
MATLAB Computer Session 1: Basics of Bayesian Computation

Exercises 1 and 4 are taken from the book: Gary Koop, Dale Poirier and Justin Tobias (2007), Bayesian
Econometric Methods, Cambridge University Press. In particular, these are exercises 11.2 and 11.7,
from this book. There is MATLAB code associated with Bayesian Econometric Methods, available at:
http://web.ics.purdue.edu/~jltobias/bem.html. However, you do not need to download this code. I provide
the code for all the exercises in the website associated with this course:
http://personal.strath.ac.uk/gary.koop/BoK_course.html

MATLAB Exercises:

1. Drawing from Standard Distributions.:

Simulation-based inference using algorithms such as the Gibbs sampler requires the researcher to be
able to draw from standard distributions. In this exercise we discuss how MATLAB can be used to
obtain draws from a variety of standard continuous distributions. Specifically, we obtain draws from
the Uniform, Normal, Student-t, Beta, Exponential and Chi-squared distributions (see the Appendix
of Bayesian Econometric Methods for definitions of these distributions). Using the Matlab program for
this exercise (Ex1.m), obtain sets of 10, 100 and 100,000 draws from the Uniform, standard Normal,
Student-t(3) (denoted t (0, 1, 3) in the notation of the Appendix to the book), Beta(3,2), Exponential
with mean and χ2 (3) distributions. For each sample size calculate the mean and standard deviation
and compare these quantities to the known means and standard deviations from each distribution.

2. Monte Carlo integration:

If the posterior density p (θ|y) takes the a familiar form (e.g. a Normal or Student-t or Gamma or
other distribution for which computer algorithms exist to take random draws) then we can obtain R
iid draws of the parameters, which we denote θ(r), r = 1, ..., R. Usually, quantities of interest to the
researcher are functions of the model parameters. Let us call such a function g (θ). The researcher
would then often be interested in calculating:

E (g (θ) |y) =
∫
g (θ) p (θ|y) dθ

Monte Carlo integration allows us to calculate integrals of this form. The weak law of large numbers
implies that

E (g (θ) |y) '

∑R
r=1 g

(
θ(r)
)

R

This means that the posterior mean of g (θ) can be calculated by drawing from the posterior and then
averaging functions of the posterior draws. Exercise: Suppose p (θ|y) ∼ N(1, 4) and the quantity of
interest is g (θ) = θ2. Use Monte Carlo integration to calculate E

(
θ2
)
. Code for this question is in

Ex2.m. Note: in this case, you know the correct answer is E
(
θ2
)
= 5 (since the definition of variance

tells you that var (θ) = E
(
θ2
)
− [E (θ)]2 and, in this exercise, var (θ) = 4 and E (θ) = 1), so you

would not need to have done Monte Carlo integration. Optional exercise: modify Ex2.m to calculate
the posterior mean for a more complicated quantity of interest for which analytical results are not so
easily available (e.g. calculate Pr

(
θ2 > 2

)
or E (ln (θ)) or some other choice for g (θ)).

3. Analysis of the Normal model using Monte Carlo integration:

Assume that we observe y = (y1, ..., yT ) which come from a Normal density with unknown mean θ but
with known variance σ2. The likelihood function of this model has only one unknown parameter, θ.We
have to specify a prior on θ and we assume that a normal density is a reasonable choice. Consequently
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we define θ ∼ N
(
µ, τ2

)
where µ is the prior mean and τ2 is the prior variance. Analytical results are

available for this example. The Likelihood and prior are:

p (y|θ) =
1√
2πσ2

exp

(
−
∑
(yt − θ)2

2σ2

)

p (θ) =
1√
2πτ2

exp

(
− (θ − µ)2

τ2

)

so that the posterior of the parameters is (see Koop et al. (2007, Exercise 2.3)):

θ|y ∼ N
(
ξ
(
σ2µ+ τ2y

)
, ξσ2τ2

)
(1)

ξ =
(
σ2 + τ2

)−1
where y is the sample mean. Accordingly, to obtain draws from the posterior density, we have to draw
from normal density with the parameters specified in (1), i.e. the posterior mean ξ

(
σ2µ+ τ2y

)
and

the posterior variance ξσ2τ2. The MATLAB code Ex2.m provided, generates y from a known Normal
distribution of your choice, and takes samples from the posterior using the Monte Carlo integration.
You are asked to explore 3 things:

(a) Change the values of the prior hyperparameters µ, τ2 and see what happens to the posterior mean.
Begin with uninformative values (µ = 0, τ2 = 100, 000). Then provide a prior belief for µ which
is far away from the true mean we just used to generate y. What happens? Try to set a very
tight prior variance τ2 = 0.01. What happens in this case?

(b) Keep the prior hyperparameters constant and change the number of samples T of the generated
variable y. Report what changes for T = 10, 100, 1000, 10000. Compare with the MLE estimate
of the parameter θ.

(c) Compare the histograms of the prior and resulting posterior, for different choices of T , and the
prior hyperparameters µ, τ2.

4. Gibbs Sampling from the Bivariate Normal:

The purpose of this question is to learn about the properties of the Gibbs sampler in a very simple case.
Assume that you have a model which yields a bivariate Normal posterior,(

θ1
θ2

)
∼ N

([
0
0

]
,

[
1 ρ
ρ 1

])
,

where |ρ| < 1 is the (known) posterior correlation between θ1 and θ2.

(a) Write a program which uses Monte Carlo integration to calculate the posterior means and standard
deviations of θ1 and θ2.

(b) Write a program which uses Gibbs sampling to calculate the posterior means and standard deviations
of θ1 and θ2.

(c) Set ρ = 0 and compare the programs from parts a) and b) for a given number of replications (e.g.
R = 100) and compare the accuracy of the two algorithms.

(d) Repeat part (c) of this question for ρ = .5, .9, .99 and .999. Discuss how the degree of correlation between
θ1 and θ2 affects the performance of the Gibbs sampler. Make graphs of the Monte Carlo and Gibbs
sampler replications of θ1 (i.e. make a graph with x-axis being replication number and y-axis being
θ1). What can the graphs you have made tell you about the properties of Monte Carlo and Gibbs
sampling algorithms.

(d) Repeat parts (c) and (d) using more replications (e.g. R = 50, 000) and discuss how Gibbs sampling
accuracy improves with number of replications.
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