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Bayesian Theory

Reading: Chapter 1 of textbook and Appendix B, section B.1.

Begin with general concepts in Bayesian theory before getting to
specific models.

If you know these general concepts you will never get lost.

What does econometrician do? i) Estimate parameters in a model
(e.g. regression coeffi cients), ii) Compare different models (e.g.
hypothesis testing), iii) Prediction.

Bayesian econometrics does these based on a few simple rules of
probability.
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Let A and B be two events, p(B |A) is the conditional probability of
B |A. “summarizes what is known about B given A”
Bayesians use this rule with A = something known or assumed (e.g.
the Data), B is something unknown (e.g. coeffi cients in a model).

Let y be data, y ∗ be unobserved data (i.e. to be forecast), Mi for
i = 1, ..,m be set of models each of which depends on some
parameters, θi .

Learning about parameters in a model is based on the posterior
density: p(θi |Mi , y)

Model comparison based on posterior model probability: p(Mi |y)
Prediction based on the predictive density p(y ∗|y).
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Bayes Theorem

I expect you know basics of probability theory from previous studies,
see Appendix B of my textbook if you do not.

Definition: Conditional Probability

The conditional probability of A given B, denoted by Pr (A|B), is the
probability of event A occurring given event B has occurred.

Theorem: Rules of Conditional Probability including Bayes’Theorem

Let A and B denote two events, then

Pr (A|B) = Pr(A,B )
Pr(B ) and

Pr (B |A) = Pr(A,B )
Pr(A) .
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These two rules can be combined to yield Bayes’Theorem:

Pr (B |A) = Pr (A|B)Pr (B)
Pr (A)

.

Note: Above is expressed in terms of two events, A and B. However,
can be interpreted as holding for random variables, A and B with
probability density functions replacing the Pr ()s in previous formulae.
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Learning About Parameters in a Given Model (Estimation)

Assume a single model which depends on parameters θ

Want to figure out properties of the posterior p(θ|y)
It is convenient to use Bayes’rule to write the posterior in a different
way.

Bayes’rule lies at the heart of Bayesian econometrics:

p(B |A) = p(A|B)p(B)
p(A)

.

Replace B by θ and A by y to obtain:

p(θ|y) = p(y |θ)p (θ)
p(y)

.
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Bayesians treat p(θ|y) as being of fundamental interest: “Given the
data, what do we know about θ?”.

Treatment of θ as a random variable is controversial among some
econometricians.

Competitor to Bayesian econometrics, called frequentist econometrics,
says that θ is not a random variable.

For estimation can ignore the term p(y) since it does not involve θ:

p(θ|y) ∝ p(y |θ)p(θ).

p(θ|y) is referred to as the posterior density
p(y |θ) is the likelihood function
p(θ) as the prior density.

“posterior is proportional to likelihood times prior”.

Gary Koop () Lecture 1: Overview and the Regression Model September 14, 2012 7 / 42



p(θ), does not depend on the data. It contains any non-data
information available about θ.

Prior information is controversial aspect since it sounds unscientific.

Bayesian answers (to be elaborated on later):

i) Often we do have prior information and, if so, we should include it
(more information is good)

ii) Can work with “noninformative”priors

iii) Can use “empirical Bayes”methods which estimate prior from the
data

iv) Training sample priors

v) Bayesian estimators often have better frequentist properties than
frequentist estimators (e.g. results due to Stein show MLE is
inadmissible —but Bayes estimators are admissible)

vi) Prior sensitivity analysis
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Prediction in a Single Model

Prediction based on the predictive density p(y ∗|y)
Since a marginal density can be obtained from a joint density through
integration:

p(y ∗|y) =
∫
p(y ∗, θ|y)dθ.

Term inside integral can be rewritten as:

p(y ∗|y) =
∫
p(y ∗|y , θ)p(θ|y)dθ.

Prediction involves the posterior and p(y ∗|y , θ) (more description
provided later)
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Model Comparison (Hypothesis testing)

Models denoted by Mi for i = 1, ..,m. Mi depends on parameters θi .

Posterior model probability is p(Mi |y).
Using Bayes rule with B = Mi and A = y we obtain:

p(Mi |y) =
p(y |Mi )p(Mi )

p(y)

p(Mi ) is referred to as the prior model probability.

p(y |Mi ) is called the marginal likelihood.
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How is marginal likelihood calculated?

Posterior can be written as:

p(θi |y ,Mi ) =
p(y |θi ,Mi )p(θ

i |Mi )

p(y |Mi )

Integrate both sides with respect to θi , use fact that∫
p(θi |y ,Mi )dθi = 1 and rearrange:

p(y |Mi ) =
∫
p(y |θi ,Mi )p(θ

i |Mi )dθi .

Note: marginal likelihood depends only on the prior and likelihood.
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Posterior odds ratio compares two models:

POij =
p(Mi |y)
p(Mj |y)

=
p(y |Mi )p (Mi )

p(y |Mj )p(Mj )
.

Note: p(y) is common to both models, no need to calculate.
Can use fact that p(M1|y) + p(M2|y) + ...+ p(Mm |y) = 1 and POij
to calculate the posterior model probabilities.
E.g. if m = 2 models:

p(M1|y) + p(M2|y) = 1

PO12 =
p(M1|y)
p(M2|y)

imply

p(M1|y) =
PO12

1+ PO12
p(M2|y) = 1− p(M1|y).

The Bayes Factor is:

BFij =
p(y |Mi )

p(y |Mj )
.
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Summary

These few pages have outlined all the basic theoretical concepts
required for the Bayesian to learn about parameters, compare models
and predict.

This is an enormous advantage: Once you accept that unknown
things (i.e. θ, Mi and y ∗) are random variables, the rest of Bayesian
approach is non-controversial.

What are going to do in rest of this course?

See how these concepts work in some models of interest.

First the regression model (very briefly)

Then time series models of interest for macroeconomics

Bayesian computation.
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Bayesian Computation

How do you present results from a Bayesian empirical analysis?

p(θ|y) is a p.d.f. Especially if θ is a vector of many parameters
cannot present a graph of it.

Want features analogous to frequentist point estimates and
confidence intervals.

A common point estimate is the mean of the posterior density (or
posterior mean).

Let θ be a vector with k elements, θ = (θ1, .., θk )
′. The posterior

mean of any element of θ is:

E (θi |y) =
∫

θip(θ|y)dθ.
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Common measure of dispersion is the posterior standard deviation
(square root of posterior variance)

Posterior variance:

var(θi |y) = E (θ2i |y)− {E (θi |y)}2,

This requires calculating another expected value:

E (θ2i |y) =
∫

θ2i p(θ|y)dθ.

Many other possible features of interest. E.g. what is probability that
a coeffi cient is positive?

p(θi ≥ 0|y) =
∫ ∞

0
p(θi |y)dθi
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All of these posterior features have the form:

E [g (θ) |y ] =
∫
g(θ)p(θ|y)dθ,

where g(θ) is a function of interest.

All these features have integrals in them. Marginal likelihood and
predictive density also involved integrals.

Apart from a few simple cases, it is not possible to evaluate these
integrals analytically, and we must turn to the computer.
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Posterior Simulation

The integrals involved in Bayesian analysis are usually evaluated using
simulation methods.

Will use several methods later on. Here we provide some intuition.

Frequentist asymptotic theory uses Laws of Large Numbers (LLN)
and a Central Limit Theorems (CLT).

A typical LLN: “consider a random sample, Y1, ..YN , as N goes to
infinity, the average converges to its expectation” (e.g. Y → µ)

Bayesians use LLN: “consider a random sample from the posterior,
θ(1), ..θ(S ), as S goes to infinity, the average of these converges to
E [θ|y ]”
Note: Bayesians use asymptotic theory, but asymptotic in S (under
control of researcher) not N
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Example: Monte Carlo integration.

Let θ(s) for s = 1, ..,S be a random sample from p(θ|y) and define

ĝS =
1
S

S

∑
s=1

g
(

θ(s)
)
,

then ĝS converges to E [g (θ) |y ] as S goes to infinity.
Monte Carlo integration approximates E [g (θ) |y ], but only if S were
infinite would the approximation error be zero.

We can choose any value for S (but larger values of S will increase
computational burden).

To gauge size of approximation error, use a CLT to obtain numerical
standard error.
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Most Bayesians write own programs (e.g. using Gauss, Matlab, R or
C++) to do posterior simulation

BUGS (Bayesian Analysis Using Gibbs Sampling) is a popular
Bayesian package, but only has limited set of models (or require
substantial programming to adapt to other models)

Bayesian work cannot (easily) be done in standard econometric
packages like Microfit, Eviews or Stata.

I have a Matlab website for VARs, TVP-VARs and TVP-FAVARs (see
my website)

Peter Rossi has an R package for marketing and microeconomic
applications

http://faculty.chicagobooth.edu/peter.rossi/research/bsm.html

Jim LeSage’s Econometrics toolbox (Matlab)

http://www.spatial-econometrics.com/

Many more using R see
http://cran.r-project.org/web/views/Bayesian.html
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Bayesian Analysis of the Normal Linear Regression Model

Regression model can be written as:

y = X β+ ε.

ε, y are N × 1 vectors
β is k × 1 vector
X is N × k matrix
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The Likelihood Function

Likelihood can be derived under the classical assumptions:
ε is N(0N , h−1IN ) where h = σ−2.
All elements of X are either fixed (i.e. not random variables).
Exercise 10.1, Bayesian Econometric Methods shows that likelihood
function can be written in terms of OLS quantities:

ν = N − k,
β̂ =

(
X ′X

)−1 X ′y
s2 =

(
y − X β̂

)′ (
y − X β̂

)
ν

Likelihood function:

p(y |β, h) = 1

(2π)
N
2{

h
1
2 exp

[
− h2

(
β− β̂

)′
X ′X

(
β− β̂

)]}{
h

ν
2 exp

[
− hν
2s−2

]}
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The Prior

Common starting point is natural conjugate Normal-Gamma prior

β conditional on h is now multivariate Normal:

β|h ∼ N(β, h−1V )

Prior for error precision h is Gamma

h ∼ G (s−2, ν)

β,V , s−2 and ν a prior hyperparameter values chosen by the
researcher

Notation: Normal-Gamma distribution

β, h ∼ NG
(

β,V , s−2, ν
)
.

Noninformative prior is limiting case, leads to OLS quantities
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The Posterior

Multiply likelihood by prior and collecting terms (see Bayesian
Econometrics Methods Exercise 10.1).

Posterior is
β, h|y ∼ NG

(
β,V , s−2, ν

)
where

V =
(
V−1 + X ′X

)−1
,

β = V
(
V−1β+ X ′X β̂

)
ν = ν+N

and s−2 is defined implicitly through

νs2 = νs2 + νs2 +
(

β̂− β
)′ [

V +
(
X ′X

)−1]−1 (
β̂− β

)
.
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Marginal posterior for β: multivariate t distribution:

β|y ∼ t
(

β, s2V , ν
)
,

Useful results for estimation:

E (β|y) = β

var(β|y) = νs2

ν− 2V .

Intuition: Posterior mean and variance are weighted average of
information in the prior and the data.
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Model Comparison

Case 1: M1 imposes a linear restriction and M2 does not (nested).

Case 2: M1 : y = X1β(1) + ε1 and M2 : y = X2β(2) + ε2, where X1
and X2 contain different explanatory variables (non-nested).

Both cases can be handled by defining models as (for j = 1, 2):

Mj : yj = Xjβ(j) + εj

Non-nested model comparison involves y1 = y2.

Nested model comparison defines M2 as unrestricted regression. M1

imposes the restriction can involve a redefinition of explanatory and
dependent variable.
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Example: Nested Model Comparison

M2 is unrestricted model

y = β1 + β2x2 + β3x3 + ε

M1 restricts β3 = 1, can be written:

y − x3 = β1 + β2x2 + ε

M1 has dependent variable y − x3 and intercept and x2 are
explanatory variables
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Marginal likelihood is (for j = 1, 2):

p(yj |Mj ) = cj

( |V j |
|V j |

) 1
2 (

νj s2j
)− νj

2

cj is constant depending on prior hyperparameters, etc.

PO12 =
c1
(
|V 1 |
|V 1 |

) 1
2 (

ν1s21
)− ν1

2 p(M1)

c2
(
|V 2 |
|V 2 |

) 1
2 (

ν2s22
)− ν2

2 p(M2)

Posterior odds ratio depends on the prior odds ratio and contains
rewards for model fit, coherency between prior and data information
and parsimony.
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Model Comparison with Noninformative Priors

Important rule: When comparing models using posterior odds ratios,
it is acceptable to use noninformative priors over parameters which
are common to all models. However, informative, proper priors should
be used over all other parameters.

If we set ν1 = ν2 = 0. Posterior odds ratio still has a sensible
interpretation.

Noninformative prior for h1 and h2 is fine (these parameters common
to both models)

But noninformative priors for β(j)’s causes problems which occur
largely when k1 6= k2. (Exercise 10.4 of Bayesian Econometric
Methods)

E.g. noninformative prior for β(j) based on V
−1
j = cIkj and letting

c → 0. Since |V j | = 1
c kj
terms involving kj do not cancel out.

If k1 < k2, PO12 becomes infinite, while if k1 > k2, PO12 goes to
zero.
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Prediction

Want to predict:
y ∗ = X ∗β+ ε∗

Remember, prediction is based on:

p (y ∗|y) =
∫ ∫

p (y ∗|y , β, h) p(β, h|y)dβdh.

The resulting predictive:

y ∗|y ∼ t
(
X ∗β, s2

{
IT + X

∗VX ∗′
}
, ν
)

Model comparison, prediction and posterior inference about β can all
be done analytically.

So no need for posterior simulation in this model.

However, let us illustrate Monte Carlo integration in this model.
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Monte Carlo Integration

Remember the basic LLN we used for Monte Carlo integration

Let β(s) for s = 1, ..,S be a random sample from p(β|y) and g (.) be
any function and define

ĝS =
1
S

S

∑
r=1

g
(

β(s)
)

then ĝS converges to E [g(β)|y ] as S goes to infinity.
How would you write a computer program which did this?
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Step 1: Take a random draw, β(s) from the posterior for β using a
random number generator for the multivariate t distribution.

Step 2: Calculate g
(

β(s)
)
and keep this result.

Step 3: Repeat Steps 1 and 2 S times.

Step 4: Take the average of the S draws g
(

β(1)
)
, ..., g

(
β(S )

)
.

These steps will yield an estimate of E [g(β)|y ] for any function of
interest.

Remember: Monte Carlo integration yields only an approximation for
E [g(β)|y ] (since you cannot set S = ∞).
By choosing S , can control the degree of approximation error.

Using a CLT we can obtain 95% confidence interval for E [g(β)|y ]
Or a numerical standard error can be reported.
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Summary

So far we have worked with Normal linear regression model using
natural conjugate prior

This meant posterior, marginal likelihood and predictive distributions
had analytical forms

But with other priors do not get analytical results.

Next we try a new prior so as to introduce an important tool for
posterior computation: the Gibbs sampler.

The Gibbs sampler is a special type of Markov Chain Monte Carlo
(MCMC) algorithm.
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Normal Linear Regression Model with Independent
Normal-Gamma Prior

Keep the Normal linear regression model (under the classical
assumptions) as before.

Likelihood function presented above

Parameters of model are β and h.

Gary Koop () Lecture 1: Overview and the Regression Model September 14, 2012 33 / 42



The Prior

Before we had conjugate prior where p (β|h) was Normal density and
p (h) Gamma density.

Now use similar prior, but assume prior independence between β and
h.

p (β, h) = p (β) p (h) with p (β) being Normal and p (h) being
Gamma:

β ∼ N
(

β,V
)

and
h ∼ G (s−2, ν)

Key difference: now V is now the prior covariance matrix of β, with
conjugate prior we had var(β|h) = h−1V .
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The Posterior

The posterior is proportional to prior times the likelihood.

The joint posterior density for β and h does not take form of any
well-known and understood density —cannot be directly used for
posterior inference.

However, conditional posterior for β (i.e. conditional on h) takes a
simple form:

β|y , h ∼ N
(

β,V
)

where
V =

(
V−1 + hX ′X

)−1
β = V

(
V−1β+ hX ′y

)
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Conditional posterior for h takes simple form:

h|y , β ∼ G (s−2, ν)

where
ν = N + ν

and

s2 =
(y − X β)′ (y − X β) + νs2

ν

Econometrician is interested in p (β, h|y) (or p (β|y)), NOT the
posterior conditionals, p (β|y , h) and p (h|y , β).
Since p (β, h|y) 6= p (β|y , h) p (h|y , β), the conditional posteriors do
not directly tell us about p (β, h|y).
But, there is a posterior simulator, called the Gibbs sampler, which
uses conditional posteriors to produce random draws, β(s) and h(s) for
s = 1, ..,S , which can be averaged to produce estimates of posterior
properties just as with Monte Carlo integration.
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The Gibbs Sampler

Gibbs sampler is powerful tool for posterior simulation used in many
econometric models.

We will motivate general ideas before returning to regression model

General notation: θ is a p−vector of parameters and p (y |θ) , p (θ)
and p (θ|y) are the likelihood, prior and posterior, respectively.

Let θ be partitioned into blocks as θ =
(

θ′(1), θ
′
(2), .., θ

′
(B )

)′
. E.g. in

regression model set B = 2 with θ(1) = β and θ(2) = h.
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Intuition: i) Monte Carlo integration takes draws from p (θ|y) and
averages them to produce estimates of E [g (θ) |y ] for any function of
interest g (θ).

ii) In many models, it is not easy to draw from p (θ|y). However, it
often is easy to draw from p

(
θ(1)|y , θ(2), .., θ(B )

)
,

p
(

θ(2)|y , θ(1), θ(3).., θ(B )
)
, ..., p

(
θ(B )|y , θ(1), .., θ(B−1)

)
.

Note: Preceding distributions are full conditional posterior
distributions since they define a posterior for each block conditional
on all other blocks.

iii) Drawing from the full conditionals will yield a sequence
θ(1), θ(2), .., θ(s) which can be averaged to produce estimates of
E [g (θ) |y ] in the same manner as Monte Carlo integration.
This is called Gibbs sampling
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More motivation for the Gibbs sampler

Regression model with B = 2: β and h

Suppose that you have one random draw from p (β|y). Call this draw
β(0).

Since p (β, h|y) = p (h|y , β) p (β|y), a draw from p
(
h|y , β(0)

)
is a

valid draw of h. Call this h(1).

Since p (β, h|y) = p (β|y , h) p (h|y), a random draw from

p
(

β|y , h(1)
)
is a valid draw of β. Call this β(1)

Hence,
(

β(1), h(1)
)
is a valid draw from p (β, h|y).

You can continue this reasoning indefinitely producing
(

β(s), h(s)
)
for

s = 1, ..,S
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Hence, if you can successfully find β(0), then sequentially drawing
p (h|y , β) and p (β|y , h) will give valid draws from posterior.

Problem with above strategy is that it is not possible to find such an
initial draw β(0).

If we knew how to easily take random draws from p (β|y), we could
use this and p (h|β, y) to do Monte Carlo integration and have no
need for Gibbs sampling.

However, it can be shown that subject to weak conditions, the initial
draw β(0) does not matter: Gibbs sampler will converge to a sequence
of draws from p (β, h|y).
In practice, choose β(0) in some manner and then run the Gibbs
sampler for S replications.

Discard S0 initial draws (“the burn-in”) and remaining S1 used to
estimate E [g (θ) |y ]
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Why is Gibbs sampling so useful?

In Normal linear regression model with independent Normal-Gamma
prior Gibbs sampler is easy

p (β|y , h) is Normal and p (h|y , β) and Gamma (easy to draw from)
Huge number of other models have hard joint posterior, but easy
posterior conditionals

tobit, probit, stochastic frontier model, Markov switching model,
threshold autoregressive, smooth transition threshold autoregressive,
other regime switching models, state space models, some
semiparametric regression models, etc etc etc.

Also models of form I will now discuss
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Summary

This lecture shows how Bayesian ideas work in familiar context
(regression model)

Occasionally analytical results are available (no need for posterior
simulation)

Usually posterior simulation is required.

Monte Carlo integration is simplest, but rarely possible to use it.

Gibbs sampling (and related MCMC) methods can be used for
estimation and prediction for a wide variety of models

Note: There are methods for calculating marginal likelihoods using
Gibbs sampler output

Now we move on to models of interest for the empirical
macroeconomist...
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