S. P. Nolan, Trends Chem., 2020, 2, 1096.
  • 54. A quantitative empirical directing group scale for selectivity in iridium-catalysed hydrogen isotope exchange reactions. [Pre-print (ChemRxiv)] [DOI] [Open Access]
    D. S. Timofeeva, D. M. Lindsay, W. J. Kerr, and D. J. Nelson, Cat. Sci. Technol., 2020, 10, 7249.
  • 53. Unexpected Nickel Complex Speciation Unlocks Alternative Pathways for the Reactions of Alkyl Halides with dppf-Nickel(0). [Pre-print (ChemRxiv)] [DOI] [Open Access]
    M. E. Greaves, T. O. Ronson, G. C. Lloyd-Jones, F. Maseras, S. Sproules, and D. J. Nelson, ACS Catalysis, 2020, 10, 10717.
  • 52. Straightforward access to chalcogenoureas derived from N-heterocyclic carbenes and their coordination chemistry. [DOI]
    M. Saab, D. J. Nelson, N. V. Tzouras, T. A. C. A. Bayrakdar, S. P. Nolan, F. Nahra, and K. Van Hecke, Dalton Trans. 2020, 40, 12068.
  • 51. Aldehydes and Ketones Influence Reactivity and Selectivity in Nickel-Catalyzed Suzuki-Miyaura Reactions. [Pre-print (ChemRxiv)] [DOI] [Open Access]
    A. K. Cooper, D. K. Leonard, S. Bajo, P. M. Burton, and D. J. Nelson, Chem. Sci., 2020, 11, 1905
    (Highlighted in Organic Process Research and Development)
  • 50. Nickel versus Palladium in Cross-Coupling Catalysis: On the Role of Substrate Coordination to Zerovalent Metal Complexes. [DOI]
    A. K. Cooper, P. M. Burton, and D. J. Nelson, Synthesis, 2020, 52, 565.
    (Part of a special issue: "Buergenstock Special Section 2019: Future Stars in Organic Chemistry")
    (Highlighted in SynForm)

2019

  • N. Mechanistic insight into organic and industrial transformations: general discussion. [DOI]
    Y. Aoki, et al. Faraday Discuss., 2019, 220, 282.
  • M. Physical methods for mechanistic understanding: general discussion. [DOI]
    Y. Aoki, et al. Faraday Discuss., 2019, 220, 144.
  • 49. Metabolomic Profiling of the Immune Stimulatory Effect of Eicosenoids on 4 PMA-Differentiated THP-1 Cells [DOI] [Open Access]
    A. M. Alqarni, T. Dissanyake, D. J. Nelson, J. A. Parkinson, M. J. Dufton, V. A. Ferro, and D. G. Watson, Vaccines, 2019, 7, 142.
  • L. Highlights from the 54th EUCHEM Bürgenstock Conference on Stereochemistry, Brunnen, Switzerland, May 2019 [DOI]
    D. J. Nelson and J. Wencel-Delord, Chem. Commun., 2019, 55, 10043.
  • 48. The Electrophilic Fluorination of Enol Esters using SelectFluor Occurs via a Polar Two-Electron Process. [DOI]
    S. H. Wood, S. Etridge, A. R. Kennedy, J. M. Percy, and D. J. Nelson, Chem. Eur. J., 2019, 25, 5574.
  • 47. An N-Heterocyclic Carbene with a Saturated Backbone and Spatially-Defined Steric Impact. [DOI]
    G. Laidlaw, S. H. Wood, A. R. Kennedy, and D. J. Nelson, Z. Anorg. Allg. Chem., 2019, 645, 105.

2018

  • 46. Steric effects determine the mechanisms of reactions between bis(N-heterocyclic carbene)nickel(0) complexes and aryl halides. [DOI]
    D. J. Nelson and F. Maseras, Chem. Commun., 2018, 54, 10646.
  • 45. Insights into mechanism and selectivity in ruthenium(II)-catalysed ortho-arylation reactions directed by Lewis basic groups [DOI]
    J. McIntyre, I. Mayoral-Soler, P. Salvador, A. Poater, and D. J. Nelson, Cat. Sci. Technol., 2018, 8, 3174.
  • 44. Coinage metal complexes of selenoureas derived from N-heterocyclic carbenes [DOI]
    F. Nahra, K. van Hecke, A. R. Kennedy, and D. J. Nelson, Dalton Trans., 2018, 47, 10671.
    (Invited contribution to themed issue: New Talent: Europe)
  • K. Metallate Complexes of the Late Transition Metals: Organometallic Chemistry and Catalysis [DOI]
    A. Gómez-Suárez, D. J. Nelson, and S. P. Nolan, in Advances in Organometallic Chemistry, 2018, 69, 283.
  • 43. Interrogating Pd(II) Anion Metathesis Using a Bifunctional Chemical Probe: A Transmetalation Switch [DOI] [Synfacts Article]
    J. J. Molloy, C. P. Seath, M. J. West, C. McLaughlin, N. J. Fazakerley, A. R. Kennedy, D. J. Nelson, and A. J. B. Watson, J. Am. Chem. Soc., 2018, 140, 126.

2017

  • 42. Hydroxide Complexes of the Late Transition Metals: Organometallic Chemistry and Catalysis [DOI]
    D. J. Nelson and S. P. Nolan, Coord. Chem. Rev., 2017, 353, 278.
  • 41. Halide Abstraction Competes with Oxidative Addition in the Reactions of Aryl Halides with [Ni(PMenPh(3-n))4] [DOI] [Open Access]
    I. Funes-Ardoiz, D. J. Nelson,* and F. Maseras,* Chem. Eur. J., 2017, 23, 16728.
  • 40. The preference for dual-gold(I) catalysis in the hydro(alkoxylation vs phenoxylation) of alkynes. [DOI]
    È. Casals-Cruañas, O. F. González-Belman, P. Besalú-Sala, D. J. Nelson, and A. Poater, Org. Biomol. Chem., 2017, 15, 6416.
  • J. Transition Metal Complexes and Ligand Synthesis [Info]
    D. J. Nelson and S. P. Nolan, in Contemporary Catalysis: Science, Technology and Applications, eds P. C. J. Kamer, D. Vogt, J. Thybaut, Royal Society of Chemistry, Cambridge, 2017.
  • 39. Oxidative Addition of Aryl Electrophiles to a Prototypical Nickel(0) Complex: Mechanism and Structure/Activity Relationships [DOI] [Open Access] [Lay Summary]
    S. Bajo, G. Laidlaw, A. R. Kennedy, S. Sproules,* and D. J. Nelson,* Organometallics, 2017, 36, 1662.
  • 38. Quantifying and understanding the steric properties of N-heterocyclic carbenes [DOI / Correction to Table 4]
    A. Gómez-Suárez, D. J. Nelson, and S. P. Nolan,* Chem. Commun, 2017, 53, 2650.
  • I. Carboxylation, Carbonylation, and Dehalogenation [DOI]
    Nelson, D. J., Science of Synthesis: N-Heterocyclic Carbenes in Catalytic Organic Synthesis, 2016, 2, 281.

2016

  • H. Synthesis, Activation, and Decomposition of N-Heterocyclic Carbene-Containing Complexes.
    D. J. Nelson, J. Praetorius, and C. M. Crudden, in N-Heterocyclic Carbenes: From Laboratory Curiosities to Efficient Synthetic Tools (Second Edition), ed. S. Díez González, Royal Society of Chemistry, Cambridge, 2016.
  • 37. Synthesis and characterisation of an N-heterocyclic carbene with spatially-defined steric impact. [DOI]
    P. Shaw, A. R. Kennedy, and D. J. Nelson,* Dalton Trans., 2016, 45, 11772.
  • G. Grignard Reagents and Palladium. [Info / DOI: Book / DOI: Chapter]
    D. J. Nelson, C. S. J. Cazin, and S. P. Nolan, in Grignard Reagents and Transition Metal Catalysts, ed J. Cossy, Walter de Gruyter, Berlin, 2016 (pp 1-60).
  • F. 1,3-Bis(2,6-diisopropylphenyl)imidazol-2-ylidene. [DOI]
    R. A. Kelly, G. A. Grasa, D. J. Nelson and S. P. Nolan, Encyclopedia of Reactions in Organic Synthesis (e-EROS), 2016.
  • E. Book Review: Cleavage of Carbon–Carbon Single Bonds by Transition Metals. [DOI]
    D. J. Nelson,* Appl. Organomet. Chem. 2016, 30, 605.
  • 36. Towards Microfluidic Reactors for In Situ Synchrotron Infrared Studies. [DOI]
    I. P. Silverwood,* N. Al-Rifai, E. Cao, D. J. Nelson, A. Chutia, P. P. Wells, S. P. Nolan, M. D. Frogley, C. R. A. Catlow, and A. Gavriilidis, Rev. Sci. Instrum., 2016, 87, 024101.
  • 35. Recyclable NHC Catalyst for the Development of a Generalized Approach to Continuous Buchwald-Hartwig Reaction and Work-Up. [DOI]
    R. E. Meadows,* A. Chartoire, C. Claver, M. Corpet, J. Krinsky, J. Mayen, D. J. Nelson, S. P. Nolan, R. Woodward, Org. Process Res. Dev., 2016, 20, 551-557.
  • 34. On the Mechanism of the Digold(I) Hydroxide-Catalysed Hydrophenoxylation of Alkynes. [DOI]
    A. Gómez-Suárez, Y. Oonishi, A. R. Martin, S. V. C. Vummaleti, D. J. Nelson, D. B. Cordes, A. M. Z. Slawin, L. Cavallo,* S. P. Nolan,* and A. Poater,* Chem. Eur. J., 2016, 22, 1125-1132.

  • 33. Mechanism of the Transmetalation of Organosilanes to Gold. [DOI] [Open Access]
    L. Falivene, D. J. Nelson, S. Dupuy, S. P. Nolan,* A. Poater,* and L. Cavallo,* ChemistryOpen, 2016, 5, 60-64.

2015

  • 32. Half-Sandwich Nickel(II) Complexes Bearing 1,3-Di(cycloalkyl)imidazol-2-ylidene Ligands. [DOI] [Open Access]
    J. Yau, K. E. Hunt, L. McDougall, A. R. Kennedy and D. J. Nelson,* Beilstein J. Org. Chem., 2015, 11, 2171-2178.
    (Invited contribution to themed issue: N-Heterocyclic Carbenes)
  • 31. Accessible Syntheses of Late Transition Metal (Pre-)Catalysts Bearing N-Heterocyclic Carbene Ligands. [DOI]
    D. J. Nelson,* Eur. J. Inorg. Chem. 2015, 2015, 2012-2027.
    (Highlighted as one of the most accessed articles between November 2014 and October 2015)
  • 30. Evaluation of an Olefin Metathesis Pre-catalyst with a Bulky and Electron-Rich N-Heterocyclic Carbene.[DOI]
    S. Manzini, C. A. Urbina Blanco, D. J. Nelson, A. Poater, T. Lebl, S. Meiries, A. M. Z. Slawin, L. Falivene, L. Cavallo and S. P. Nolan,* J. Organomet. Chem., 2015, 780, 43-48.
  • 29. What can NMR spectroscopy of selenoureas and phosphinidenes teach us about the pi-accepting abilities of N-heterocyclic carbenes? [DOI] [Open Access]
    S. V. C. Vummaleti, D. J. Nelson, A. Poater, A. Gómez-Suaréz, D. B. Cordes, A. M. Z. Slawin, S. P. Nolan,* and L. Cavallo,* Chem. Sci., 2015, 6, 1895-1904.

2014

  • D. The Influence of Structure on Reactivity in Alkene Metathesis. [DOI]
    D. J. Nelson* and J. M. Percy, Adv. Phys. Org. Chem., 2014, 48, 81-188.
  • C. N-Heterocyclic Carbenes. [DOI]
    D. J. Nelson and S. P. Nolan, in N-Heterocyclic Carbenes: Effective Tools for Organometallic Synthesis, ed. S. P. Nolan, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2014.
  • B. In the Lab: Rational Studies Towards Efficient, Scalable Catalytic Reactions. [DOI] [Open Access]
    D. J. Nelson,* Johnson Matthey Technol. Rev., 2014, 58, 173-175.
    (Invited contribution)
  • 28. Iridium(I) hydroxides in catalysis: rearrangement of allylic alcohols to ketones. [DOI]
    D. J. Nelson, J. A. Fernandez-Salas, B. J. Truscott, S. P. Nolan,* Org. Biomol. Chem., 2014, 12, 6672-6676.
  • 27. Exploring the Co-ordination of Cyclic Selenoureas to Gold(I). [DOI]
    D. J. Nelson, F. Nahra, Scott R. Patrick, David B. Cordes, A. M. Z. Slawin and S. P. Nolan,* Organometallics, 2014, 33, 3640-3645.
  • 26. Key processes in ruthenium-catalysed olefin metathesis. [DOI] [Open Access]
    D. J. Nelson, S. Manzini, C. A. Urbina Blanco, and S. P. Nolan,* Chem. Commun., 2014, 50, 10355-10375.
    (Invited feature article)
  • 25. Insights into the Decomposition of Metathesis Pre-catalysts. [DOI]
    S. Manzini, A. Poater, D. J. Nelson, A. M. Z. Slawin, L. Cavallo* and S. P. Nolan,* Angew. Chem. Int. Ed., 2014, 53, 8995-8999.
  • 24. Methoxy-functionalised N-Heterocyclic Carbenes. [DOI]
    D. J. Nelson, A. Collado, S. Manzini, S. Meiries, A. M. Z. Slawin and S. P. Nolan,* Organometallics, 2014, 33, 2048-2058.
  • A. Letter to the Editor concerning: “Carbon-Heteroatom Coupling Using Pd-PEPPSI Complexes” by Valente et al.. [DOI]
    D. J. Nelson and S. P. Nolan,* Org. Proc. Res. Dev., 2014, 18, 456-457.
  • 23. Efficient C—N and C—S Bond Formation Using the Highly Active [Ni(allyl)Cl(IPr*OMe)] Pre-Catalyst. [DOI]
    A. R. Martin, D. J. Nelson, S. Meiries, A. M. Z. Slawin, and S. P. Nolan,* Eur. J. Org. Chem., 2014, 2014, 3127-3131.
  • 22. Does the rate of competing isomerisation during alkene metathesis depend on pre-catalyst initiation rate?. [DOI]
    D. J. Nelson* and J. M. Percy,* Dalton Trans., 2014, 43, 4674-4679.
  • 21. From ruthenium olefin metathesis catalyst to (η5-3-phenylindenyl)hydrido complex via alcoholysis. [DOI]
    S. Manzini, D. J. Nelson, T. Lebl, A. Poater, L. Cavallo, A. M. Z. Slawin and S. P. Nolan,* Chem. Commun., 2014, 50, 2205-2207.
  • 20.How phenyl makes a difference: mechanistic insight into ruthenium(II)-catalysed isomerisation of allylic alcohols. [DOI] [Open Access]
    S. Manzini, A. Poater, D. J. Nelson, L. Cavallo and S. P. Nolan,* Chem. Sci., 2014, 5, 180-188.
  • 19. CO2 fixation employing an Iridium(I)-hydroxide complex. [DOI]
    B. J. Truscott, D. J. Nelson, A. M. Z. Slawin and S. P. Nolan,* Chem. Commun., 2014, 50, 286-288.
    (Inside front cover of issue 3, 2014; image by Dr Scott R. Patrick)

2013

  • 18. Synthesis, characterization and luminescence studies of gold(I)-NHC amide complexes. [DOI] [Open Access]
    A. Gómez-Suaréz, D. J. Nelson, D. G. Thompson, D. B. Cordes, D. Graham, A. M. Z. Slawin and S. P. Nolan,* Beilstein J. Org. Chem., 2013, 9, 2216-2223.
    (Invited contribution to themed issue: Gold catalysis for organic synthesis II)
  • 17. Synthesis and Reactivity of New Bis(N-Heterocyclic Carbene) Iridium(I) Complexes. [DOI]
    D. J. Nelson, B. J. Truscott, A. M. Z. Slawin and S. P. Nolan,* Inorg. Chem., 2013, 52, 12674-12681.
  • 16. Olefin metathesis by Grubbs-Hoveyda complexes: computational and experimental studies of the mechanism and substrate-dependent kinetics. [DOI]
    I. W. Ashworth, I. H. Hillier,* D. J. Nelson, J. M. Percy* and M. A. Vincent, ACS Catal., 2013, 3, 1929-1939.
  • 15. A highly active cationic ruthenium complex as an efficient catalyst for alkene isomerisation towards high value molecules. [DOI]
    S. Manzini, D. J. Nelson, and S. P. Nolan,* ChemCatChem, 2013, 5, 2848-2851.
  • 14. Exploring the limits of catalytic ammonia borane dehydrogenation by a bis(N-heterocyclic carbene) iridium (III) complex. [DOI]
    D. J. Nelson,‡ B. J. Truscott,‡ J. D. Egbert, A. M. Z. Slawin and S. P. Nolan,* Organometallics, 2013, 32, 3769-3772.
  • 13. Quantifying and understanding the electronic properties of N-heterocyclic carbenes. [DOI]
    D. J. Nelson and S. P. Nolan,* Chem. Soc. Rev., 2013, 42, 6723-6753.
  • 12. Iridium(I)-hydroxides: powerful synthons for bond activation. [DOI]
    B. J. Truscott, D. J. Nelson, C. Luján, A. M. Z. Slawin and S. P. Nolan,* Chem. - Eur. J., 2013, 19, 7904-7916.
  • 11. Deuteration of boranes: catalysed versus non-catalysed processes. [DOI]
    D. J. Nelson, J. D. Egbert and S. P. Nolan,* Dalton Trans., 2013, 42, 4105-4109.
    (Part of a special issue: "Mechanistic Organometallic Chemistry")
  • 10. Synergic effects between N-Heterocyclic Carbene and chelating-benzylidene ligands towards the initiation step of Grubbs-Hoveyda type complexes. [DOI]
    D. J. Nelson, P. Queval, M. Rouen, M. Magrez, F. Caijo, E. Borré, I. Laurent, C. Crévisy, O. Baslé, M. Mauduit* and J. M. Percy,* ACS Catal., 2013, 3, 259-264.
  • 9. Solvent effects on Grubbs' pre-catalyst initiation rates. [DOI]
    I. W. Ashworth, D. J. Nelson* and J. M. Percy,* Dalton Trans., 2013, 42, 4110-4113.
    (Part of a special issue: "Mechanistic Organometallic Chemistry")

2012

  • 8. Searching for the hidden hydrides: studying the competition between alkene isomerisation and metathesis with Grubbs' catalysts. [DOI]
    I. W. Ashworth, I. H. Hillier,* D. J. Nelson, J. M. Percy* and M. A. Vincent, Eur. J. Org. Chem., 2012, 2012, 5673-5677.

2011

  • 7. Why is RCM preferred over dimerisation? Predicting and estimating thermodynamic effective molarities by solution experiments and electronic structure calculations. [DOI]
    D. J. Nelson, S. H. Kyne, G. Rinaudo, I. W. Ashworth, J. M. Percy,* J. A. Parkinson, I. H. Hillier,* and M. A. Vincent, Chem. - Eur. J., 2011, 17, 13087-13094.
  • 6. Toward a simulation approach for alkene ring-closing metathesis: scope and limitations of a model for RCM. [DOI]
    D. J. Nelson, D. Carboni, I. W. Ashworth and J. M. Percy, J. Org. Chem., 2011, 76, 8386-8393.
  • 5. What is the initiation step of the Grubbs-Hoveyda olefin metathesis catalyst? [DOI]
    I. W. Ashworth, I. H. Hillier,* D. J. Nelson, J. M. Percy* and M. A. Vincent, Chem. Commun., 2011, 47, 5428-5430.

2010

  • 4. On the relationship between structure and reactivity in olefin ring-closing metathesis. [DOI]
    I. W. Ashworth, D. Carboni, I. H. Hillier,* D. J. Nelson, J. M. Percy* and G. Rinaudo, Chem. Commun., 2010, 46, 7145-7147.

2009

  • 3. Tri-substituted cyclooctenone synthesis at the limits of relay ring-closing metathesis: a difluorinated analogue of fucose. [DOI]
    I. W. Ashworth, J. A. L. Miles, D. J. Nelson, J. M. Percy* and K. Singh, Tetrahedron, 2009, 65, 9637-9646.
  • 2. Prediction of ring formation efficiency via diene ring-closing metathesis (RCM) using the M06 density functional. [DOI]
    S. Pandian, I. H. Hillier,* M. A. Vincent, N. A. Burton, I. W. Ashworth, D. J. Nelson, J. M. Percy* and G. Rinaudo, Chem. Phys. Lett., 2009, 476, 37-40.
  • 1. Pyrrolo[3,2,1-ij]quinolin-4-one and pyrrolo[3,2,1-ij]quinolin-6-one. [DOI]
    H. McNab,* D. J. Nelson and E. J. Rozgowska, Synthesis, 2009, 13, 2171-2174.