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Introduction

State space methods are used for a wide variety of time series
problems

They are important in and of themselves

Also time-varying parameter VARs (TVP-VARs) and stochastic
volatility are state space models

Advantage of state space models: well-developed set of MCMC
algorithms for doing Bayesian inference
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Remember: our general notation for a VAR was:

yt = Ztβ+ ε

In many macroeconomic applications, unrealistic to assume constant
β

This leads to TVP-VAR:

yt = Ztβt + εt

where
βt+1 = βt + ut

This is a state space model.

In VAR assume εt to be i.i.d. N (0,Σ)
In empirical macroeconomics, this is often unrealistic.

Want to have var (εt ) = Σt
This also leads to state space models.
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The Normal Linear State Space Model

Fairly general version of Normal linear state space model:
Measurement equation:

yt = Wtδ+ Ztβt + εt

State equation:
βt+1 = Ttβt + ut

yt and εt defined as for VAR
Wt is known M × p0 matrix (e.g. lagged dependent variables or
explanatory variables with constant coeffi cients)
Zt is known M ×K matrix (e.g. lagged dependent variables or
explanatory variables with time varying coeffi cients)
βt is k × 1 vector of states (e.g. VAR coeffi cients)
εt ind N (0,Σt )
ut ind N (0,Qt ).
εt and us are independent for all s and t.
Tt is a k × k matrix (usually fixed, but sometimes not).
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Key idea: for given values for δ, Tt , Σt and Qt (called “system
matrices”) posterior simulators for βt for t = 1, ..,T exist.

E.g. Carter and Kohn (1994, Btka), Fruhwirth-Schnatter (1994,
JTSA), DeJong and Shephard (1995, Btka) and Durbin and
Koopman (2002, Btka).

I will not present details of these (standard) algorithms

These algorithms involve use of methods called Kalman filtering and
smoothing

Filtering = estimating a state at time t using data up to time t

Smoothing = estimating a state at time t using data up to time T

Recently other algorithms have been proposed in several papers by
Joshua Chan (Australian National University) and Bill McCausland
(University of Montreal)
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Notation: βt =
(

β′1, .., β
′
t

)′ stacks all the states up to time t (and
similar superscript t convention for other things)

Gibbs sampler: p
(

βT |yT , δ,TT ,ΣT ,QT
)
drawn use such an

algorithm

p
(

δ|yT , βT ,TT ,ΣT ,QT
)
, p
(
TT |yT , βT , δ,ΣT ,QT

)
,

p
(

ΣT |yT , βT , δ,TT ,QT
)
and p

(
QT |yT , βT , δ,TT ,ΣT

)
depend

on precise form of model (typically simple since, conditional on βT

have a Normal linear model)

Typically restricted versions of this general model used

TVP-VAR of Primiceri (2005, ReStud) has δ = 0,Tt = I and Qt = Q
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Example of an MCMC Algorithm

Special case δ = 0,Tt = I ,Σt = Σ and Qt = Q

Homoskedastic TVP-VAR of Cogley and Sargent (2001, NBER)

Need prior for all parameters

But state equation implies hierarchical prior for βT :

βt+1|βt ,Q ∼ N (βt ,Q)

Formally:

p
(

βT |Q
)
=

T

∏
t=1
p
(

βt |βt−1,Q
)

Hierarchical: since it depends on Q which, in turn, requires its own
prior.
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Note β0 enters prior for β1.

Need prior for β0
Standard treatments exist.

E.g. assume β0 = 0, then:

β1|Q ∼ N (0,Q)

Or Carter and Kohn (1994) simply assume β0 has some prior that
researcher chooses
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Convenient to use Wishart priors for Σ−1 and Q−1

Σ−1 ∼ W
(
S−1, ν

)
Q−1 ∼ W

(
Q−1, νQ

)
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Want MCMC algorithm which sequentially draws from
p
(

Σ−1|yT , βT ,Q
)
, p
(
Q−1|yT ,Σ, βT

)
and p

(
βT |yT ,Σ,Q

)
.

For p
(

βT |yT ,Σ,Q
)
use standard algorithm for state space models

(e.g. Carter and Kohn, 1994)

Can derive p
(

Σ−1|yT , βT ,Q
)
and p

(
Q−1|yT ,Σ, βT

)
using

methods similar to those used in section on VAR independent
Normal-Wishart model.
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Conditional on βT , measurement equation is like a VAR with known
coeffi cients.

This leads to:
Σ−1|yT , βT ∼ W

(
S
−1
, ν
)

where
ν = T + ν

S = S +
T

∑
t=1
(yt −Wtδ− Ztβt ) (yt −Wtδ− Ztβt )

′
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Conditional on βT , state equation is also like a VAR with known
coeffi cients.

This leads to:
Q−1|yT , βT ∼ W

(
Q
−1
, νQ

)
where

νQ = T + νQ

Q = Q +
T

∑
t=1

(
βt+1 − βt

) (
βt+1 − βt

)′
.
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DSGE Models as State Space Models

DSGE = Dynamic, stochastic general equilibrium models popular in
modern macroeconomics and commonly used in policy circles (e.g.
central banks).

I will not explain the macro theory, other than to note they are:

Derived from microeconomic principles (based on agents and firms
decision problems), dynamic (studying how economy evolves over
time) and general equilibrium.

Solution (using linear approximation methods) is a linear state space
model

Note: recent work with second order approximations yields nonlinear
state space model

Survey: An and Schorfheide (2007, Econometric Reviews)

Computer code: http://www.dynare.org/ or some authors post code
(e.g. code for Del Negro and Schorfheide 2008, JME on web)
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Estimation Strategy for DSGE

Most linearized DSGE models written as:

Γ0 (θ) zt = Γ1 (θ)Et (zt+1) + Γ2 (θ) zt−1 + Γ3 (θ) ut

zt is vector containing both observed variables (e.g. output growth,
inflation, interest rates) and unobserved variables (e.g. technology
shocks, monetary policy shocks).

Note, theory usually written in terms of zt as deviation of variable
from steady state (an issue I will ignore here to keep exposition
simple)

θ are structural parameters (e.g. parameters for steady states, tastes,
technology, policy and driving the exogenous shocks).

ut are structural shocks (N (0, I )).

Γj (θ) are often highly nonlinear functions of θ
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Solving the DSGE Model

Methods exist to solve linear rational expectations models such as the
DSGE

If unique equilibrium exists can be written as:

zt = A (θ) zt−1 + B (θ) ut

Looks like a VAR, but....

Some elements of zt typically unobserved

and highly nonlinear restrictions involved in A (θ) and B (θ)

Bank of Korea Global Initiative Program () Bayesian Methods for Empirical Macroeconomics September 2014 15 / 87



Write DSGE Model as State Space Model

Let yt be elements of zt which are observed.

Measurement equation:
yt = Czt

where C is matrix which picks out observed elements of zt
Equation on previous slide is state equation in states zt
Thus we have state space model

Special case since measurement equation has no errors (although
measurement errors sometimes added) and state equation has some
states which are observed.

But state space algorithms described earlier in this lecture still work

Remember, before I said: “for given values for system matrices,
posterior simulators for the states exist”

If θ were known, DSGE model provides system matrices in Normal
linear state space model
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Estimating the Structural Parameters

If A (θ) and B (θ) involved simple linear restrictions, then methods
similar to those for the restricted VAR (see Lecture 2) could be used
to carry out inference on θ.

Unfortunately, restrictions in A (θ) and B (θ) are typically nonlinear
and complicated

Parameters in θ are structural so we are likely to have prior
information about them

Example from Del Negro and Schorfheide (2008, JME):

“Household-level data on wages and hours worked could be used to
form a prior for a labor supply elasticity”

“Product level data on price changes could be the basis for a
price-stickiness prior”
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Estimating the Structural Parameters (cont.)

Prior for structural parameters, p (θ), can be formed from other
sources of information (e.g. micro studies, economic theory, etc.)

Here: prior times likelihood is a mess

Thus, no analytical posterior for θ, no Gibbs sampler, etc...

Solution: Metropolis-Hastings algorithm
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The Metropolis-Hastings Algorithm

For now, I leave DSGE and state space models and return to our
general notation:

θ is a vector of parameters and p (y |θ) , p (θ) and p (θ|y) are the
likelihood, prior and posterior, respectively.

Metropolis-Hastings algorithm takes draws from a convenient
candidate generating density.

Let θ∗ indicate a draw taken from this density which we denote as
q
(

θ(s−1); θ
)
.

Notation: θ∗ is a draw taken of the random variable θ whose density
depends on θ(s−1).
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We are drawing the wrong distribution, q
(

θ(s−1); θ
)
, instead of

p (θ|y)
We have to correct for this somehow.

Metropolis-Hastings algorithm corrects for this via an acceptance
probability

Takes candidate draws, but only some of these candidate draws are
accepted.
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The Metropolis-Hastings algorithm takes following form:

Step 1: Choose a starting value, θ(0).

Step 2: Take a candidate draw, θ∗ from the candidate generating
density, q

(
θ(s−1); θ

)
.

Step 3: Calculate an acceptance probability, α
(

θ(s−1), θ∗
)
.

Step 4: Set θ(s) = θ∗ with probability α
(

θ(s−1), θ∗
)
and set

θ(s) = θ(s−1) with probability 1− α
(

θ(s−1), θ∗
)
.

Step 5: Repeat Steps 1, 2 and 3 S times.

Step 6: Take the average of the S draws g
(

θ(1)
)
, ..., g

(
θ(S )

)
.
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These steps will yield an estimate of E [g(θ)|y ] for any function of
interest.

Note: As with Gibbs sampling, Metropolis-Hastings algorithm requires
the choice of a starting value, θ(0). To make sure that the effect of
this starting value has vanished, wise to discard S0 initial draws.

Intuition for acceptance probability, α
(

θ(s−1), θ∗
)
, given in textbook

(pages 93-94).

α
(

θ(s−1), θ∗
)
=

min
[

p(θ=θ∗|y )q(θ∗;θ=θ(s−1))
p(θ=θ(s−1)|y)q(θ(s−1);θ=θ∗)

, 1
]
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Choosing a Candidate Generating Density

Independence Chain Metropolis-Hastings Algorithm
Uses a candidate generating density which is independent across
draws.
That is, q

(
θ(s−1); θ

)
= q∗ (θ) and the candidate generating density

does not depend on θ(s−1).
Useful in cases where a convenient approximation exists to the
posterior. This convenient approximation can be used as a candidate
generating density.
Acceptance probability simplifies to:

α
(

θ(s−1), θ∗
)
= min

p (θ = θ∗|y) q∗
(

θ = θ(s−1)
)

p
(

θ = θ(s−1)|y
)
q∗ (θ = θ∗)

, 1

 .
Not popular with DSGE models since convenient approximation
unlikely to exist
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Random Walk Chain Metropolis-Hastings Algorithm

Popular with DSGE —useful when you cannot find a good
approximating density for the posterior.

No attempt made to approximate posterior, rather candidate
generating density is chosen to wander widely, taking draws
proportionately in various regions of the posterior.

Generates candidate draws according to:

θ∗ = θ(s−1) + w

where w is called the increment random variable.
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Acceptance probability simplifies to:

α
(

θ(s−1), θ∗
)
= min

 p (θ = θ∗|y)
p
(

θ = θ(s−1)|y
) , 1


Choice of density for w determines form of candidate generating
density.
Common choice is Normal:

q
(

θ(s−1); θ
)
= fN (θ|θ(s−1),Σ).

Researcher must select Σ. Should be selected so that the acceptance
probability tends to be neither too high nor too low.
There is no general rule which gives the optimal acceptance rate. A
rule of thumb is that the acceptance probability should be roughly 0.5.
A common approach sets Σ = cΩ where c is a scalar and Ω is an
estimate of posterior covariance matrix of θ (e.g. the inverse of the
Hessian evaluated at the posterior mode)
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Popular (e.g. DYNARE) to use random walk Metropolis-Hastings
with DSGE models.

Note acceptance probability depends only on posterior = prior times
likelihood

DSGE Prior chosen as discussed above

Algorithms for Normal linear state space models evaluate likelihood
function
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Metropolis-within-Gibbs

Remember: the Gibbs sampler involved sequentially drawing from
p
(

θ(1)|y , θ(2)
)
and p

(
θ(2)|y , θ(1)

)
.

Using a Metropolis-Hastings algorithm for either (or both) of the

posterior conditionals used in the Gibbs sampler, p
(

θ(1)|y , θ(2)
)
and

p
(

θ(2)|y , θ(1)
)
, is perfectly acceptable.

This statement is also true if the Gibbs sampler involves more than
two blocks.

Such Metropolis-within-Gibbs algorithms are common since many
models have posteriors where most of the conditionals are easy to
draw from, but one or two conditionals do not have convenient form.
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Nonlinear State Space Models

Normal linear state space model useful for empirical macroeconomists

E.g. trend-cycle decompositions, TVP-VARs, linearized DSGE
models, etc.

Some models have yt being a nonlinear function of the states (e.g.
DSGE models which have not been linearized)

Increasing number of Bayesian tools for nonlinear state space models
(e.g. the particle filter)

Here we will focus on stochastic volatility
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Univariate Stochastic Volatility

Begin with yt being a scalar (common in finance)

Stochastic volatility model:

yt = exp
(
ht
2

)
εt

ht+1 = µ+ φ (ht − µ) + ηt

εt is i.i.d. N (0, 1) and ηt is i.i.d. N
(
0, σ2η

)
. εt and ηs are

independent.

This is state space model with states being ht , but measurement
equation is not a linear function of ht
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ht is log of the variance of yt (log volatility)

Since variances must be positive, common to work with log-variances

Note µ is the unconditional mean of ht .

Initial conditions: if |φ| < 1 (stationary) then:

h0 ∼ N
(

µ,
σ2η

1− φ2

)

if φ = 1, µ drops out of the model and However, when φ = 1, need a
prior such as h0 ∼ N (h,V h)
e.g. Primiceri (2005) chooses V h using training sample
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MCMC Algorithm for Stochastic Volatility Model

MCMC algorithm involves sequentially drawing from
p
(
hT |yT , µ, φ, σ2η

)
, p
(

φ|yT , µ, σ2η, hT
)
, p
(

µ|yT , φ, σ2η, hT
)
and

p
(

σ2η |yT , µ, φ, hT
)

Last three standard forms based on results from Normal linear
regression model and will not present here.

Several algorithms exist for p
(
hT |yT , µ, φ, σ2η

)
Here we describe a popular one from Kim, Shephard and Chib (1998,
ReStud)

For complete details, see their paper. Here we outline ideas.
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Square and log the measurement equation:

y ∗t = ht + ε∗t

where y ∗t = ln
(
y2t
)
and ε∗t = ln

(
ε2t
)
.

Now the measurement equation is linear so maybe we can use
algorithm for Normal linear state space model?

No, since error is no longer Normal (i.e. ε∗t = ln
(
ε2t
)
)

Idea: use mixture of different Normal distributions to approximate
distribution of ε∗t .
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Mixtures of Normal distributions are very flexible and have been used
widely in many fields to approximate unknown or inconvenient
distributions.

p (ε∗t ) ≈
7

∑
i=1
qi fN

(
ε∗t |mi , v2i

)
where fN

(
ε∗t |mi , v2i

)
is the p.d.f. of a N

(
mi , v2i

)
since εt is N (0, 1), ε∗t involves no unknown parameters

Thus, qi ,mi , v2i for i = 1, .., 7 are not parameters, but numbers (see
Table 4 of Kim, Shephard and Chib, 1998).
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Mixture of Normals can also be written in terms of component
indicator variables, st ∈ {1, 2, .., 7}

ε∗t |st = i ∼ N
(
mi , v2i

)
Pr (st = i) = qi

MCMC algorithm does not draw from p
(
hT |yT , µ, φ, σ2η

)
, but from

p
(
hT |yT , µ, φ, σ2η, sT

)
.

But, conditional on sT , knows which of the Normals ε∗t comes from.

Result is a Normal linear state space model and familiar algorithm can
be used.

Finally, need p
(
sT |yT , µ, φ, σ2η, hT

)
but this has simple form (see

Kim, Shephard and Chib , 1998)
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Learning Bayesian Computation

Remember: this course has a lecture format

But I have made up some computer question sheets that you you may
wish to work through on your own

Computer session 3 (on the course website) has questions relating to
an influential state space model used in

Stock and Watson (2007) “Why Has U.S. Inflation Become Harder to
Forecast?,” Journal of Money, Credit and Banking.

MATLAB computer code which answers the questions is also
available on the website
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Multivariate Stochastic Volatility

yt is now M × 1 vector and εt is i.i.d. N (0,Σt ).
Many ways of allowing Σt to be time-varying
But must worry about overparameterization problems

Σt for t = 1, ..,T containsTM (M+1)2 unknown parameters

Here we discuss three particular approaches popular in
macroeconomics

To focus on multivariate stochastic volatility, use model:

yt = εt
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Multivariate Stochastic Volatility Model 1

Σt = Dt

where Dt is a diagonal matrix with diagonal elements dit
dit has standard univariate stochastic volatility specification

dit = exp (hit ) and

hi ,t+1 = µi + φi (hit − µi ) + ηit

if ηit are independent (across both i and t) then Kim, Shephard and
Chib (1998) MCMC algorithm can be used one equation at a time.

But many interesting macroeconomic features (e.g. impulse
responses) depend on error covariances so assuming Σt to be diagonal
often will be a bad idea.
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Multivariate Stochastic Volatility Model 2

Cogley and Sargent (2005, RED)

Σt = L−1DtL−1′

Dt is as in Model 1 (diagonal matrix with diagonal elements being
variances)

L is a lower triangular matrix with ones on the diagonal.

E.g. M = 3

L =

 1 0 0
L21 1 0
L31 L32 1
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We can transform model as:

Lyt = Lεt

ε∗t = Lεt will now have a diagonal covariance matrix —can use
algorithm for Model 1.

MCMC algorithm: p
(
hT |yT , L

)
can use Kim, Shephard and Chib

(1998) algorithm one equation at a time.

p
(
L|yT , hT

)
results similar to those from a series of M regression

equations with independent Normal errors.

See Cogley and Sargent (2005) for details.
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Cogley-Sargent model allows the covariance between errors to change
over time, but in restricted fashion.

E.g. M = 2 then cov (ε1t , ε2t ) = d1tL21 which varies proportionally
with the error variance of the first equation.

Impulse response analysis: a shock to i th variable has an effect on j th

variable which is constant over time

In many macroeconomic applications this is too restrictive.
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Multivariate Stochastic Volatility Model 3

Primiceri (2005, ReStud):

Σt = L−1t DtL
−1′
t

Lt is same as Cogley-Sargent’s L but is now time varying.

Does not restrict Σt in any way.
MCMC algorithm same as for Cogley-Sargent except for Lt
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How does Lt evolve?

Stack unrestricted elements by rows into a M (M−1)
2 vector as

lt =
(
L21,t , L31,t , L32,t , .., Lp(p−1),t

)′
.

lt+1 = lt + ζt

ζt is i.i.d. N
(
0,Dζ

)
and Dζ is a diagonal matrix.

Can transform model so that algorithm for Normal linear state space
model can draw lt
See Primiceri (2005) for details

Note: if Dζ is not diagonal have to be careful (no longer Normal state
space model)
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Sequential Monte Carlo and Particle Filtering Methods for
State Space Models

In this course, we have focussed on MCMC Methods such as the
Gibbs sampler
However, there is a new set of methods that is growing in popularity
Some argue these will be the dominant computational tools of the
future, particularly for nonlinear state space models
If time permits, I will offer a brief introduction
The following website contains a variety of materials (including some
nice videos)
http://www.stats.ox.ac.uk/~doucet/smc_resources.html
If you love computers, I note that these methods (unlike MCMC
methods) can typically be parallelized
This means you can use the massive computing power in graphical
processing units (GPUs)
See the manuscript “Massively Parallel Sequential Monte Carlo for
Bayesian Inference”by Durham and Geweke
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Aside on Model Averaging and Model Selection

I have said much about estimation and forecasting, but little about
model comparison
Remember Bayesians often use marginal likelihoods (which are the
basic building block in posterior model probabilities)
Marginal likelihoods can be used for model selection:
Select model with highest marginal likelihood
Or model averaging:
Retain all models but present forecasts/results which are weighted
average with weights proportional to marginal likelihoods
Marginal likelihoods can be hard to calculate using MCMC methods
An advantage of sequential Monte Carlo methods is that marginal
likelihood at each point in time is produced
But there is an increasing interest in various methods which do model
averaging and selection in a quick manner
To give an example of how this is done and provide an application of
state space modelling, I next will present an empirical example
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A Macroeconomic Application: Inflation Forecasting using
Dynamic Model Averaging

Based on the paper: Koop and Korobilis (2012, IER)

Macroeconomists typically have many time series variables

But even with all this information forecasting of macroeconomic
variables like inflation, GDP growth, etc. can be very hard

Sometimes hard to beat very simple forecasting procedures (e.g.
random walk)

Imagine a regression of inflation on many predictors

Such a regression might fit well in practice, but forecast poorly
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Why? There are many reasons, but three stand out:

Regressions with many predictors can over-fit (over-parameterization
problems)

Marginal effects of predictors change over time (parameter
change/structural breaks)

The relevant forecasting model may change (model change)

We use an approach called Dynamic Model Averaging (DMA) in an
attempt to address these problems
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The Generalized Phillips Curve

Phillips curve: inflation depends on unemployment rate

Generalized Phillips curve: Inflation dependent on lagged inflation,
unemployment and other predictors

Many papers use generalized Phillips curve models for inflation
forecasting

Regression-based methods based on:

yt = φ+ x ′t−1β+
p

∑
j=1

γjyt−j + εt

yt is inflation and xt−1 are lags of other predictors

To make things concrete, following is our list of predictors (other
papers use similar)
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UNEMP: unemployment rate.

CONS: the percentage change in real personal consumption
expenditures.

INV: the percentage change in private residential fixed investment.

GDP: the percentage change in real GDP.

HSTARTS: the log of housing starts (total new privately owned
housing units).

EMPLOY: the percentage change in employment (All Employees:
Total Private Industries, seasonally adjusted).

PMI: the change in the Institute of Supply Management
(Manufacturing): Purchasing Manager’s Composite Index.
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TBILL: three month Treasury bill (secondary market) rate.

SPREAD: the spread between the 10 year and 3 month Treasury bill
rates.

DJIA: the percentage change in the Dow Jones Industrial Average.

MONEY: the percentage change in the money supply (M1).

INFEXP: University of Michigan measure of inflation expectations.

COMPRICE: the change in the commodities price index (NAPM
commodities price index).

VENDOR: the change in the NAPM vendor deliveries index.
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Forecasting With Generalized Phillips Curve

Write more compactly as:

yt = ztθ + εt

zt contains all predictors, lagged inflation, an intercept

Note zt = information available for forecasting yt
When forecasting h periods ahead will contain variables dated t − h
or earlier
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Consider forecasting yτ+1.

Recursive forecasting methods: θ̂ = estimate using data through τ.

So θ̂ will change (a bit) with τ, but can change too slowly

Rolling forecasts use: θ̂ an estimate using data from τ − τ0 through
τ.

Better at capturing parameter change, but need to choose τ0

Recursive and rolling forecasts might be imperfect solutions

Why not use a model which formally models the parameter change as
well?
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Time Varying Parameter (TVP) Models

TVP models gaining popularity in empirical macroeconomics

yt = ztθt + εt

θt = θt−1 + ηt

εt
ind∼ N (0,Ht )

ηt
ind∼ N (0,Qt )

State space methods described above can be used to estimate them
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Why not use TVP model to forecast inflation?

Advantage: models parameter change in a formal manner

Disadvantage: same predictors used at all points in time.

If number of predictors large, over-fit, over-parameterization problems

In our empirical work, we show very poor forecast performance
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Digression on Bayesian Model Averaging (BMA)

Return to basic regression model

yt = ztθ + εt

Suppose zt contains m variables and m is large (over-fitting,
over-parameterization)

Model selection: Select a single model based on a series of hypothesis
tests

Problem: 2m potential models: serious pre-test problems

An increasingly common response: BMA

Average over all models (with data-based weights: marginal
likelihoods or information criteria)
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Problem: Computational burden of dealing with 2m models

Solution: Sophisticated algorithms which simulate from model space
(MC-cubed)

Note: MC-cubed can also be used to select a single best model in an
automatic and computational effi cient way

BMA is increasingly popular with cross-sectional data sets (e.g.
cross-country growth regressions)

Question: can we use similar ideas in a time series context?
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Dynamic Model Averaging (DMA)

Define K models which have z (k )t for k = 1, ..,K , as predictors

z (k )t is subset of zt .

Set of models:

yt = z (k )t θ
(k )
t + ε

(k )
t

θ
(k )
t+1 = θ

(k )
t + η

(k )
t

ε
(k )
t is N

(
0,H (k )t

)
η
(k )
t is N

(
0,Q(k )t

)
Let Lt ∈ {1, 2, ..,K} denote which model applies at t
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Why not just forecast using BMA over these TVP models at every
point in time?

Different weights in averaging at every point in time.

Or why not just select a single TVP forecasting model at every point
in time?

Different forecasting models selected at each point in time.

If K is large (e.g. K = 2m), this is computationally infeasible.

With cross-sectional BMA have to work with model space K = 2m

which is computationally burdensome

In present time series context, forecasting through time τ involves
2mτ models.

Also, Bayesian inference in TVP model requires MCMC (unlike
cross-sectional regression). Computationally burdensome.

Even clever algorithms like MC-cubed are not good enough to handle
this.
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Another strategy has been used to deal with similar problems in
different contexts (e.g. multiple structural breaks): Markov switching

Markov transition matrix, P,

Elements pij = Pr (Lt = i |Lt−1 = j) for i , j = 1, ..,K .
“If j is the forecasting model at t − 1, we switch to forecasting model
i at time t with probability pij"

Bayesian inference is theoretically straightforward, but
computationally infeasible

P is K ×K : an enormous matrix.
Even if computation were possible, imprecise estimation of so many
parameters
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Solution: DMA

Adopt approach used by Raftery et al (2010 Technometrics) in an
engineering application

Involves two approximations

First approximation means we do not need MCMC in each TVP
model (only need run a standard Kalman filtering and smoothing)

See paper for details. Idea: replace Q(k )t and H (k )t by estimates
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Sketch of some Kalman filtering ideas (where y t−1 are observations
through t − 1)

θt−1|y t−1 ∼ N
(

θ̂t−1,Σt−1|t−1
)

Textbook formula for θ̂t−1 and Σt−1|t−1
Then update

θt |y t−1 ∼ N
(

θ̂t−1,Σt |t−1
)

Σt |t−1 = Σt−1|t−1 +Qt

Get rid of Qt by approximating:

Σt |t−1 =
1
λ

Σt−1|t−1

0 < λ ≤ 1 is forgetting factor
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Forgetting factors like this have long been used in state space
literature

Implies that observations j periods in the past have weight λj .

Or effective window size of 1
1−λ .

Choose value of λ near one

λ = 0.99: observations five years ago ≈ 80% as much weight as last
period’s observation.

λ = 0.95: observations five years ago ≈ 35% as much weight as last
period’s observations.

We focus on λ ∈ [0.95, 1.00].
If λ = 1 no time variation in parameters (standard recursive
forecasting)
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Back to Model Averaging/Selection

Goal for forecasting at time t given data available at time t − 1 is
πt |t−1,k ≡ Pr

(
Lt = k |y t−1

)
Can average across k = 1, ..,K forecasts using πt |t−1,k as weights
(DMA)

E.g. point forecasts (θ̂
(k )
t−1 from Kalman filter in model k):

E
(
yt |y t−1

)
=

K

∑
k=1

πt |t−1,kz
(k )
t θ̂

(k )
t−1

Can forecast with model j at time t if πt |t−1,j is highest (Dynamic
model selection: DMS)

Raftery et al (2010) propose another forgetting factor to approximate
πt |t−1,k
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Complete details in Raftery et al’s paper.

Basic idea is that can use similar state space updating formulae for
models as is done with states

Then use similar forgetting factor to get approximation

πt |t−1,k =
πα
t−1|t−1,k

∑K
l=1 πα

t−1|t−1,l

0 < α ≤ 1 is forgetting factor with similar interpretation to λ

Focus on α ∈ [0.95, 1.00]
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Interpretation of forgetting factor α

Easy to show:

πt |t−1,k =
t−1
∏
i=1

[
pk
(
yt−i |y t−i−1

)]αi

pk
(
yt |y t−1

)
is predictive density for model k evaluated at yt

(measure of forecast performance of model k)

Model k will receive more weight at time t if it has forecast well in
the recent past

Interpretation of “recent past” is controlled by the forgetting factor, α

α = 0.99: forecast performance five years ago receives 80% as much
weight as forecast performance last period

α = 0.95: forecast performance five years ago receives only about
35% as much weight.

α = 1: can show πt |t−1,k is proportional to the marginal likelihood
using data through time t − 1 (standard BMA)
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Summary So Far

We want to do DMA or DMS

These use TVP models which allow marginal effects to change over
time

These allow for forecasting model to switch over time

So can switch from one parsimonious forecasting model to another
(avoid over-parametization)

But a full formal Bayesian analysis is computationally infeasible

Sensible approximations make it computationally feasible.

State space updating formula must be run K times, instead of
(roughly speaking) KT MCMC algorithms
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Forecasting US Inflation

Data from 1960Q1 through 2008Q4

Real time data (forecasting at time τ using data as known at time τ)

Two measure of inflation based on PCE deflator (core inflation) and
GDP deflator

14 predictors listed previously (all variables transformed to be
approximately stationary)

All models include an intercept and two lags of the dependent variable

3 forecast horizons: h = 1,4, 8
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Is DMA Parsimonious?

Even though 14 potential predictors, most probability is attached to
very parsimonious models with only a few predictors.

Sizek = number of predictors in model k

(Sizek does not include the intercept plus two lags of the dependent
variable)

Figure 1 plots

E (Sizet ) =
K

∑
k=1

πt |t−1,kSizek
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Figure 1: Expected Number of Predictors
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Which Variables are Good Predictors for Inflation?

Posterior inclusion probabilities for j th predictor =

∑
k∈J

πt |t−1,k

where k ∈ J indicates models which include j th predictor
See Figure 2, 3 and 4 for 2 measures of inflation and 3 forecast
horizons

Any predictor where the inclusion probability is never above 0.5 is
excluded from the appropriate figure.

Lots of evidence of predictor change in all cases.

DMA/DMS will pick this up automatically
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Figure 2: Posterior Probability of Inclusion of Predictors, h = 1. GDP
deflator inflation top, PCE deflator inflation bottom
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Figure 3: Posterior Probability of Inclusion of Predictors, h = 4. GDP
deflator inflation top, PCE deflator inflation bottom
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Figure 4: Posterior Probability of Inclusion of Predictors, h = 8. GDP
deflator inflation top, PCE deflator inflation bottom
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Forecast Performance

Pseudo-out-of-sample forecasting exercise

forecast evaluation begins in 1970Q1

Measures of forecast performance using point forecasts

Mean squared forecast error (MSFE) and mean absolute forecast error
(MAFE).

Forecast metric involving entire predictive distribution: the sum of log
predictive likelihoods.

Predictive likelihood = Predictive density for yt (given data through
time t − 1) evaluated at the actual outcome.
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Forecasting Methods

DMA with α = λ = 0.99.

DMS with α = λ = 0.99.

DMA with α = λ = 0.95.

DMS with α = λ = 0.95.

DMA, with constant coeffi ciants (λ = 1, α = 0.99)

BMA as a special case of DMA (i.e. we set λ = α = 1).

TVP-AR(2)-X: Traditional TVP model .

TVP-AR(2) model (as preceding but excluding predictors)
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Traditional g-prior BMA

UC-SV: Unobserved components with stochastic volatility model of
Stock and Watson (2007).

Recursive OLS using AR(p)

As preceding, but adding the predictors.

Rolling OLS using AR(p) (window of 40 quarters)

As preceding, but adding the predictors

Random walk

Note: in recursive and rolling OLS forecasts p selected at each point
in time using BIC
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Discussion of Log Predictive Likelihoods

Preferred method of Bayesian forecast comparison

Some variant of DMA or DMS always forecast best.

DMS with α = λ = 0.95 good for both measures of inflation at all
horizons.

Conventional BMA forecasts poorly.

TVP-AR(2) and UC-SV have substantially lower predictive likelihoods
than the DMA or DMS approaches.

Of the non-DMA approaches, UC-SV approach of Stock and Watson
(2007) consistently is the best performer.

TVP model with all predictors tends to forecast poorly

Shrinkage provided by DMA or DMS is of great value in forecasting.

DMS tends to forecast a bit better than DMA
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Discussion of MSFE and MAFE

Patterns noted with predictive likelihoods mainly still hold (although
DMA does better relative to DMS)

Simple forecasting methods (AR(2) or random walk model) are
inferior to DMA and DMS

Rolling OLS using all predictors forecast bests among OLS-based
methods.

DMS and DMA with α = λ = 0.95 always lead to lower MSFEs and
MAFEs than rolling OLS with all the predictors.

In some cases rolling OLS with all predictors leads to lower MSFEs
and MAFEs than other implementations of DMA or DMS.

In general: DMA and DMS look to be safe options. Usually they do
best, but where not they do not go too far wrong

Unlike other methods which might perform well in some cases, but
very poorly in others

Bank of Korea Global Initiative Program () Bayesian Methods for Empirical Macroeconomics September 2014 77 / 87



Forecast results: GDP deflator inflation, h = 1
MAFE MSFE log(PL)

DMA (α = λ = 0.99) 0.248 0.306 -0.292
DMS (α = λ = 0.99) 0.256 0.318 -0.277
DMA (α = λ = 0.95) 0.248 0.310 -0.378
DMS (α = λ = 0.95) 0.235 0.297 -0.237
DMA (λ = 1, α = 0.99) 0.249 0.306 -0.300
BMA (DMA with α = λ = 1) 0.256 0.316 -0.320
TVP-AR(2) (λ = 0.99) 0.260 0.327 -0.344
TVP-AR(2)-X (λ = 0.99) 0.309 0.424 -0.423
BMA-MCMC (g = 1

T ) 0.234 0.303 -0.369
UC-SV (γ = 0.2) 0.256 0.332 -0.320
Recursive OLS - AR(BIC) 0.251 0.326 -
Recursive OLS - All Preds 0.265 0.334 -
Rolling OLS - AR(2) 0.251 0.325 -
Rolling OLS - All Preds 0.252 0.327 -
Random Walk 0.262 0.349 -
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Forecast results: GDP deflator inflation, h = 4
MAFE MSFE log(PL)

DMA (α = λ = 0.99) 0.269 0.349 -0.421
DMS (α = λ = 0.99) 0.277 0.361 -0.406
DMA (α = λ = 0.95) 0.255 0.334 -0.455
DMS (α = λ = 0.95) 0.249 0.316 -0.307
DMA (λ = 1, α = 0.99) 0.277 0.355 -0.445
BMA (DMA with α = λ = 1) 0.282 0.363 -0.463
TVP-AR(2) (λ = 0.99) 0.320 0.401 -0.480
TVP-AR(2)-X (λ = 0.99) 0.336 0.453 -0.508
BMA-MCMC (g = 1

T ) 0.285 0.364 -0.503
UC-SV (γ = 0.2) 0.311 0.396 -0.473
Recursive OLS - AR(BIC) 0.344 0.433 -
Recursive OLS - All Preds 0.302 0.376 -
Rolling OLS - AR(2) 0.328 0.425 -
Rolling OLS - All Preds 0.273 0.349 -
Random Walk 0.333 0.435 -
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Forecast results: GDP deflator inflation, h = 8
MAFE MSFE log(PL)

DMA (α = λ = 0.99) 0.333 0.413 -0.583
DMS (α = λ = 0.99) 0.338 0.423 -0.578
DMA (α = λ = 0.95) 0.293 0.379 -0.570
DMS (α = λ = 0.95) 0.295 0.385 -0.424
DMA (λ = 1, α = 0.99) 0.346 0.423 -0.626
BMA (DMA with α = λ = 1) 0.364 0.449 -0.690
TVP-AR(2) (λ = 0.99) 0.398 0.502 -0.662
TVP-AR(2)-X (λ = 0.99) 0.410 0.532 -0.701
BMA-MCMC (g = 1

T ) 0.319 0.401 -0.667
UC-SV (γ = 0.2) 0.350 0.465 -0.613
Recursive OLS - AR(BIC) 0.436 0.516 -
Recursive OLS - All Preds 0.369 0.441 -
Rolling OLS - AR(2) 0.380 0.464 -
Rolling OLS - All Preds 0.325 0.398 -
Random Walk 0.428 0.598 -
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Forecast results: core inflation, h = 1
MAFE MSFE log(PL)

DMA (α = λ = 0.99) 0.253 0.322 -0.451
DMS (α = λ = 0.99) 0.259 0.326 -0.430
DMA (α = λ = 0.95) 0.267 0.334 -0.519
DMS (α = λ = 0.95) 0.236 0.295 -0.348
DMA (λ = 1, α = 0.99) 0.250 0.317 -0.444
BMA (DMA with α = λ = 1) 0.259 0.331 -0.464
TVP-AR(2) (λ = 0.99) 0.280 0.361 -0.488
TVP-AR(2)-X (λ = 0.99) 0.347 0.492 -0.645
BMA-MCMC (g = 1

T ) 0.269 0.352 -0.489
UC-SV (γ = 0.2) 0.269 0.341 -0.474
Recursive OLS - AR(BIC) 0.310 0.439 -
Recursive OLS - All Preds 0.303 0.421 -
Rolling OLS - AR(2) 0.316 0.430 -
Rolling OLS - All Preds 0.289 0.414 -
Random Walk 0.294 0.414 -
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Forecast results: core inflation, h = 4
MAFE MSFE log(PL)

DMA (α = λ = 0.99) 0.311 0.406 -0.622
DMS (α = λ = 0.99) 0.330 0.431 -0.631
DMA (α = λ = 0.95) 0.290 0.382 -0.652
DMS (α = λ = 0.95) 0.288 0.353 -0.499
DMA (λ = 1, α = 0.99) 0.315 0.412 -0.636
BMA (DMA with α = λ = 1) 0.325 0.429 -0.668
TVP-AR(2) (λ = 0.99) 0.355 0.459 -0.668
TVP-AR(2)-X (λ = 0.99) 0.378 0.556 -0.764
BMA-MCMC (g = 1

T ) 0.307 0.414 -0.633
UC-SV (γ = 0.2) 0.340 0.443 -0.651
Recursive OLS - AR(BIC) 0.390 0.513 -
Recursive OLS - All Preds 0.325 0.442 -
Rolling OLS - AR(2) 0.378 0.510 -
Rolling OLS - All Preds 0.313 0.422 -
Random Walk 0.407 0.551 -
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Forecast results: core inflation, h = 8
h=8

MAFE MSFE log(PL)

DMA (α = λ = 0.99) 0.357 0.448 -0.699
DMS (α = λ = 0.99) 0.369 0.469 -0.699
DMA (α = λ = 0.95) 0.317 0.403 -0.673
DMS (α = λ = 0.95) 0.293 0.371 -0.518
DMA (λ = 1, α = 0.99) 0.366 0.458 -0.733
BMA (DMA with α = λ = 1) 0.397 0.490 -0.779
TVP-AR(2) (λ = 0.99) 0.450 0.573 -0.837
TVP-AR(2)-X (λ = 0.99) 0.432 0.574 -0.841
BMA-MCMC (g = 1

T ) 0.357 0.454 -0.788
UC-SV (γ = 0.2) 0.406 0.528 -0.774
Recursive OLS - AR(BIC) 0.463 0.574 -
Recursive OLS - All Preds 0.378 0.481 -
Rolling OLS - AR(2) 0.428 0.540 -
Rolling OLS - All Preds 0.338 0.436 -
Random Walk 0.531 0.698 -
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Comparison to Greenbook Forecasts

Greenbook forecasts are for GDP deflator inflation

Published with a lag so different data span

h = 1 forecasts from 1970Q1 through 2004Q1

h = 4 forecasts from 1974Q1 through 2004Q4

Greenbook forecasts are point forecasts (no predictive likelihoods)

Table presents MAFEs relative to simple random walk

For h = 1 DMA beats Greenbook

When h = 4 we beat Greenbook forecasts when α = λ = 0.95
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Comparison of DMA with Greenbook forecasts: MAFE
h = 1 h = 4

Greenbook forecasts 0.91 0.84
DMA α = λ = 0.99 0.80 0.94
DMA α = λ = 0.95 0.77 0.83
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Conclusions

When forecasting in the presence of change/breaks/turbulence want
an approach which:

Allows for forecasting model to change over time

Allows for marginal effects of predictors to change over time

Automatically does the shrinkage necessary to reduce risk of
over-parameterizations/over-fitting

In theory, DMA and DMS should satisfy these criteria

In practice, we find DMA and DMS to forecast well in an exercise
involving US inflation.
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Summary

MCMC algorithms such as the Gibbs sampler are modular in nature
(sequentially draw from blocks)

By combining simple blocks together you can end up with very
flexible models

This is strategy pursued here.

For state space models there are a standard set of algorithms which
can be combined together in various ways to produce quite
sophisticated models

Our MCMC algorithms for complicated models all combine simpler
algorithms.

E.g. Primiceri’s complicated model involves blocks which use Carter
and Kohn’s algorithm and blocks which use Kim, Shephard and
Chib’s algorithm (and even the latter relies upon Carter and Kohn)
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