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Combinatorial game theory theory deals with symmetri, �nite games played by two players

who take turns making moves. That a game is symmetri means that the legal moves in

a given position do not depend on whose turn it is. Chess is thus not symmetri, beause

eah player an only move the white or the blak piees. That a game is �nite means that

from any position the game will be �nished in a �nite number of moves.

The game Nim is played by two players, with several piles of stones. In a turn, a player is

to remove any positive number of stones from any one of the piles, but only from one pile.

This means removing from one and up to all the stones in one of the piles. The player to

remove the last stone wins.

Any �nite symmetri two player game G an be �translated� into Nim, meaning that eah

position in G is equivalent to a position in Nim, so that a winning move, if one exists, an

be omputed in Nim and then translated bak into G.

Before explaining how this �translation� is done, and why it works, three things should be

pointed out:

1. Any position that arises is either a winning position or a losing position for the player

whose turn it is. That is, either that player an guarantee a win, by making the right move,

or else she is fored to move to a position from whih the opponent an win. Positions

where there are no moves left are alled �nal positions and we usually (but not always)

assume that a �nal position is a losing position, and thus that a player who an't make a

move will lose. A position that is not a losing position is a winning position.

2. It is important to understand that in a winning position there is some move (possibly

more than one) that will lead to a losing position, whereas in a losing position every move

will lead to a winning position.

3. In order to use Nim as a model for all �nite, symmetri two player games, we need to

modify the rules slightly, namely, to allow a player to add any positive number of stones to

a pile, instead of removing stones. But, there must be some rule that guarantees that the

game is �nite. The reason that this doesn't hange the winning strategy in Nim, more than

trivially, is that if a player in a losing position adds stones, the opponent simply removes

the added stones and thus rereates the losing position.

Assume we know all the �nal positions in a given game (and that �nal positions are losing

positions). Suh positions are assigned the Nim-value 0 (and are equivalent to Nim piles

with 0 stones).

The Nim-value of a position that is not a �nal position is determined reursively in the Nim-value is als
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following way:

Let P be suh a position. List all positions that an arise after one move from P . Assume

(by indution) that we know the Nim-values of those �earlier� positions. Let V (P ) be the
set of Nim-values obtained this way, that is, the set of Nim-values of all positions that an

be reahed by making one move from the position P .

The Nim-value of P is then de�ned as the smallest natural number that does not belong

The number 0 is

natural

to V (P ).



In a position with many omponents (e.g. many piles where eah move an only a�et

one pile) the Nim-value is omputed by taking the Nim-sum of the Nim-values of the
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XOR-addition

omponents, that is, the XOR-sum of their Nim-values. The XOR-sum of two numbers is

obtained by writing them in binary and then adding without arrying.

Example: Grundy's game is played with piles of stones and eah move onsists of seleting

a pile and splitting it into two piles of di�erent sizes. We an thus split a pile with 4

stones into piles with 1 and 3 stones, respetively, but not into two 2 stone piles. The �nal

positions are those where eah pile has either one or two stones, sine these an not be

split.

Let's ompute the Nim-values for the �rst few pile sizes in this game:

Number Possible pos. Values Nim-values Value of

stones after one move of piles of positions position

1 0 0

2 0 0

3 1-2 0-0 0 1

4 1-3 0-1 1 0

5 1-4, 2-3 0-0, 0-1 0,1 2

6 1-5, 2-4 0-2, 0-0 2,0 1

7 1-6, 2-5, 3-4 0-1, 0-2, 1-0 1,2,1 0

For the position 7 in this example we see that the values of the piles in the resulting

positions 1�6, 2�5 and 3�4 are 0�1, 0�2, and 1�0, respetively. The orresponding

Nim-sums are therefore 1, 2, and 1, so the set M(P ) beomes {1, 2} and the value of the

position is 0, whih is the smallest natural number that does not belong to {1, 2}.

Note that the Nim-sum of two piles in the ases above is always very simple, beause the

Nim-sum of two di�erent powers of 2 is just their ordinary sum. The next two ases look

like this:

8 1-7 2-6 3-5 0-0, 0-1, 1-2 0, 1, 3 2

9 1-8 2-7 3-6 4-5 0-2, 0-0, 1-1, 0-2 2, 0, 0, 2 1

Here the position 3�6 has value 0, beause both piles (3 and 6) have value 1, and the

Nim-sum of a number with itself is always 0 (why?). Another example is 5 ⊕ 6 = 3, as
5 = 4 + 1 and 6 = 4 + 2, so 5⊕ 6 = 1 + 2, where ⊕ is the XOR-sum.
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