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Introduction

State space methods are used for a wide variety of time series
problems

They are important in and of themselves

Also time-varying parameter VARs (TVP-VARs) and stochastic
volatility are state space models

Advantage of state space models: well-developed set of MCMC
algorithms for doing Bayesian inference
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Remember: our general notation for a VAR was:

yt = Ztβ+ ε

In many macroeconomic applications, unrealistic to assume constant
β

This leads to TVP-VAR:

yt = Ztβt + εt

where
βt+1 = βt + ut

This is a state space model.

In VAR assume εt to be i.i.d. N (0,Σ)
In empirical macroeconomics, this is often unrealistic.

Want to have var (εt ) = Σt
This also leads to state space models.
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The Normal Linear State Space Model

Fairly general version of Normal linear state space model:
Measurement equation:

yt = Wtδ+ Ztβt + εt

State equation:
βt+1 = Ttβt + ut

yt and εt defined as for VAR
Wt is known M × p0 matrix (e.g. lagged dependent variables or
explanatory variables with constant coeffi cients)
Zt is known M ×K matrix (e.g. lagged dependent variables or
explanatory variables with time varying coeffi cients)
βt is k × 1 vector of states (e.g. VAR coeffi cients)
εt ind N (0,Σt )
ut ind N (0,Qt ).
εt and us are independent for all s and t.
Tt is a k × k matrix (usually fixed, but sometimes not).
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Key idea: for given values for δ, Tt , Σt and Qt (called “system
matrices”) posterior simulators for βt for t = 1, ..,T exist.
E.g. Carter and Kohn (1994, Btka), Fruhwirth-Schnatter (1994,
JTSA), DeJong and Shephard (1995, Btka) and Durbin and
Koopman (2002, Btka).
I will not present details of these (standard) algorithms
Notation: βt =

(
β′1, .., β

′
t

)′ stacks all the states up to time t (and
similar superscript t convention for other things)

Gibbs sampler: p
(

βT |yT , δ,TT ,ΣT ,QT
)
drawn use such an

algorithm

p
(

δ|yT , βT ,TT ,ΣT ,QT
)
, p
(
TT |yT , βT , δ,ΣT ,QT

)
,

p
(

ΣT |yT , βT , δ,TT ,QT
)
and p

(
QT |yT , βT , δ,TT ,ΣT

)
depend

on precise form of model (typically simple since, conditional on βT

have a Normal linear model)
Typically restricted versions of this general model used
TVP-VAR of Primiceri (2005, ReStud) has δ = 0,Tt = I and Qt = Q
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Example of an MCMC Algorithm

Special case δ = 0,Tt = I ,Σt = Σ and Qt = Q

Homoskedastic TVP-VAR of Cogley and Sargent (2001, NBER)

Need prior for all parameters

But state equation implies hierarchical prior for βT :

βt+1|βt ,Q ∼ N (βt ,Q)

Formally:

p
(

βT |Q
)
=

T

∏
t=1
p
(

βt |βt−1,Q
)

Hierarchical: since it depends on Q which, in turn, requires its own
prior.
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Note β0 enters prior for β1.

Need prior for β0
Standard treatments exist.

E.g. assume β0 = 0, then:

β1|Q ∼ N (0,Q)

Or Carter and Kohn (1994) simply assume β0 has some prior that
researcher chooses
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Convenient to use Wishart priors for Σ−1 and Q−1

Σ−1 ∼ W
(
S−1, ν

)
Q−1 ∼ W

(
Q−1, νQ

)
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Want MCMC algorithm which sequentially draws from
p
(

Σ−1|yT , βT ,Q
)
, p
(
Q−1|yT ,Σ, βT

)
and p

(
βT |yT ,Σ,Q

)
.

For p
(

βT |yT ,Σ,Q
)
use standard algorithm for state space models

(e.g. Carter and Kohn, 1994)

Can derive p
(

Σ−1|yT , βT ,Q
)
and p

(
Q−1|yT ,Σ, βT

)
using

methods similar to those used in section on VAR independent
Normal-Wishart model.
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Conditional on βT , measurement equation is like a VAR with known
coeffi cients.

This leads to:
Σ−1|yT , βT ∼ W

(
S
−1
, ν
)

where
ν = T + ν

S = S +
T

∑
t=1
(yt −Wtδ− Ztβt ) (yt −Wtδ− Ztβt )

′
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Conditional on βT , state equation is also like a VAR with known
coeffi cients.

This leads to:
Q−1|yT , βT ∼ W

(
Q
−1
, νQ

)
where

νQ = T + νQ

Q = Q +
T

∑
t=1

(
βt+1 − Ttβt

) (
βt+1 − Ttβt

)′
.
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Optional Topic 2: DSGE Models

DSGE = Dynamic, stochastic general equilibrium models popular in
modern macroeconomics and commonly used in policy circles (e.g.
central banks).

I will not explain the macro theory, other than to note they are:

Derived from microeconomic principles (based on agents and firms
decision problems), dynamic (studying how economy evolves over
time) and general equilibrium.

Solution (using linear approximation methods) is a linear state space
model

Note: recent work with second order approximations yields nonlinear
state space model

Survey: An and Schorfheide (2007, Econometric Reviews)

Computer code: http://www.dynare.org/ or some authors post code
(e.g. code for Del Negro and Schorfheide 2008, JME on web)
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Estimation Strategy for DSGE

Most linearized DSGE models written as:

Γ0 (θ) zt = Γ1 (θ)Et (zt+1) + Γ2 (θ) zt−1 + Γ3 (θ) ut

zt is vector containing both observed variables (e.g. output growth,
inflation, interest rates) and unobserved variables (e.g. technology
shocks, monetary policy shocks).

Note, theory usually written in terms of zt as deviation of variable
from steady state (an issue I will ignore here to keep exposition
simple)

θ are structural parameters (e.g. parameters for steady states, tastes,
technology, policy and driving the exogenous shocks).

ut are structural shocks (N (0, I )).

Γj (θ) are often highly nonlinear functions of θ
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Solving the DSGE Model

Methods exist to solve linear rational expectations models such as the
DSGE

If unique equilibrium exists can be written as:

zt = A (θ) zt−1 + B (θ) ut

Looks like a VAR, but....

Some elements of zt typically unobserved

and highly nonlinear restrictions involved in A (θ) and B (θ)
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Write DSGE Model as State Space Model

Let yt be elements of zt which are observed.

Measurement equation:
yt = Czt

where C is matrix which picks out observed elements of zt
Equation on previous slide is state equation in states zt
Thus we have state space model

Special case since measurement equation has no errors (although
measurement errors sometimes added) and state equation has some
states which are observed.

But state space algorithms described earlier in this lecture still work

Remember, before I said: “for given values for system matrices,
posterior simulators for the states exist”

If θ were known, DSGE model provides system matrices in Normal
linear state space model

Gary Koop () Lecture 3: State Space Methods September 14, 2012 15 / 41



Estimating the Structural Parameters

If A (θ) and B (θ) involved simple linear restrictions, then methods
similar to those for the restricted VAR (see Lecture 2) could be used
to carry out inference on θ.

Unfortunately, restrictions in A (θ) and B (θ) are typically nonlinear
and complicated

Parameters in θ are structural so we are likely to have prior
information about them

Example from Del Negro and Schorfheide (2008, JME):

“Household-level data on wages and hours worked could be used to
form a prior for a labor supply elasticity”

“Product level data on price changes could be the basis for a
price-stickiness prior”
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Estimating the Structural Parameters (cont.)

Prior for structural parameters, p (θ), can be formed from other
sources of information (e.g. micro studies, economic theory, etc.)

Here: prior times likelihood is a mess

Thus, no analytical posterior for θ, no Gibbs sampler, etc...

Solution: Metropolis-Hastings algorithm
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Optional Topic 3: The Metropolis-Hastings Algorithm

For now, I leave DSGE and state space models and return to our
general notation:

θ is a vector of parameters and p (y |θ) , p (θ) and p (θ|y) are the
likelihood, prior and posterior, respectively.

Metropolis-Hastings algorithm takes draws from a convenient
candidate generating density.

Let θ∗ indicate a draw taken from this density which we denote as
q
(

θ(s−1); θ
)
.

Notation: θ∗ is a draw taken of the random variable θ whose density
depends on θ(s−1).
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We are drawing the wrong distribution, q
(

θ(s−1); θ
)
, instead of

p (θ|y)
We have to correct for this somehow.

Metropolis-Hastings algorithm corrects for this via an acceptance
probability

Takes candidate draws, but only some of these candidate draws are
accepted.
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The Metropolis-Hastings algorithm takes following form:

Step 1: Choose a starting value, θ(0).

Step 2: Take a candidate draw, θ∗ from the candidate generating
density, q

(
θ(s−1); θ

)
.

Step 3: Calculate an acceptance probability, α
(

θ(s−1), θ∗
)
.

Step 4: Set θ(s) = θ∗ with probability α
(

θ(s−1), θ∗
)
and set

θ(s) = θ(s−1) with probability 1− α
(

θ(s−1), θ∗
)
.

Step 5: Repeat Steps 1, 2 and 3 S times.

Step 6: Take the average of the S draws g
(

θ(1)
)
, ..., g

(
θ(S )

)
.
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These steps will yield an estimate of E [g(θ)|y ] for any function of
interest.

Note: As with Gibbs sampling, Metropolis-Hastings algorithm requires
the choice of a starting value, θ(0). To make sure that the effect of
this starting value has vanished, wise to discard S0 initial draws.

Intuition for acceptance probability, α
(

θ(s−1), θ∗
)
, given in textbook

(pages 93-94).

α
(

θ(s−1), θ∗
)
=

min
[

p(θ=θ∗|y )q(θ∗;θ=θ(s−1))
p(θ=θ(s−1)|y)q(θ(s−1);θ=θ∗)

, 1
]

Gary Koop () Lecture 3: State Space Methods September 14, 2012 21 / 41



Optional Topic 4: Choosing a Candidate Generating
Density

Independence Chain Metropolis-Hastings Algorithm
Uses a candidate generating density which is independent across
draws.
That is, q

(
θ(s−1); θ

)
= q∗ (θ) and the candidate generating density

does not depend on θ(s−1).
Useful in cases where a convenient approximation exists to the
posterior. This convenient approximation can be used as a candidate
generating density.
Acceptance probability simplifies to:

α
(

θ(s−1), θ∗
)
= min

p (θ = θ∗|y) q∗
(

θ = θ(s−1)
)

p
(

θ = θ(s−1)|y
)
q∗ (θ = θ∗)

, 1

 .
Not popular with DSGE models since convenient approximation
unlikely to exist
Gary Koop () Lecture 3: State Space Methods September 14, 2012 22 / 41



Random Walk Chain Metropolis-Hastings Algorithm

Popular with DSGE —useful when you cannot find a good
approximating density for the posterior.

No attempt made to approximate posterior, rather candidate
generating density is chosen to wander widely, taking draws
proportionately in various regions of the posterior.

Generates candidate draws according to:

θ∗ = θ(s−1) + w

where w is called the increment random variable.
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Acceptance probability simplifies to:

α
(

θ(s−1), θ∗
)
= min

 p (θ = θ∗|y)
p
(

θ = θ(s−1)|y
) , 1


Choice of density for w determines form of candidate generating
density.
Common choice is Normal:

q
(

θ(s−1); θ
)
= fN (θ|θ(s−1),Σ).

Researcher must select Σ. Should be selected so that the acceptance
probability tends to be neither too high nor too low.
There is no general rule which gives the optimal acceptance rate. A
rule of thumb is that the acceptance probability should be roughly 0.5.
A common approach sets Σ = cΩ where c is a scalar and Ω is an
estimate of posterior covariance matrix of θ (e.g. the inverse of the
Hessian evaluated at the posterior mode)
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Popular (e.g. DYNARE) to use random walk Metropolis-Hastings
with DSGE models.

Note acceptance probability depends only on posterior = prior times
likelihood

DSGE Prior chosen as discussed above

Algorithms for Normal linear state space models evaluate likelihood
function
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Metropolis-within-Gibbs

Remember: the Gibbs sampler involved sequentially drawing from
p
(

θ(1)|y , θ(2)
)
and p

(
θ(2)|y , θ(1)

)
.

Using a Metropolis-Hastings algorithm for either (or both) of the

posterior conditionals used in the Gibbs sampler, p
(

θ(1)|y , θ(2)
)
and

p
(

θ(2)|y , θ(1)
)
, is perfectly acceptable.

This statement is also true if the Gibbs sampler involves more than
two blocks.

Such Metropolis-within-Gibbs algorithms are common since many
models have posteriors where most of the conditionals are easy to
draw from, but one or two conditionals do not have convenient form.
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Nonlinear State Space Models

Normal linear state space model useful for empirical macroeconomists

E.g. trend-cycle decompositions, TVP-VARs, linearized DSGE
models, etc.

Some models have yt being a nonlinear function of the states (e.g.
DSGE models which have not been linearized)

Increasing number of Bayesian tools for nonlinear state space models
(e.g. the particle filter)

Here we will focus on stochastic volatility
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Univariate Stochastic Volatility

Begin with yt being a scalar (common in finance)

Stochastic volatility model:

yt = exp
(
ht
2

)
εt

ht+1 = µ+ φ (ht − µ) + ηt

εt is i.i.d. N (0, 1) and ηt is i.i.d. N
(
0, σ2η

)
. εt and ηs are

independent.

This is state space model with states being ht , but measurement
equation is not a linear function of ht
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ht is log of the variance of yt (log volatility)

Since variances must be positive, common to work with log-variances

Note µ is the unconditional mean of ht .

Initial conditions: if |φ| < 1 (stationary) then:

h0 ∼ N
(

µ,
σ2η

1− φ2

)

if φ = 1, µ drops out of the model and However, when φ = 1, need a
prior such as h0 ∼ N (h,V h)
e.g. Primiceri (2005) chooses V h using training sample
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MCMC Algorithm for Stochastic Volatility Model

MCMC algorithm involves sequentially drawing from
p
(
hT |yT , µ, φ, σ2η

)
, p
(

φ|yT , µ, σ2η, hT
)
, p
(

µ|yT , φ, σ2η, hT
)
and

p
(

σ2η |yT , µ, φ, hT
)

Last three standard forms based on results from Normal linear
regression model and will not present here.

Several algorithms exist for p
(
hT |yT , µ, φ, σ2η

)
Here we describe a popular one from Kim, Shephard and Chib (1998,
ReStud)

For complete details, see their paper. Here we outline ideas.
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Square and log the measurement equation:

y ∗t = ht + ε∗t

where y ∗t = ln
(
y2t
)
and ε∗t = ln

(
ε2t
)
.

Now the measurement equation is linear so maybe we can use
algorithm for Normal linear state space model?

No, since error is no longer Normal (i.e. ε∗t = ln
(
ε2t
)
)

Idea: use mixture of different Normal distributions to approximate
distribution of ε∗t .
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Mixtures of Normal distributions are very flexible and have been used
widely in many fields to approximate unknown or inconvenient
distributions.

p (ε∗t ) ≈
7

∑
i=1
qi fN

(
ε∗t |mi , v2i

)
where fN

(
ε∗t |mi , v2i

)
is the p.d.f. of a N

(
mi , v2i

)
since εt is N (0, 1), ε∗t involves no unknown parameters

Thus, qi ,mi , v2i for i = 1, .., 7 are not parameters, but numbers (see
Table 4 of Kim, Shephard and Chib, 1998).

Gary Koop () Lecture 3: State Space Methods September 14, 2012 32 / 41



Mixture of Normals can also be written in terms of component
indicator variables, st ∈ {1, 2, .., 7}

ε∗t |st = i ∼ N
(
mi , v2i

)
Pr (st = i) = qi

MCMC algorithm does not draw from p
(
hT |yT , µ, φ, σ2η

)
, but from

p
(
hT |yT , µ, φ, σ2η, sT

)
.

But, conditional on sT , knows which of the Normals ε∗t comes from.

Result is a Normal linear state space model and familiar algorithm can
be used.

Finally, need p
(
sT |yT , µ, φ, σ2η, hT

)
but this has simple form (see

Kim, Shephard and Chib , 1998)
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Multivariate Stochastic Volatility

yt is now M × 1 vector and εt is i.i.d. N (0,Σt ).
Many ways of allowing Σt to be time-varying
But must worry about overparameterization problems

Σt for t = 1, ..,T containsTM (M+1)2 unknown parameters

Here we discuss three particular approaches popular in
macroeconomics

To focus on multivariate stochastic volatility, use model:

yt = εt
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Multivariate Stochastic Volatility Model 1

Σt = Dt

where Dt is a diagonal matrix with diagonal elements dit
dit has standard univariate stochastic volatility specification

dit = exp (hit ) and

hi ,t+1 = µi + φi (hit − µi ) + ηit

if ηit are independent (across both i and t) then Kim, Shephard and
Chib (1998) MCMC algorithm can be used one equation at a time.

But many interesting macroeconomic features (e.g. impulse
responses) depend on error covariances so assuming Σt to be diagonal
often will be a bad idea.
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Multivariate Stochastic Volatility Model 2

Cogley and Sargent (2005, RED)

Σt = L−1DtL−1′

Dt is as in Model 1 (diagonal matrix with diagonal elements being
variances)

L is a lower triangular matrix with ones on the diagonal.

E.g. M = 3

L =

 1 0 0
L21 1 0
L31 L32 1
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We can transform model as:

Lyt = Lεt

ε∗t = Lεt will now have a diagonal covariance matrix —can use
algorithm for Model 1.

MCMC algorithm: p
(
hT |yT , L

)
can use Kim, Shephard and Chib

(1998) algorithm one equation at a time.

p
(
L|yT , hT

)
results similar to those from a series of M regression

equations with independent Normal errors.

See Cogley and Sargent (2005) for details.
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Cogley-Sargent model allows the covariance between errors to change
over time, but in restricted fashion.

E.g. M = 2 then cov (ε1t , ε2t ) = d1tL21 which varies proportionally
with the error variance of the first equation.

Impulse response analysis: a shock to i th variable has an effect on j th

variable which is constant over time

In many macroeconomic applications this is too restrictive.
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Multivariate Stochastic Volatility Model 3

Primiceri (2005, ReStud):

Σt = L−1t DtL
−1′
t

Lt is same as Cogley-Sargent’s L but is now time varying.

Does not restrict Σt in any way.
MCMC algorithm same as for Cogley-Sargent except for Lt
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How does Lt evolve?

Stack unrestricted elements by rows into a M (M−1)
2 vector as

lt =
(
L21,t , L31,t , L32,t , .., Lp(p−1),t

)′
.

lt+1 = lt + ζt

ζt is i.i.d. N
(
0,Dζ

)
and Dζ is a diagonal matrix.

Can transform model so that algorithm for Normal linear state space
model can draw lt
See Primiceri (2005) for details

Note: if Dζ is not diagonal have to be careful (no longer Normal state
space model)

Gary Koop () Lecture 3: State Space Methods September 14, 2012 40 / 41



Summary

MCMC algorithms such as the Gibbs sampler are modular in nature
(sequentially draw from blocks)

By combining simple blocks together you can end up with very
flexible models

This is strategy pursued here.

Our MCMC algorithms for complicated models all combine simpler
algorithms.

E.g. Primiceri’s complicated model involves blocks which use Carter
and Kohn’s algorithm and blocks which use Kim, Shephard and
Chib’s algorithm (and even the latter relies upon Carter and Kohn)
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