State Space Methods

Bank of Korea Global Initiative Program

September 2014

Bank of Korea Global Initiative Program () Bayesian Methods for Empirical Macroeconon

- State space methods are used for a wide variety of time series problems
- They are important in and of themselves
- Also time-varying parameter VARs (TVP-VARs) and stochastic volatility are state space models
- Advantage of state space models: well-developed set of MCMC algorithms for doing Bayesian inference

• Remember: our general notation for a VAR was:

$$y_t = Z_t \beta + \varepsilon$$

- In many macroeconomic applications, unrealistic to assume constant β
- This leads to TVP-VAR:

$$y_t = Z_t \beta_t + \varepsilon_t$$

where

$$\beta_{t+1} = \beta_t + u_t$$

- This is a state space model.
- In VAR assume ε_t to be i.i.d. $N(0, \Sigma)$
- In empirical macroeconomics, this is often unrealistic.
- Want to have var $(\varepsilon_t) = \Sigma_t$
- This also leads to state space models.

The Normal Linear State Space Model

- Fairly general version of Normal linear state space model:
- Measurement equation:

$$y_t = W_t \delta + Z_t \beta_t + \varepsilon_t$$

State equation:

$$\beta_{t+1} = T_t \beta_t + u_t$$

- y_t and ε_t defined as for VAR
- W_t is known M × p₀ matrix (e.g. lagged dependent variables or explanatory variables with constant coefficients)
- Z_t is known M × K matrix (e.g. lagged dependent variables or explanatory variables with time varying coefficients)
- β_t is $k \times 1$ vector of states (e.g. VAR coefficients)
- ε_t ind $N(0, \Sigma_t)$
- u_t ind $N(0, Q_t)$.
- ε_t and u_s are independent for all s and t.
- T_t is a $k \times k$ matrix (usually fixed, but sometimes not).

- Key idea: for given values for δ, T_t, Σ_t and Q_t (called "system matrices") posterior simulators for β_t for t = 1, ..., T exist.
- E.g. Carter and Kohn (1994, Btka), Fruhwirth-Schnatter (1994, JTSA), DeJong and Shephard (1995, Btka) and Durbin and Koopman (2002, Btka).
- I will not present details of these (standard) algorithms
- These algorithms involve use of methods called Kalman filtering and smoothing
- Filtering = estimating a state at time t using data up to time t
- Smoothing = estimating a state at time t using data up to time T
- Recently other algorithms have been proposed in several papers by Joshua Chan (Australian National University) and Bill McCausland (University of Montreal)

- Notation: $\beta^t = (\beta'_1, ..., \beta'_t)'$ stacks all the states up to time t (and similar superscript t convention for other things)
- Gibbs sampler: $p\left(\beta^T | y^T, \delta, T^T, \Sigma^T, Q^T\right)$ drawn use such an algorithm

•
$$p\left(\delta|y^{T}, \beta^{T}, T^{T}, \Sigma^{T}, Q^{T}\right)$$
, $p\left(T^{T}|y^{T}, \beta^{T}, \delta, \Sigma^{T}, Q^{T}\right)$,
 $p\left(\Sigma^{T}|y^{T}, \beta^{T}, \delta, T^{T}, Q^{T}\right)$ and $p\left(Q^{T}|y^{T}, \beta^{T}, \delta, T^{T}, \Sigma^{T}\right)$ depend
on precise form of model (typically simple since, conditional on β^{T}
have a Normal linear model)

- Typically restricted versions of this general model used
- TVP-VAR of Primiceri (2005, ReStud) has $\delta = 0$, $T_t = I$ and $Q_t = Q$

Example of an MCMC Algorithm

- Special case $\delta=$ 0, $T_t=$ I, $\Sigma_t=\Sigma$ and $Q_t=Q$
- Homoskedastic TVP-VAR of Cogley and Sargent (2001, NBER)
- Need prior for all parameters
- But state equation implies hierarchical prior for β^T :

$$\beta_{t+1} | \beta_t, Q \sim N(\beta_t, Q)$$

• Formally:

$$p\left(\beta^{T}|Q\right) = \prod_{t=1}^{T} p\left(\beta_{t}|\beta_{t-1},Q\right)$$

• Hierarchical: since it depends on *Q* which, in turn, requires its own prior.

- Note β_0 enters prior for β_1 .
- Need prior for β_0
- Standard treatments exist.
- E.g. assume $\beta_0 = 0$, then:

$$\beta_1 | Q \sim N(0, Q)$$

 $\bullet\,$ Or Carter and Kohn (1994) simply assume β_0 has some prior that researcher chooses

• Convenient to use Wishart priors for Σ^{-1} and Q^{-1}

۲

$$\Sigma^{-1} \sim W\left(\underline{S}^{-1}, \underline{\nu}\right)$$

$$Q^{-1} \sim W\left(\underline{Q}^{-1}, \underline{
u}_Q
ight)$$

- Want MCMC algorithm which sequentially draws from $p\left(\Sigma^{-1}|y^{T},\beta^{T},Q\right), p\left(Q^{-1}|y^{T},\Sigma,\beta^{T}\right) \text{ and } p\left(\beta^{T}|y^{T},\Sigma,Q\right).$
- For p (β^T | y^T, Σ, Q) use standard algorithm for state space models (e.g. Carter and Kohn, 1994)
- Can derive $p\left(\Sigma^{-1}|y^{T},\beta^{T},Q\right)$ and $p\left(Q^{-1}|y^{T},\Sigma,\beta^{T}\right)$ using methods similar to those used in section on VAR independent Normal-Wishart model.

- Conditional on β^{T} , measurement equation is like a VAR with known coefficients.
- This leads to:

$$\Sigma^{-1} | y^T, \beta^T \sim W\left(\overline{S}^{-1}, \overline{\nu}\right)$$

where

$$\overline{\nu} = T + \underline{\nu}$$

$$\overline{S} = \underline{S} + \sum_{t=1}^{T} \left(y_t - W_t \delta - Z_t \beta_t \right) \left(y_t - W_t \delta - Z_t \beta_t \right)'$$

- Conditional on β^{T} , state equation is also like a VAR with known coefficients.
- This leads to:

$$Q^{-1}|y^{\mathsf{T}},\beta^{\mathsf{T}}\sim W\left(\overline{Q}^{-1},\overline{\nu}_{Q}\right)$$

where

$$\overline{\nu}_Q = T + \underline{\nu}_Q$$

$$\overline{Q} = \underline{Q} + \sum_{t=1}^{T} \left(\beta_{t+1} - \beta_t \right) \left(\beta_{t+1} - \beta_t \right)'.$$

DSGE Models as State Space Models

- DSGE = Dynamic, stochastic general equilibrium models popular in modern macroeconomics and commonly used in policy circles (e.g. central banks).
- I will not explain the macro theory, other than to note they are:
- Derived from microeconomic principles (based on agents and firms decision problems), dynamic (studying how economy evolves over time) and general equilibrium.
- Solution (using linear approximation methods) is a linear state space model
- Note: recent work with second order approximations yields nonlinear state space model
- Survey: An and Schorfheide (2007, Econometric Reviews)
- Computer code: http://www.dynare.org/ or some authors post code (e.g. code for Del Negro and Schorfheide 2008, JME on web)

• Most linearized DSGE models written as:

 $\Gamma_{0}\left(\theta\right)z_{t}=\Gamma_{1}\left(\theta\right)E_{t}\left(z_{t+1}\right)+\Gamma_{2}\left(\theta\right)z_{t-1}+\Gamma_{3}\left(\theta\right)u_{t}$

- *z_t* is vector containing both observed variables (e.g. output growth, inflation, interest rates) and unobserved variables (e.g. technology shocks, monetary policy shocks).
- Note, theory usually written in terms of z_t as deviation of variable from steady state (an issue I will ignore here to keep exposition simple)
- θ are structural parameters (e.g. parameters for steady states, tastes, technology, policy and driving the exogenous shocks).
- u_t are structural shocks (N(0, I)).
- $\Gamma_{j}\left(heta
 ight)$ are often highly nonlinear functions of heta

- Methods exist to solve linear rational expectations models such as the DSGE
- If unique equilibrium exists can be written as:

$$z_{t} = A(\theta) z_{t-1} + B(\theta) u_{t}$$

- Looks like a VAR, but....
- Some elements of z_t typically unobserved
- and highly nonlinear restrictions involved in $A(\theta)$ and $B(\theta)$

Write DSGE Model as State Space Model

- Let y_t be elements of z_t which are observed.
- Measurement equation:

$$y_t = Cz_t$$

where C is matrix which picks out observed elements of z_t

- Equation on previous slide is state equation in states z_t
- Thus we have state space model
- Special case since measurement equation has no errors (although measurement errors sometimes added) and state equation has some states which are observed.
- But state space algorithms described earlier in this lecture still work
- Remember, before I said: "for given values for system matrices, posterior simulators for the states exist"
- If θ were known, DSGE model provides system matrices in Normal linear state space model

- If A (θ) and B (θ) involved simple linear restrictions, then methods similar to those for the restricted VAR (see Lecture 2) could be used to carry out inference on θ.
- \bullet Unfortunately, restrictions in $A\left(\theta\right)$ and $B\left(\theta\right)$ are typically nonlinear and complicated
- Parameters in θ are structural so we are likely to have prior information about them
- Example from Del Negro and Schorfheide (2008, JME):
- "Household-level data on wages and hours worked could be used to form a prior for a labor supply elasticity"
- "Product level data on price changes could be the basis for a price-stickiness prior"

- Prior for structural parameters, p (θ), can be formed from other sources of information (e.g. micro studies, economic theory, etc.)
- Here: prior times likelihood is a mess
- Thus, no analytical posterior for θ , no Gibbs sampler, etc...
- Solution: Metropolis-Hastings algorithm

- For now, I leave DSGE and state space models and return to our general notation:
- θ is a vector of parameters and $p(y|\theta)$, $p(\theta)$ and $p(\theta|y)$ are the likelihood, prior and posterior, respectively.
- Metropolis-Hastings algorithm takes draws from a convenient *candidate generating density*.
- Let θ^* indicate a draw taken from this density which we denote as $q\left(\theta^{(s-1)};\theta\right)$.
- Notation: θ^* is a draw taken of the random variable θ whose density depends on $\theta^{(s-1)}$.

- We are drawing the wrong distribution, $q\left(\theta^{(s-1)};\theta\right)$, instead of $p\left(\theta|y\right)$
- We have to correct for this somehow.
- Metropolis-Hastings algorithm corrects for this via an acceptance probability
- Takes candidate draws, but only some of these candidate draws are accepted.

- The Metropolis-Hastings algorithm takes following form:
- Step 1: Choose a starting value, $\theta^{(0)}$.
- Step 2: Take a candidate draw, θ* from the candidate generating density, q (θ^(s-1); θ).
- Step 3: Calculate an acceptance probability, $\alpha\left(\theta^{(s-1)}, \theta^*\right)$.
- Step 4: Set $\theta^{(s)} = \theta^*$ with probability $\alpha\left(\theta^{(s-1)}, \theta^*\right)$ and set $\theta^{(s)} = \theta^{(s-1)}$ with probability $1 \alpha\left(\theta^{(s-1)}, \theta^*\right)$.
- Step 5: Repeat Steps 1, 2 and 3 S times.
- Step 6: Take the average of the S draws $g\left(\theta^{(1)}\right)$, ..., $g\left(\theta^{(S)}\right)$.

- These steps will yield an estimate of $E[g(\theta)|y]$ for any function of interest.
- Note: As with Gibbs sampling, Metropolis-Hastings algorithm requires the choice of a starting value, $\theta^{(0)}$. To make sure that the effect of this starting value has vanished, wise to discard S_0 initial draws.
- Intuition for acceptance probability, $\alpha\left(\theta^{(s-1)}, \theta^*\right)$, given in textbook (pages 93-94).

$$\alpha \left(\theta^{(s-1)}, \theta^* \right) = \\ \min \left[\frac{p(\theta = \theta^* | y) q(\theta^*; \theta = \theta^{(s-1)})}{p(\theta = \theta^{(s-1)} | y) q(\theta^{(s-1)}; \theta = \theta^*)}, 1 \right]$$

Choosing a Candidate Generating Density

- Independence Chain Metropolis-Hastings Algorithm
- Uses a candidate generating density which is independent across draws.
- That is, $q\left(\theta^{(s-1)};\theta\right) = q^*\left(\theta\right)$ and the candidate generating density does not depend on $\theta^{(s-1)}$.
- Useful in cases where a convenient approximation exists to the posterior. This convenient approximation can be used as a candidate generating density.
- Acceptance probability simplifies to:

$$\alpha\left(\theta^{(s-1)},\theta^*\right) = \min\left[\frac{p\left(\theta = \theta^*|y\right)q^*\left(\theta = \theta^{(s-1)}\right)}{p\left(\theta = \theta^{(s-1)}|y\right)q^*\left(\theta = \theta^*\right)}, 1\right]$$

 Not popular with DSGE models since convenient approximation unlikely to exist

- Random Walk Chain Metropolis-Hastings Algorithm
- Popular with DSGE useful when you cannot find a good approximating density for the posterior.
- No attempt made to approximate posterior, rather candidate generating density is chosen to wander widely, taking draws proportionately in various regions of the posterior.
- Generates candidate draws according to:

$$\theta^* = \theta^{(s-1)} + w$$

where w is called the *increment random variable*.

• Acceptance probability simplifies to:

$$\alpha\left(heta^{(s-1)}, heta^*
ight) = \min\left[rac{p\left(heta= heta^*|y
ight)}{p\left(heta= heta^{(s-1)}|y
ight)},1
ight]$$

- Choice of density for w determines form of candidate generating density.
- Common choice is Normal:

$$q\left(\theta^{(s-1)};\theta\right)=f_{N}(\theta|\theta^{(s-1)},\Sigma).$$

- Researcher must select Σ. Should be selected so that the acceptance probability tends to be neither too high nor too low.
- There is no general rule which gives the optimal acceptance rate. A rule of thumb is that the acceptance probability should be roughly 0.5.
- A common approach sets Σ = cΩ where c is a scalar and Ω is an estimate of posterior covariance matrix of θ (e.g. the inverse of the Hessian evaluated at the posterior mode)

- Popular (e.g. DYNARE) to use random walk Metropolis-Hastings with DSGE models.
- Note acceptance probability depends only on posterior = prior times likelihood
- DSGE Prior chosen as discussed above
- Algorithms for Normal linear state space models evaluate likelihood function

- Remember: the Gibbs sampler involved sequentially drawing from $p\left(\theta_{(1)}|y,\theta_{(2)}\right)$ and $p\left(\theta_{(2)}|y,\theta_{(1)}\right)$.
- Using a Metropolis-Hastings algorithm for either (or both) of the posterior conditionals used in the Gibbs sampler, $p\left(\theta_{(1)}|y,\theta_{(2)}\right)$ and $p\left(\theta_{(2)}|y,\theta_{(1)}\right)$, is perfectly acceptable.
- This statement is also true if the Gibbs sampler involves more than two blocks.
- Such *Metropolis-within-Gibbs* algorithms are common since many models have posteriors where most of the conditionals are easy to draw from, but one or two conditionals do not have convenient form.

- Normal linear state space model useful for empirical macroeconomists
- E.g. trend-cycle decompositions, TVP-VARs, linearized DSGE models, etc.
- Some models have y_t being a nonlinear function of the states (e.g. DSGE models which have not been linearized)
- Increasing number of Bayesian tools for nonlinear state space models (e.g. the particle filter)
- Here we will focus on stochastic volatility

- Begin with y_t being a scalar (common in finance)
- Stochastic volatility model:

$$y_t = \exp\left(\frac{h_t}{2}\right)\varepsilon_t$$

 $h_{t+1} = \mu + \phi \left(h_t - \mu \right) + \eta_t$

- ε_t is i.i.d. N(0, 1) and η_t is i.i.d. $N(0, \sigma_{\eta}^2)$. ε_t and η_s are independent.
- This is state space model with states being h_t , but measurement equation is not a linear function of h_t

- h_t is log of the variance of y_t (log volatility)
- Since variances must be positive, common to work with log-variances
- Note μ is the unconditional mean of h_t .
- Initial conditions: if $|\phi| < 1$ (stationary) then:

$$h_0 \sim N\left(\mu, rac{\sigma_\eta^2}{1-\phi^2}
ight)$$

- if $\phi = 1$, μ drops out of the model and However, when $\phi = 1$, need a prior such as $h_0 \sim N(\underline{h}, \underline{V}_h)$
- e.g. Primiceri (2005) chooses \underline{V}_h using training sample

MCMC Algorithm for Stochastic Volatility Model

- MCMC algorithm involves sequentially drawing from $p\left(h^{T}|y^{T}, \mu, \phi, \sigma_{\eta}^{2}\right), p\left(\phi|y^{T}, \mu, \sigma_{\eta}^{2}, h^{T}\right), p\left(\mu|y^{T}, \phi, \sigma_{\eta}^{2}, h^{T}\right)$ and $p\left(\sigma_{\eta}^{2}|y^{T}, \mu, \phi, h^{T}\right)$
- Last three standard forms based on results from Normal linear regression model and will not present here.
- Several algorithms exist for $p\left(h^{T}|y^{T}, \mu, \phi, \sigma_{\eta}^{2}\right)$
- Here we describe a popular one from Kim, Shephard and Chib (1998, ReStud)
- For complete details, see their paper. Here we outline ideas.

Square and log the measurement equation:

$$y_t^* = h_t + \varepsilon_t^*$$

- where $y_t^* = \ln (y_t^2)$ and $\varepsilon_t^* = \ln (\varepsilon_t^2)$.
- Now the measurement equation is linear so maybe we can use algorithm for Normal linear state space model?
- No, since error is no longer Normal (i.e. $\varepsilon_t^* = \ln (\varepsilon_t^2)$)
- Idea: use mixture of different Normal distributions to approximate distribution of ε_t^* .

 Mixtures of Normal distributions are very flexible and have been used widely in many fields to approximate unknown or inconvenient distributions.

$$p\left(\varepsilon_{t}^{*}\right) pprox \sum_{i=1}^{7} q_{i} f_{N}\left(\varepsilon_{t}^{*} | m_{i}, v_{i}^{2}\right)$$

• where $f_N\left(\varepsilon_t^* | m_i, v_i^2\right)$ is the p.d.f. of a $N\left(m_i, v_i^2\right)$

- since ε_{t} is N(0,1), ε_{t}^{*} involves no unknown parameters
- Thus, q_i , m_i , v_i^2 for i = 1, ..., 7 are not parameters, but numbers (see Table 4 of Kim, Shephard and Chib, 1998).

 Mixture of Normals can also be written in terms of component indicator variables, st ∈ {1, 2, ..., 7}

$$\varepsilon_t^* | s_t = i \sim N(m_i, v_i^2)$$

 $\Pr(s_t = i) = q_i$

- MCMC algorithm does not draw from $p\left(h^{T}|y^{T}, \mu, \phi, \sigma_{\eta}^{2}\right)$, but from $p\left(h^{T}|y^{T}, \mu, \phi, \sigma_{\eta}^{2}, s^{T}\right)$.
- But, conditional on s^{T} , knows which of the Normals ε_{t}^{*} comes from.
- Result is a Normal linear state space model and familiar algorithm can be used.
- Finally, need $p\left(s^{T}|y^{T}, \mu, \phi, \sigma_{\eta}^{2}, h^{T}\right)$ but this has simple form (see Kim, Shephard and Chib , 1998)

- Remember: this course has a lecture format
- But I have made up some computer question sheets that you you may wish to work through on your own
- Computer session 3 (on the course website) has questions relating to an influential state space model used in
- Stock and Watson (2007) "Why Has U.S. Inflation Become Harder to Forecast?," Journal of Money, Credit and Banking.
- MATLAB computer code which answers the questions is also available on the website

- y_t is now $M \times 1$ vector and ε_t is i.i.d. $N(0, \Sigma_t)$.
- Many ways of allowing Σ_t to be time-varying
- But must worry about overparameterization problems
- Σ_t for t = 1, ..., T contains $\frac{TM(M+1)}{2}$ unknown parameters
- Here we discuss three particular approaches popular in macroeconomics
- To focus on multivariate stochastic volatility, use model:

$$y_t = \varepsilon_t$$
$$\Sigma_t = D_t$$

- where D_t is a diagonal matrix with diagonal elements d_{it}
- *d_{it}* has standard univariate stochastic volatility specification

•
$$d_{it} = \exp(h_{it})$$
 and

٠

$$h_{i,t+1} = \mu_i + \phi_i \left(h_{it} - \mu_i \right) + \eta_{it}$$

- if η_{it} are independent (across both *i* and *t*) then Kim, Shephard and Chib (1998) MCMC algorithm can be used one equation at a time.
- But many interesting macroeconomic features (e.g. impulse responses) depend on error covariances so assuming Σ_t to be diagonal often will be a bad idea.

• Cogley and Sargent (2005, RED)

۲

$$\Sigma_t = L^{-1} D_t L^{-1\prime}$$

- *D_t* is as in Model 1 (diagonal matrix with diagonal elements being variances)
- L is a lower triangular matrix with ones on the diagonal.
- E.g. M = 3 $L = \begin{bmatrix} 1 & 0 & 0 \\ L_{21} & 1 & 0 \\ L_{31} & L_{32} & 1 \end{bmatrix}$

We can transform model as:

$$Ly_t = L\varepsilon_t$$

- ε_t^{*} = Lε_t will now have a diagonal covariance matrix can use algorithm for Model 1.
- MCMC algorithm: $p(h^T | y^T, L)$ can use Kim, Shephard and Chib (1998) algorithm one equation at a time.
- $p(L|y^T, h^T)$ results similar to those from a series of M regression equations with independent Normal errors.
- See Cogley and Sargent (2005) for details.

- Cogley-Sargent model allows the covariance between errors to change over time, but in restricted fashion.
- E.g. M = 2 then $cov(\varepsilon_{1t}, \varepsilon_{2t}) = d_{1t}L_{21}$ which varies proportionally with the error variance of the first equation.
- Impulse response analysis: a shock to i^{th} variable has an effect on j^{th} variable which is constant over time
- In many macroeconomic applications this is too restrictive.

• Primiceri (2005, ReStud):

$$\Sigma_t = L_t^{-1} D_t L_t^{-1\prime}$$

- L_t is same as Cogley-Sargent's L but is now time varying.
- Does not restrict Σ_t in any way.
- MCMC algorithm same as for Cogley-Sargent except for L_t

- How does *L_t* evolve?
- Stack unrestricted elements by rows into a $\frac{M(M-1)}{2}$ vector as $I_t = (L_{21,t}, L_{31,t}, L_{32,t}, ..., L_{p(p-1),t})'$.

$$I_{t+1} = I_t + \zeta_t$$

- ζ_t is i.i.d. $N(0, D_{\zeta})$ and D_{ζ} is a diagonal matrix.
- Can transform model so that algorithm for Normal linear state space model can draw *I*_t
- See Primiceri (2005) for details
- Note: if D_ζ is not diagonal have to be careful (no longer Normal state space model)

Sequential Monte Carlo and Particle Filtering Methods for State Space Models

- In this course, we have focussed on MCMC Methods such as the Gibbs sampler
- However, there is a new set of methods that is growing in popularity
- Some argue these will be the dominant computational tools of the future, particularly for nonlinear state space models
- If time permits, I will offer a brief introduction
- The following website contains a variety of materials (including some nice videos)
- http://www.stats.ox.ac.uk/~doucet/smc_resources.html
- If you love computers, I note that these methods (unlike MCMC methods) can typically be parallelized
- This means you can use the massive computing power in graphical processing units (GPUs)
- See the manuscript "Massively Parallel Sequential Monte Carlo for Bayesian Inference" by Durham and Geweke

Aside on Model Averaging and Model Selection

- I have said much about estimation and forecasting, but little about model comparison
- Remember Bayesians often use marginal likelihoods (which are the basic building block in posterior model probabilities)
- Marginal likelihoods can be used for model selection:
- Select model with highest marginal likelihood
- Or model averaging:
- Retain all models but present forecasts/results which are weighted average with weights proportional to marginal likelihoods
- Marginal likelihoods can be hard to calculate using MCMC methods
- An advantage of sequential Monte Carlo methods is that marginal likelihood at each point in time is produced
- But there is an increasing interest in various methods which do model averaging and selection in a quick manner
- To give an example of how this is done and provide an application of state space modelling, I next will present an empirical example

- Based on the paper: Koop and Korobilis (2012, IER)
- Macroeconomists typically have many time series variables
- But even with all this information forecasting of macroeconomic variables like inflation, GDP growth, etc. can be very hard
- Sometimes hard to beat very simple forecasting procedures (e.g. random walk)
- Imagine a regression of inflation on many predictors
- Such a regression might fit well in practice, but forecast poorly

- Why? There are many reasons, but three stand out:
- Regressions with many predictors can over-fit (over-parameterization problems)
- Marginal effects of predictors change over time (parameter change/structural breaks)
- The relevant forecasting model may change (model change)
- We use an approach called Dynamic Model Averaging (DMA) in an attempt to address these problems

- Phillips curve: inflation depends on unemployment rate
- Generalized Phillips curve: Inflation dependent on lagged inflation, unemployment and other predictors
- Many papers use generalized Phillips curve models for inflation forecasting
- Regression-based methods based on:

$$y_t = \phi + x'_{t-1}\beta + \sum_{j=1}^p \gamma_j y_{t-j} + \varepsilon_t$$

- y_t is inflation and x_{t-1} are lags of other predictors
- To make things concrete, following is our list of predictors (other papers use similar)

- UNEMP: unemployment rate.
- CONS: the percentage change in real personal consumption expenditures.
- INV: the percentage change in private residential fixed investment.
- GDP: the percentage change in real GDP.
- HSTARTS: the log of housing starts (total new privately owned housing units).
- EMPLOY: the percentage change in employment (All Employees: Total Private Industries, seasonally adjusted).
- PMI: the change in the Institute of Supply Management (Manufacturing): Purchasing Manager's Composite Index.

- TBILL: three month Treasury bill (secondary market) rate.
- SPREAD: the spread between the 10 year and 3 month Treasury bill rates.
- DJIA: the percentage change in the Dow Jones Industrial Average.
- MONEY: the percentage change in the money supply (M1).
- INFEXP: University of Michigan measure of inflation expectations.
- COMPRICE: the change in the commodities price index (NAPM commodities price index).
- VENDOR: the change in the NAPM vendor deliveries index.

• Write more compactly as:

$$y_t = z_t \theta + \varepsilon_t$$

- z_t contains all predictors, lagged inflation, an intercept
- Note $z_t =$ information available for forecasting y_t
- When forecasting h periods ahead will contain variables dated t h or earlier

- Consider forecasting $y_{\tau+1}$.
- Recursive forecasting methods: $\hat{\theta} =$ estimate using data through τ .
- So $\widehat{ heta}$ will change (a bit) with au, but can change too slowly
- Rolling forecasts use: $\hat{\theta}$ an estimate using data from $\tau \tau_0$ through τ .
- ullet Better at capturing parameter change, but need to choose au_0
- Recursive and rolling forecasts might be imperfect solutions
- Why not use a model which formally models the parameter change as well?

• TVP models gaining popularity in empirical macroeconomics

$$egin{array}{rcl} y_t &=& z_t heta_t + arepsilon_t \ heta_t &=& heta_{t-1} + \eta_t \end{array}$$

- $\varepsilon_t \overset{ind}{\sim} N(0, H_t)$
- $\eta_{t} \stackrel{ind}{\sim} N(0, Q_{t})$
- State space methods described above can be used to estimate them

- Why not use TVP model to forecast inflation?
- Advantage: models parameter change in a formal manner
- Disadvantage: same predictors used at all points in time.
- If number of predictors large, over-fit, over-parameterization problems
- In our empirical work, we show very poor forecast performance

Digression on Bayesian Model Averaging (BMA)

• Return to basic regression model

$$y_t = z_t \theta + \varepsilon_t$$

- Suppose *z_t* contains *m* variables and *m* is large (over-fitting, over-parameterization)
- Model selection: Select a single model based on a series of hypothesis tests
- Problem: 2^m potential models: serious pre-test problems
- An increasingly common response: BMA
- Average over all models (with data-based weights: marginal likelihoods or information criteria)

- Problem: Computational burden of dealing with 2^m models
- Solution: Sophisticated algorithms which simulate from model space (MC-cubed)
- Note: MC-cubed can also be used to select a single best model in an automatic and computational efficient way
- BMA is increasingly popular with cross-sectional data sets (e.g. cross-country growth regressions)
- Question: can we use similar ideas in a time series context?

Dynamic Model Averaging (DMA)

- Define K models which have z_t^(k) for k = 1, ..., K, as predictors
 z_t^(k) is subset of z_t.
- Set of models:

$$y_t = z_t^{(k)} \theta_t^{(k)} + \varepsilon_t^{(k)}$$
$$\theta_{t+1}^{(k)} = \theta_t^{(k)} + \eta_t^{(k)}$$

• $\varepsilon_t^{(k)}$ is $N\left(0, H_t^{(k)}\right)$ • $\eta_t^{(k)}$ is $N\left(0, Q_t^{(k)}\right)$ • Let $L_t \in \{1, 2, ..., K\}$ denote which model applies at t

- Why not just forecast using BMA over these TVP models at every point in time?
- Different weights in averaging at every point in time.
- Or why not just select a single TVP forecasting model at every point in time?
- Different forecasting models selected at each point in time.
- If K is large (e.g. $K = 2^m$), this is computationally infeasible.
- With cross-sectional BMA have to work with model space $K = 2^m$ which is computationally burdensome
- In present time series context, forecasting through time τ involves $2^{m\tau}$ models.
- Also, Bayesian inference in TVP model requires MCMC (unlike cross-sectional regression). Computationally burdensome.
- Even clever algorithms like MC-cubed are not good enough to handle this.

- Another strategy has been used to deal with similar problems in different contexts (e.g. multiple structural breaks): Markov switching
- Markov transition matrix, P,
- Elements $p_{ij} = \Pr(L_t = i | L_{t-1} = j)$ for i, j = 1, ..., K.
- "If j is the forecasting model at t − 1, we switch to forecasting model i at time t with probability p_{ij}"
- Bayesian inference is theoretically straightforward, but computationally infeasible
- P is $K \times K$: an enormous matrix.
- Even if computation were possible, imprecise estimation of so many parameters

- Adopt approach used by Raftery et al (2010 Technometrics) in an engineering application
- Involves two approximations
- First approximation means we do not need MCMC in each TVP model (only need run a standard Kalman filtering and smoothing)
- See paper for details. Idea: replace $Q_t^{(k)}$ and $H_t^{(k)}$ by estimates

• Sketch of some Kalman filtering ideas (where y^{t-1} are observations through t-1)

$$\theta_{t-1}|y^{t-1} \sim N\left(\widehat{\theta}_{t-1}, \Sigma_{t-1|t-1}\right)$$

- Textbook formula for $\widehat{\theta}_{t-1}$ and $\Sigma_{t-1|t-1}$
- Then update

$$\theta_t | y^{t-1} \sim N\left(\widehat{\theta}_{t-1}, \Sigma_{t|t-1}\right)$$

۲

$$\Sigma_{t|t-1} = \Sigma_{t-1|t-1} + Q_t$$

• Get rid of Q_t by approximating:

$$\Sigma_{t|t-1} = \frac{1}{\lambda} \Sigma_{t-1|t-1}$$

• $0 < \lambda \leq 1$ is forgetting factor

- Forgetting factors like this have long been used in state space literature
- Implies that observations j periods in the past have weight λ^{j} .
- Or effective window size of $\frac{1}{1-\lambda}$.
- Choose value of λ near one
- $\lambda = 0.99$: observations five years ago $\approx 80\%$ as much weight as last period's observation.
- $\lambda = 0.95$: observations five years ago $\approx 35\%$ as much weight as last period's observations.
- We focus on $\lambda \in [0.95, 1.00]$.
- If $\lambda = 1$ no time variation in parameters (standard recursive forecasting)

Back to Model Averaging/Selection

- Goal for forecasting at time t given data available at time t-1 is $\pi_{t|t-1,k} \equiv \Pr(L_t = k|y^{t-1})$
- Can average across k = 1, ..., K forecasts using $\pi_{t|t-1,k}$ as weights (DMA)
- E.g. point forecasts $(\hat{\theta}_{t-1}^{(k)} \text{ from Kalman filter in model } k)$:

$$E\left(y_{t}|y^{t-1}\right) = \sum_{k=1}^{K} \pi_{t|t-1,k} z_{t}^{(k)} \widehat{\theta}_{t-1}^{(k)}$$

- Can forecast with model j at time t if π_{t|t-1,j} is highest (Dynamic model selection: DMS)
- Raftery et al (2010) propose another forgetting factor to approximate $\pi_{t|t-1,k}$

- Complete details in Raftery et al's paper.
- Basic idea is that can use similar state space updating formulae for models as is done with states
- Then use similar forgetting factor to get approximation

$$\pi_{t|t-1,k} = \frac{\pi_{t-1|t-1,k}^{\alpha}}{\sum_{l=1}^{K} \pi_{t-1|t-1,l}^{\alpha}}$$

• $0 < \alpha \le 1$ is forgetting factor with similar interpretation to λ • Focus on $\alpha \in [0.95, 1.00]$

- Interpretation of forgetting factor α
- Easy to show:

$$\pi_{t|t-1,k} = \prod_{i=1}^{t-1} \left[p_k \left(y_{t-i} | y^{t-i-1} \right) \right]^{\alpha^i}$$

- *p_k* (*y_t*|*y^{t-1}*) is predictive density for model *k* evaluated at *y_t* (measure of forecast performance of model *k*)
- Model k will receive more weight at time t if it has forecast well in the recent past
- Interpretation of "recent past" is controlled by the forgetting factor, α
- α = 0.99: forecast performance five years ago receives 80% as much weight as forecast performance last period
- $\alpha = 0.95$: forecast performance five years ago receives only about 35% as much weight.
- $\alpha = 1$: can show $\pi_{t|t-1,k}$ is proportional to the marginal likelihood using data through time t 1 (standard BMA)

- We want to do DMA or DMS
- These use TVP models which allow marginal effects to change over time
- These allow for forecasting model to switch over time
- So can switch from one parsimonious forecasting model to another (avoid over-parametization)
- But a full formal Bayesian analysis is computationally infeasible
- Sensible approximations make it computationally feasible.
- State space updating formula must be run K times, instead of (roughly speaking) K^T MCMC algorithms

- Data from 1960Q1 through 2008Q4
- Real time data (forecasting at time au using data as known at time au)
- Two measure of inflation based on PCE deflator (core inflation) and GDP deflator
- 14 predictors listed previously (all variables transformed to be approximately stationary)
- All models include an intercept and two lags of the dependent variable
- 3 forecast horizons: h = 1,4,8

- Even though 14 potential predictors, most probability is attached to very parsimonious models with only a few predictors.
- $Size_k =$ number of predictors in model k
- (*Size_k* does not include the intercept plus two lags of the dependent variable)
- Figure 1 plots

$$E(Size_t) = \sum_{k=1}^{K} \pi_{t|t-1,k} Size_k$$

• Posterior inclusion probabilities for j^{th} predictor =

$$\sum_{k\in J} \pi_{t|t-1,k}$$

- where $k \in J$ indicates models which include j^{th} predictor
- See Figure 2, 3 and 4 for 2 measures of inflation and 3 forecast horizons
- Any predictor where the inclusion probability is never above 0.5 is excluded from the appropriate figure.
- Lots of evidence of predictor change in all cases.
- DMA/DMS will pick this up automatically

Figure 2: Posterior Probability of Inclusion of Predictors, h = 1. GDP deflator inflation top, PCE deflator inflation bottom

Figure 3: Posterior Probability of Inclusion of Predictors, h = 4. GDP deflator inflation top, PCE deflator inflation bottom

Figure 4: Posterior Probability of Inclusion of Predictors, h = 8. GDP deflator inflation top, PCE deflator inflation bottom
- Pseudo-out-of-sample forecasting exercise
- forecast evaluation begins in 1970Q1
- Measures of forecast performance using point forecasts
- Mean squared forecast error (MSFE) and mean absolute forecast error (MAFE).
- Forecast metric involving entire predictive distribution: the sum of log predictive likelihoods.
- Predictive likelihood = Predictive density for y_t (given data through time t - 1) evaluated at the actual outcome.

- DMA with $\alpha = \lambda = 0.99$.
- DMS with $\alpha = \lambda = 0.99$.
- DMA with $\alpha = \lambda = 0.95$.
- DMS with $\alpha = \lambda = 0.95$.
- DMA, with constant coefficiants ($\lambda = 1, \ \alpha = 0.99$)
- BMA as a special case of DMA (i.e. we set $\lambda = \alpha = 1$).
- TVP-AR(2)-X: Traditional TVP model .
- TVP-AR(2) model (as preceding but excluding predictors)

- Traditional g-prior BMA
- UC-SV: Unobserved components with stochastic volatility model of Stock and Watson (2007).
- Recursive OLS using AR(p)
- As preceding, but adding the predictors.
- Rolling OLS using AR(p) (window of 40 quarters)
- As preceding, but adding the predictors
- Random walk
- Note: in recursive and rolling OLS forecasts *p* selected at each point in time using BIC

Discussion of Log Predictive Likelihoods

- Preferred method of Bayesian forecast comparison
- Some variant of DMA or DMS always forecast best.
- DMS with $\alpha = \lambda = 0.95$ good for both measures of inflation at all horizons.
- Conventional BMA forecasts poorly.
- TVP-AR(2) and UC-SV have substantially lower predictive likelihoods than the DMA or DMS approaches.
- Of the non-DMA approaches, UC-SV approach of Stock and Watson (2007) consistently is the best performer.
- TVP model with all predictors tends to forecast poorly
- Shrinkage provided by DMA or DMS is of great value in forecasting.
- DMS tends to forecast a bit better than DMA

Discussion of MSFE and MAFE

- Patterns noted with predictive likelihoods mainly still hold (although DMA does better relative to DMS)
- Simple forecasting methods (AR(2) or random walk model) are inferior to DMA and DMS
- Rolling OLS using all predictors forecast bests among OLS-based methods.
- DMS and DMA with $\alpha = \lambda = 0.95$ always lead to lower MSFEs and MAFEs than rolling OLS with all the predictors.
- In some cases rolling OLS with all predictors leads to lower MSFEs and MAFEs than other implementations of DMA or DMS.
- In general: DMA and DMS look to be safe options. Usually they do best, but where not they do not go too far wrong
- Unlike other methods which might perform well in some cases, but very poorly in others

Forecast results: GDP deflator inflation, h = 1

	MAFE	MSFE	log(PL)
DMA ($\alpha = \lambda = 0.99$)	0.248	0.306	-0.292
DMS ($lpha=\lambda=$ 0.99)	0.256	0.318	-0.277
DMA ($lpha=\lambda=$ 0.95)	0.248	0.310	-0.378
DMS ($lpha=\lambda=$ 0.95)	0.235	0.297	-0.237
DMA ($\lambda=$ 1, $lpha=$ 0.99)	0.249	0.306	-0.300
BMA (DMA with $lpha=\lambda=1$)	0.256	0.316	-0.320
TVP-AR(2) ($\lambda=$ 0.99)	0.260	0.327	-0.344
TVP-AR(2)-X ($\lambda=$ 0.99)	0.309	0.424	-0.423
BMA-MCMC ($g=rac{1}{T}$)	0.234	0.303	-0.369
UC-SV ($\gamma=$ 0.2)	0.256	0.332	-0.320
Recursive OLS - AR(BIC)	0.251	0.326	-
Recursive OLS - All Preds	0.265	0.334	-
Rolling OLS - AR(2)	0.251	0.325	-
Rolling OLS - All Preds	0.252	0.327	-
Random Walk	0.262	0.349	-

Forecast results: GDP deflator inflation, h = 4

	MAFE	MSFE	log(PL)
DMA ($\alpha = \lambda = 0.99$)	0.269	0.349	-0.421
DMS ($lpha=\lambda=$ 0.99)	0.277	0.361	-0.406
DMA ($lpha=\lambda=$ 0.95)	0.255	0.334	-0.455
DMS ($lpha=\lambda=$ 0.95)	0.249	0.316	-0.307
DMA ($\lambda=$ 1, $lpha=$ 0.99)	0.277	0.355	-0.445
BMA (DMA with $lpha=\lambda=1$)	0.282	0.363	-0.463
TVP-AR(2) ($\lambda=$ 0.99)	0.320	0.401	-0.480
TVP-AR(2)-X ($\lambda=$ 0.99)	0.336	0.453	-0.508
BMA-MCMC ($g=rac{1}{T}$)	0.285	0.364	-0.503
UC-SV ($\gamma=$ 0.2)	0.311	0.396	-0.473
Recursive OLS - AR(BIC)	0.344	0.433	-
Recursive OLS - All Preds	0.302	0.376	-
Rolling OLS - AR(2)	0.328	0.425	-
Rolling OLS - All Preds	0.273	0.349	-
Random Walk	0.333	0.435	-

Forecast results: GDP deflator inflation, h = 8

	MAFE	MSFE	log(PL)
DMA ($\alpha = \lambda = 0.99$)	0.333	0.413	-0.583
DMS ($lpha=\lambda=$ 0.99)	0.338	0.423	-0.578
DMA ($lpha=\lambda=$ 0.95)	0.293	0.379	-0.570
DMS ($lpha=\lambda=$ 0.95)	0.295	0.385	-0.424
DMA ($\lambda=$ 1, $lpha=$ 0.99)	0.346	0.423	-0.626
BMA (DMA with $lpha=\lambda=1$)	0.364	0.449	-0.690
TVP-AR(2) ($\lambda=$ 0.99)	0.398	0.502	-0.662
TVP-AR(2)-X ($\lambda=$ 0.99)	0.410	0.532	-0.701
BMA-MCMC ($g=rac{1}{T}$)	0.319	0.401	-0.667
UC-SV ($\gamma=$ 0.2)	0.350	0.465	-0.613
Recursive OLS - AR(BIC)	0.436	0.516	-
Recursive OLS - All Preds	0.369	0.441	-
Rolling OLS - AR(2)	0.380	0.464	-
Rolling OLS - All Preds	0.325	0.398	-
Random Walk	0.428	0.598	-

Forecast results: core inflation, h=1

MAFE	MSFE	$\log(PL)$
0.253	0.322	-0.451
0.259	0.326	-0.430
0.267	0.334	-0.519
0.236	0.295	-0.348
0.250	0.317	-0.444
0.259	0.331	-0.464
0.280	0.361	-0.488
0.347	0.492	-0.645
0.269	0.352	-0.489
0.269	0.341	-0.474
0.310	0.439	-
0.303	0.421	-
0.316	0.430	-
0.289	0.414	-
0.294	0.414	-
	MAFE 0.253 0.259 0.267 0.236 0.250 0.259 0.280 0.347 0.269 0.269 0.310 0.303 0.316 0.289 0.294	MAFEMSFE0.2530.3220.2590.3260.2670.3340.2360.2950.2500.3170.2590.3310.2800.3610.3470.4920.2690.3520.2690.3410.3100.4390.3030.4210.3160.4300.2890.4140.2940.414

Forecast results: core inflation, h=4

	MAFE	MSFE	$\log(PL)$
DMA ($\alpha = \lambda = 0.99$)	0.311	0.406	-0.622
DMS ($lpha=\lambda=$ 0.99)	0.330	0.431	-0.631
DMA ($lpha=\lambda=$ 0.95)	0.290	0.382	-0.652
DMS ($lpha=\lambda=$ 0.95)	0.288	0.353	-0.499
DMA ($\lambda=$ 1, $lpha=$ 0.99)	0.315	0.412	-0.636
BMA (DMA with $lpha=\lambda=1)$	0.325	0.429	-0.668
$TVP ext{-}AR(2)\;(\lambda=0.99)$	0.355	0.459	-0.668
TVP-AR(2)-X ($\lambda=$ 0.99)	0.378	0.556	-0.764
BMA-MCMC $(g=rac{1}{T})$	0.307	0.414	-0.633
UC-SV $(\gamma=0.2)$	0.340	0.443	-0.651
Recursive OLS - AR(BIC)	0.390	0.513	-
Recursive OLS - All Preds	0.325	0.442	-
Rolling OLS - AR(2)	0.378	0.510	-
Rolling OLS - All Preds	0.313	0.422	-
Random Walk	0.407	0.551	-

		h=8	
	MAFE	MSFE	$\log(PL)$
DMA ($\alpha = \lambda = 0.99$)	0.357	0.448	-0.699
DMS ($lpha=\lambda=$ 0.99)	0.369	0.469	-0.699
DMA ($lpha=\lambda=$ 0.95)	0.317	0.403	-0.673
DMS ($lpha=\lambda=$ 0.95)	0.293	0.371	-0.518
DMA ($\lambda=$ 1, $lpha=$ 0.99)	0.366	0.458	-0.733
BMA (DMA with $lpha=\lambda=1$)	0.397	0.490	-0.779
TVP-AR(2) ($\lambda=$ 0.99)	0.450	0.573	-0.837
TVP-AR(2)-X ($\lambda=$ 0.99)	0.432	0.574	-0.841
BMA-MCMC $(g = rac{1}{T})$	0.357	0.454	-0.788
UC-SV ($\gamma=$ 0.2)	0.406	0.528	-0.774
Recursive OLS - AR(BIC)	0.463	0.574	-
Recursive OLS - All Preds	0.378	0.481	-
Rolling OLS - AR(2)	0.428	0.540	-
Rolling OLS - All Preds	0.338	0.436	-
Random Walk	0.531	0.698	-

Forecast results: core inflation, h = 8

- Greenbook forecasts are for GDP deflator inflation
- Published with a lag so different data span
- h = 1 forecasts from 1970Q1 through 2004Q1
- *h* = 4 forecasts from 1974Q1 through 2004Q4
- Greenbook forecasts are point forecasts (no predictive likelihoods)
- Table presents MAFEs relative to simple random walk
- For h = 1 DMA beats Greenbook
- When h = 4 we beat Greenbook forecasts when $\alpha = \lambda = 0.95$

Companson of DIMA with		
	h=1	<i>h</i> = 4
Greenbook forecasts	0.91	0.84
DMA $lpha=\lambda=$ 0.99	0.80	0.94
DMA $\alpha = \lambda = 0.95$	0.77	0.83

Comparison of DMA with Greenbook forecasts: MAFE

- When forecasting in the presence of change/breaks/turbulence want an approach which:
- Allows for forecasting model to change over time
- Allows for marginal effects of predictors to change over time
- Automatically does the shrinkage necessary to reduce risk of over-parameterizations/over-fitting
- In theory, DMA and DMS should satisfy these criteria
- In practice, we find DMA and DMS to forecast well in an exercise involving US inflation.

- MCMC algorithms such as the Gibbs sampler are modular in nature (sequentially draw from blocks)
- By combining simple blocks together you can end up with very flexible models
- This is strategy pursued here.
- For state space models there are a standard set of algorithms which can be combined together in various ways to produce quite sophisticated models
- Our MCMC algorithms for complicated models all combine simpler algorithms.
- E.g. Primiceri's complicated model involves blocks which use Carter and Kohn's algorithm and blocks which use Kim, Shephard and Chib's algorithm (and even the latter relies upon Carter and Kohn)