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Introduction

There are many popular time series models and all cannot be covered
in a short course.

In this and next lectures, we discuss models popular with empirical
macroeconomists, characterized by:

i) Multivariate in nature (macroeconomists interested in relationships
between variables, not properties of a single variable).

ii) Allow for parameters to change (e.g. over time, across business
cycle, etc.).

We will not cover univariate time series nor nonlinear time series
models such as Markov switching, TAR, STAR, etc.

See Bayesian Econometric Methods Chapters 17 and 18 for treatment
of some of these models.

We will discuss state space models (which can be used to model
nonlinearities).
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Time Series Modelling for Empirical Macroeconomics

Vector Autoregressive (VAR) models popular way of summarizing
inter-relationships between macroeconomic variables.

Used for forecasting, impulse response analysis, etc.

Economy is changing over time. Is model in 1970s same as now?

Thus, time-varying parameter VARs (TVP-VARs) are of interest.

Great Moderation of business cycle leads to interest in modelling error
variances

TVP-VARs with multivariate stochastic volatility is our end goal.

Begin with Bayesian VARs

A common theme: These models are over-parameterized so need
shrinkage to get reasonable results (shrinkage = prior).
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Bayesian VARs

One way of writing VAR(p) model:

yt = a0 +
p

∑
j=1
Ajyt−j + εt

yt is M × 1 vector
εt is M × 1 vector of errors
a0 is M × 1 vector of intercepts
Aj is an M ×M matrix of coeffi cients.

εt is i.i.d. N (0,Σ).
Exogenous variables or more deterministic terms can be added (but
we don’t to keep notation simple).
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Many alternative ways of writing the VAR (and we will use some
alternatives below).

One way: let y be MT × 1 vector (y = (y ′1, .., y ′T )) and ε stacked
conformably

xt =
(
1, y ′t−1, .., y

′
t−p
)

X =


x1
x2
...
xT


K = 1+Mp is number of coeffi cients in each equation of VAR and X
is a T ×K matrix.

The VAR can be written as:

y = (IM ⊗ X ) α+ ε

ε ∼ N (0,Σ⊗ IM ).
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Second way of writing VAR:

Let Y and E be T ×M matrices placing the T observations on each
variable in columns next to one another.

Then can write VAR as
Y = XA+ E

In first VAR, α is KM × 1 vector of VAR coeffi cients, here A is K ×M
Relationship between two: α = vec (A)

We will use both notations below (and later on, when working with
restricted VAR need to introduce yet more notation).
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Likelihood Function

Likelihood function can be derived and shown to be of a form that
breaks into two parts (see Bayesian Econometric Methods Exercise
17.6)

First of these parts α given Σ and another for Σ

α|Σ, y ∼ N
(

α̂,Σ⊗
(
X ′X

)−1)
Σ−1 has Wishart form

Σ−1|y ∼ W
(
S−1,T −K −M − 1

)
where Â = (X ′X )−1 X ′Y is OLS estimate of A, α̂ = vec

(
Â
)
and

S =
(
Y − XÂ

)′ (
Y − XÂ

)
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Digression

Remember regression models had parameters β and σ2

There proved convenient to work with h = 1
σ2

In VAR proves convenient to work with Σ−1

In regression h typically had Gamma distribution

With VAR Σ−1 will typically have Wishart distribution
Wishart is matrix generalization of Gamma

Details see appendix to textbook.

If Σ−1 is W (C , c) then “Mean” is cC and c is degrees of freedom.

Note: easy to take random draws from Wishart.
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Prior Issue 1

VARs are not parsimonious models: α contains KM parameters

For a VAR(4) involving 5 dependent variables: 105 parameters.

Macro data sets: number of observations on each variable might be a
few hundred.

Without prior information, hard to obtain precise estimates.

Features such as impulse responses and forecasts will tend to be
imprecisely estimated.

Desirable to “shrink” forecasts and prior information offers a sensible
way of doing this shrinkage.

Different priors do shrinkage in different ways.
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Prior Issue 2

Some priors lead to analytical results for the posterior and predictive
densities.

Other priors require MCMC methods (which raise computational
burden).

E.g. recursive forecasting exercise typically requires repeated
calculation of posterior and predictive distributions

In this case, MCMC methods can be very computationally demanding.

May want to go with not-so-good prior which leads to analytical
results, if ideal prior leads to slow computation.
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Prior Issue 3

Priors differ in how easily they can handle extensions of the VAR
defined above.

Restricted VARs: different equations to have different explanatory
variables.

TVP-VARs: Allowing for VAR coeffi cients to change over time.

Heteroskedasticity

Such extensions typically require MCMC, so no need to restrict
consideration to priors which lead to analytical results in basic VAR
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The Minnesota Prior

The classic shrinkage priors developed by researchers (Litterman,
Sims, etc.) at the University of Minnesota and the Federal Reserve
Bank of Minneapolis.

They use an approximation which simplifies prior elicitation and
computation: replace Σ with an estimate, Σ̂.
Original Minnesota prior simplifies even further by assuming Σ to be a
diagonal matrix with σ̂ii = s2i
s2i is OLS estimate of the error variance in the i

th equation

If Σ not diagonal, can use, e.g., Σ̂ = S
T .
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Minnesota prior assumes

α ∼ N (αMin,VMin)

Minnesota prior is way of automatically choosing αMin and VMin
Note: explanatory variables in any equation can be divided as:

own lags of the dependent variable

the lags of the other dependent variables

exogenous or deterministic variables
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αMin = 0 implies shrinkage towards zero (a nice way of avoiding
over-fitting).

When working with differenced data (e.g. GDP growth), Minnesota
prior sets αMin = 0

When working with levels data (e.g. GDP growth) Minnesota prior
sets element of αMin for first own lag of the dependent variable to 1.

Idea: Centred over a random walk. Shrunk towards random walk
(specification which often forecasts quite well)

Other values of αMin also used, depending on application.
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Prior mean: “towards what should we shrink?”

Prior variance: “by how much should we shrink?”

Minnesota prior: VMin is diagonal.

Let V i denote block of VMin for coeffi cients in equation i

V i ,jj are diagonal elements of V i
A common implementation of Minnesota prior (for r = 1, .., p lags):

V i ,jj =


a1
r 2 for coeffi cients on own lagsa2σii
r 2σjj

for coeffi cients on lags of variable j 6= i
a3σii for coeffi cients on exogenous variables

Typically, σii = s2i .
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Problem of choosing KM (KM+1)
2 elements of VMin reduced to simply

choosing , a1, a2, a3.

Property: as lag length increases, coeffi cients are increasingly shrunk
towards zero

Property: by setting a1 > a2 own lags are more likely to be important
than lags of other variables.

See Litterman (1986) for motivation and discussion of these choices
(e.g. explanation for how σii

σjj
adjusts for differences in the units that

the variables are measured in).

Minnesota prior seems to work well in practice.

E.g. Banbura, Giannone and Reichlin (JAE, 2010) use Minnesota
prior in large VARs with over 100 dependent variables and find it
forecasts very well (relative to factor methods).

Recent working paper by Giannone, Lenza and Primiceri develops
methods for estimating prior hyperparameters from the data
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Posterior Inference with Minnesota Prior

Simple analytical results involving only the Normal distribution.

α|y ∼ N
(
αMin,VMin

)
VMin =

[
V−1Min +

(
Σ̂−1 ⊗

(
X ′X

))]−1
αMin = VMin

[
V−1MinαMin +

(
Σ̂−1 ⊗ X

)′
y
]

Gary Koop () Lecture 2: Bayesian Time Series: VARs September 14, 2012 17 / 55



Natural conjugate prior

A drawback of Minnesota prior is its treatment of Σ.
Ideally want to treat Σ as unknown parameter

Natural conjugate prior allows us to do this in a way that yields
analytical results.

But (as we shall sell) has some drawbacks.

In practice, noninformative limiting version of natural conjugate prior
sometimes used (but noninformative prior does not do shrinkage)
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An examination of likelihood function (see also similar derivations for
Normal linear regression model where Normal-Gamma prior was
natural conjugate) suggests VAR natural conjugate prior:

α|Σ ∼ N (α,Σ⊗ V )

Σ−1 ∼ W
(
S−1, ν

)
α,V , ν and S are prior hyperparameters chosen by the researcher.

Noninformative prior: ν = 0 and S = V−1 = cI and let c → 0.
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Posterior when using natural conjugate prior

Posterior has analytical form:

α|Σ, y ∼ N
(
α,Σ⊗ V

)
Σ−1|y ∼ W

(
S
−1
, ν
)

where
V =

[
V−1 + X ′X

]−1
A = V

[
V−1A+ X ′XÂ

]
S = S + S + Â′X ′XÂ+ A′V−1A− A′

(
V−1 + X ′X

)
A

ν = T + ν

Gary Koop () Lecture 2: Bayesian Time Series: VARs September 14, 2012 20 / 55



Remember: in regression model joint posterior for (β, h) was
Normal-Gamma, but marginal posterior for β had t-distribution

Same thing happens with VAR coeffi cients.

Marginal posterior for α is a multivariate t-distribution.

Posterior mean is α

Degrees of freedom parameter is ν

Posterior covariance matrix:

var (α|y) = 1
ν−M − 1S ⊗ V

Posterior inference can be done using (analytical) properties of
t-distribution.
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Problems with Natural Conjugate Prior

Natural conjugate prior has great advantage of analytical results, but
has some problems which make it rarely used in practice.

To make problems concrete consider a macro example:

The VAR involves variables such as output growth and the growth in
the money supply

Researcher wants to impose the neutrality of money.

Implies: coeffi cients on the lagged money growth variables in the
output growth equation are zero (but coeffi cients of lagged money
growth in other equations would not be zero).
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Problem 1: Cannot simply impose neutrality of money restriction.

The (IM ⊗ X ) form of the explanatory variables in VAR means every
equation must have same set of explanatory variables.

But if we do not maintain (IM ⊗ X ) form, don’t get analytical
conjugate prior (see Kadiyala and Karlsson, JAE, 1997 for details).
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Problem 2: Cannot “almost impose”neutrality of money restriction
through the prior.

Cannot set prior mean over neutrality of money restriction and set
prior variance to very small value.

To see why, let individual elements of Σ be σij .

Prior covariance matrix has form Σ⊗ V
This implies prior covariance of coeffi cients in equation i is σiiV .

Thus prior covariance of the coeffi cients in any two equations must be
proportional to one another.

So can “almost impose” coeffi cients on lagged money growth to be
zero in ALL equations, but cannot do it in a single equation.

Note also that Minnesota prior form VMin is not consistent with
natural conjugate prior.
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Some interesting approaches I will not discuss

Choosing prior hyperparameters by using dummy observations
(fictitious prior data set), see Sims and Zha (1998, IER).

Using prior information from macro theory (e.g. DSGE models), see
Ingram and Whiteman (1994, JME) and Del Negro and Schorfheide
(2004, IER).

Villani (2009, JAE): priors about means of dependent variables

Useful since researchers often have prior information on these.

Write VAR as:
Ã (L) (yt − ã0) = εt

Ã (L) = I − Ã1L− ..− ÃpLp , L is the lag operator
ã0 are unconditional means of the dependent variables.

Gibbs sampling required.
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Optional Topic 1: A Macroeconomic Example

Hybrid New Keynesian Phillips Curve (NKPC) Model

Inflation (πt) and yt is output gap or unemployment rate

πt = βbπt−1 + βf Et−1 (πt+1) + γyt + εt .

Et−1 (πt+1) is expectation at t − 1 of inflation at t + 1
Note: Adding equation for yt will give a multivariate model.

No feedback from πt to yt
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Relating the NKPC to a VAR

To take NKPC to data need to find rational expectations solution to
get rid of Et−1 (πt+1) term in NKPC

Since no feedback from πt to yt can show solution is:

πt = a1πt−1 + a2yt−1 + ut

where a1 = f1(βb , βf ) and a2 = f2(βb , βf ,γ, ρ) for functions f1 and f2
Case 1: suppose yt is

yt = ρyt−1 + vt

These 2 equations form a restricted VAR (reduced form model)

Rational expectations macro models often lead to restricted VARs
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Problem: VAR has 3 parameters, a1, a2, and ρ, but structural model
has 4 (βf , βb ,γ, and ρ)

Identification issues in rational expectations/DSGE models can be
important.

Case 2: suppose yt is

yt = ρ1yt−1 + ρ2yt−2 + vt

Identification problem is now solved since reduced form VAR now has
4 parameters a1, a2, ρ1 and ρ2
But is this solution a good one? Identification depends on lag length.
What if ρ2 is near zero?

Summary: macro theory can often lead to restricted VARs, but
identification can be a worry
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The Independent Normal-Wishart Prior

Natural conjugate prior had α|Σ being Normal and Σ−1 being
Wishart and VAR had same explanatory variables in every equation.

Want more general setup without these restrictive features.

Can do this with a prior for VAR coeffi cients and Σ−1 being
independent (hence name “independent Normal-Wishart prior”)

And using a more general formulation for the VAR
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To allow for different equations in the VAR to have different
explanatory variables, modify notation.

To avoid, use “β”notation for VAR coeffi cients now instead of α.

Each equation (for m = 1, ..,M) of the VAR is:

ymt = z ′mtβm + εmt ,

If we set zmt =
(
1, y ′t−1, .., y

′
t−p
)′ for m = 1, ..,M then exactly same

VAR as before.

However, here zmt can contain different lags of dependent variables,
exogenous variables or deterministic terms.
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Vector/matrix notation:
yt = (y1t , .., yMt )

′, εt = (ε1t , .., εMt )
′

β =

 β1
...

βM



Zt =


z ′1t 0 · · · 0

0 z ′2t
. . .

...
...

. . . . . . 0
0 · · · 0 z ′Mt


β is k × 1 vector, Zt is M × k where k = ∑M

j=1 kj .
εt is i.i.d. N (0,Σ).
Can write VAR as:

yt = Ztβ+ εt
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Stacking:

y =

 y1
...
yT



ε =

 ε1
...

εT



Z =

 Z1
...
ZT


VAR can be written as:

y = Zβ+ ε

ε is N (0, I ⊗ Σ).

Gary Koop () Lecture 2: Bayesian Time Series: VARs September 14, 2012 32 / 55



Thus, VAR can be written as a Normal linear regression model with
error covariance matrix of a particular form (SUR form).

Independent Normal-Wishart prior:

p
(

β,Σ−1
)
= p (β) p

(
Σ−1

)
where

β ∼ N
(

β,V β

)
and

Σ−1 ∼ W
(
S−1, ν

)
V β can be anything the researcher chooses (not restrictive Σ⊗ V
form of the natural conjugate prior).

β and V β could be set as in the Minnesota prior.

A noninformative prior obtained by setting ν = S = V−1β = 0.

Gary Koop () Lecture 2: Bayesian Time Series: VARs September 14, 2012 33 / 55



Posterior inference in the VAR with independent
Normal-Wishart prior

p
(

β,Σ−1|y
)
does not have a convenient form allowing for analytical

results.
But Gibbs sampler can be set up.
Conditional posterior distributions p

(
β|y ,Σ−1

)
and p

(
Σ−1|y , β

)
do

have convenient forms

β|y ,Σ−1 ∼ N
(

β,V β

)
where

V β =

(
V−1β +

T

∑
t=1
Z ′tΣ

−1Zt

)−1
and

β = V β

(
V−1β β+

T

∑
i=1
Z ′tΣ

−1yt

)
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Σ−1|y , β ∼ W
(
S
−1
, ν,
)

where
ν = T + ν

S = S +
T

∑
t=1
(yt − Ztβ) (yt − Ztβ)′

Remember: for any Gibbs sampler, the resulting draws can be used to
calculate posterior properties of any function of the parameters (e.g.
impulse responses), marginal likelihoods (for model comparison)
and/or to do prediction.
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Note on Prediction in VARs

For the VAR, Zτ contains information dated τ − 1 or earlier.
For predicting at time τ given information through τ − 1, can use:

yτ|Zτ, β,Σ ∼ N (Ztβ,Σ)

This result and Gibbs draws β(s),Σ(s) for s = 1, ..,S allows for
predictive inference.

E.g. predictive mean (a popular point forecast) could be obtained as:

E (yτ|Zτ) =
∑S
s=1 Ztβ

(s)

S

Other predictive moments can be calculated in a similar fashion.
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Stochastic Search Variable Selection (SSVS) in VARs

There are many approaches which seek parsimony/shrinkage in VARs,
take SSVS as a representative example

SSVS is usually done in VAR where every equation has same
explanatory variables

Hence, return to our initial notation for VARs where X contains
lagged dependent variable, α are VAR coeffi cients, etc.

SSVS can be interpreted as a prior shrinks some VAR coeffi cients to
zero

Or as a model selection device (select the model with explanatory
variables with non-zero coeffi cients)

Or as a model averaging device (which averages over models with
different non-zero coeffi cients).

Can be implemented in various ways, here we follow George, Sun and
Ni (2008, JoE)
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Basic idea for a VAR coeffi cient, αj

Before we used conventional priors, but SSVS is a hierarchical prior

Hierarchical prior = prior expressed in terms of parameters which in
turn have a prior of their own
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SSVS prior is mixture of two Normal distributions:

αj |γj ∼
(
1− γj

)
N
(
0, κ20j

)
+ γjN

(
0, κ21j

)
γj is dummy variable.

γj = 1 then αj has prior N
(
0, κ21j

)
γj = 0 then αj has prior N

(
0, κ20j

)
Prior is hierarchical since γj is unknown parameter and estimated in a
data-based fashion.

κ20j is “small” (so coeffi cient is shrunk to be virtually zero)

κ21j is “large” (implying a relatively noninformative prior for αj ).
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Below we describe a Gibbs sampler for this model which provides
draws of γ and other parameters

SSVS can select a single restricted model.

Run Gibbs sampler and calculate Pr
(
γj = 1|y

)
for j = 1, ..,KM

Set to zero all coeffi cients with Pr
(
γj = 1|y

)
< a (e.g. a = 0.5).

Then re-run Gibbs sampler using this restricted model

Alternatively, if the Gibbs sampler for unrestricted VAR is used to
produce posterior results for the VAR coeffi cients, result will be
Bayesian model averaging (BMA).
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Gibbs Sampling with the SSVS Prior

SSVS prior for VAR coeffi cients, α, can be written as:

α|γ ∼ N (0,DD)

γ is a vector with elements γj ∈ {0, 1},
D is diagonal matrix with (j , j)th element dj :

dj =
{

κ0j if γj = 0
κ1j if γj = 1

“default semi-automatic approach” to selecting κ0j and κ1j

Set κ0j = c0
√
v̂ar(αj ) and κ1j = c1

√
v̂ar(αj )

v̂ar(αj ) is estimate from an unrestricted VAR

E.g. OLS or a preliminary Bayesian estimate from a VAR with
noninformative prior

Constants c0 and c1 must have c0 � c1 (e.g. c0 = 0.1 and c1 = 10).
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We need prior for γ and a simple one is:

Pr
(
γj = 1

)
= q

j
Pr
(
γj = 0

)
= 1− q

j

q
j
= 1

2 for all j implies each coeffi cient is a priori equally likely to be
included as excluded.

Can use same Wishart prior for Σ−1

Note: George, Sun and Ni also show how to do SSVS on off-diagonal
elements of Σ
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Gibbs sampler sequentially draws from p (α|y ,γ,Σ) , p (γ|y , α,Σ) and
p
(
Σ−1|y ,γ, α

)
α|y ,γ,Σ ∼ N(αα,V α)

where
V α = [Σ−1 ⊗ (X ′X ) + (DD)−1]−1

αα = V α[(ΨΨ′)⊗ (X ′X )α̂]

Â = (X ′X )−1X ′Y

α̂ = vec(Â)
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p (γ|y , α,Σ) has γj being independent Bernoulli random variables:

Pr
(
γj = 1|y , α,Σ

)
= qj

Pr
(
γj = 0|y , α,Σ

)
= 1− qj

where

qj =

1
κ1j

exp

(
−

α2j
2κ21j

)
q
j

1
κ1j

exp

(
−

α2j
2κ21j

)
q
j
+
1

κ0j
exp

(
−

α2j
2κ20j

)(
1− q

j

)
p
(
Σ−1|y ,γ, α

)
has similar Wishart form as previously, so I will not

repeat here.
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Illustration of Bayesian VAR Methods

Data set: standard quarterly US data set from 1953Q1 to 2006Q3.

Inflation rate ∆πt , the unemployment rate ut and the interest rate rt
yt = (∆πt , ut , rt )

′.

These three variables are commonly used in New Keynesian VARs.

The data are plotted in Figure 1.

We use unrestricted VAR with intercept and 4 lags
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Figure 1: The Data
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We consider 6 priors:

Noninformative: Noninformative version of natural conjugate prior

Natural conjugate: Informative natural conjugate prior with
subjectively chosen prior hyperparameters

Minnesota: Minnesota prior

Independent Normal-Wishart: Independent Normal-Wishart prior with
subjectively chosen prior hyperparameters

SSVS-VAR: SSVS prior for VAR coeffi cients and Wishart prior for Σ−1

SSVS: SSVS on both VAR coeffi cients and error covariance
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Point estimates for VAR coeffi cients often are not that interesting,
but Table 1 presents them for 2 priors

With SSVS priors, Pr
(
γj = 1|y

)
is the “posterior inclusion

probability” for each coeffi cient, see Table 2

Model selection using Pr
(
γj = 1|y

)
> 1

2 restricts 25 of 39
coeffi cients to zero.

Table 3, prediction: p (yT+1|y1.., yT ) where T = 2006Q3.
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Table 1. Posterior mean of VAR Coeffi cients for Two Priors
Noninformative SSVS - VAR
∆πt ut rt ∆πt ut rt

Intercept 0.2920 0.3222 -0.0138 0.2053 0.3168 0.0143
∆πt−1 1.5087 0.0040 0.5493 1.5041 0.0044 0.3950
ut−1 -0.2664 1.2727 -0.7192 -0.142 1.2564 -0.5648
rt−1 -0.0570 -0.0211 0.7746 -0.0009 -0.0092 0.7859
∆πt−2 -0.4678 0.1005 -0.7745 -0.5051 0.0064 -0.226
ut−2 0.1967 -0.3102 0.7883 0.0739 -0.3251 0.5368
rt−2 0.0626 -0.0229 -0.0288 0.0017 -0.0075 -0.0004
∆πt−3 -0.0774 -0.1879 0.8170 -0.0074 0.0047 0.0017
ut−3 -0.0142 -0.1293 -0.3547 0.0229 -0.0443 -0.0076
rt−3 -0.0073 0.0967 0.0996 -0.0002 0.0562 0.1119
∆πt−4 0.0369 0.1150 -0.4851 -0.0005 0.0028 -0.0575
ut−4 0.0372 0.0669 0.3108 0.0160 0.0140 0.0563
rt−4 -0.0013 -0.0254 0.0591 -0.0011 -0.0030 0.0007
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Table 2. Posterior Inclusion Probabilites for
VAR Coeffi cients: SSVS-VAR Prior

∆πt ut rt
Intercept 0.7262 0.9674 0.1029
∆πt−1 1 0.0651 0.9532
ut−1 0.7928 1 0.8746
rt−1 0.0612 0.2392 1
∆πt−2 0.9936 0.0344 0.5129
ut−2 0.4288 0.9049 0.7808
rt−2 0.0580 0.2061 0.1038
∆πt−3 0.0806 0.0296 0.1284
ut−3 0.2230 0.2159 0.1024
rt−3 0.0416 0.8586 0.6619
∆πt−4 0.0645 0.0507 0.2783
ut−4 0.2125 0.1412 0.2370
rt−4 0.0556 0.1724 0.1097
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Impulse Response Analysis

Impulse response analysis is commonly done with VARs
Given my focus on the Bayesian econometrics, as opposed to
macroeconomics, I will not explain in detail
The VAR so far is a reduced form model:

yt = a0 +
p

∑
j=1
Ajyt−j + εt

where var (εt ) = Σ
Macroeconomists often work with structural VARs:

C0yt = c0 +
p

∑
j=1
Cjyt−j + ut

where var (ut ) = I
ut are shocks which have an economic interpretation (e.g. monetary
policy shock)
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Macroeconomist interested in effect of (e.g.) monetary policy shock
now on all dependent variables in future = impulse response analysis

Need to restrict C0 to identify model.

We assume C0 lower triangular

This is a standard identifying assumption used, among many others,
by Bernanke and Mihov (1998), Christiano, Eichanbaum and Evans
(1999) and Primiceri (2005).

Allows for the interpretation of interest rate shock as monetary policy
shock.

Aside: sign-restricted impulse responses of Uhlig (2005) are
increasingly popular
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Figures 2 and 3 present impulse responses of all variables to shocks

Use two priors: the noninformative one and the SSVS prior.

Posterior median is solid line and dotted lines are 10th and 90th

percentiles.

Priors give similar results, but a careful examination reveals SSVS
leads to slightly more precise inferences (evidenced by a narrower
band between the 10th and 90th percentiles) due to the shrinkage it
provides.
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Figure 2: Impulse Responses for Noninformative Prior
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Figure 3: Impulse Responses for SSVS
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