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Introduction

Why TVP-VARs?

Example: U.S. monetary policy

was the high inflation and slow growth of the 1970s were due to bad
policy or bad luck?

Some have argued that the way the Fed reacted to inflation has
changed over time

After 1980, Fed became more aggressive in fighting inflation pressures
than before

This is the “bad policy” story (change in the monetary policy
transmission mechanism)

This story depends on having VAR coeffi cients different in the 1970s
than subsequently.
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Others think that variance of the exogenous shocks hitting economy
has changed over time

Perhaps this may explain apparent changes in monetary policy.

This is the “bad luck” story (i.e. 1970s volatility was high, adverse
shocks hit economy, whereas later policymakers had the good fortune
of the Great Moderation of the business cycle —at least until 2008)

This motivates need for multivariate stochastic volatility to VAR
models

Cannot check whether volatility has been changing with a
homoskedastic model
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Most macroeconomic applications of interest involve several variables
(so need multivariate model like VAR)

Also need VAR coeffi cients changing

Also need multivariate stochastic volatility

TVP-VARs are most popular models with such features

But other exist (Markov-switching VARs, Vector Floor and Ceiling
Model, etc.)
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Homoskedastic TVP-VARs

Begin by assuming Σt = Σ
Remember VAR notation: yt is M × 1 vector, Zt is M × k matrix
(defined so as to allow for a VAR with different lagged dependent and
exogenous variables in each equation).

TVP-VAR:
yt = Ztβt + εt

βt+1 = βt + ut

εt is i.i.d. N (0,Σ) and ut is i.i.d. N (0,Q).
εt and us are independent of one another for all s and t.
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Bayesian inference in this model?

Already done: this is just the Normal linear state space model of the
last lecture.

MCMC algorithm of standard form (e.g. Carter and Kohn, 1994).

But let us see how it works in practice in our empirical application

Follow Primiceri (2005)
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Illustration of Bayesian TVP-VAR Methods

Same quarterly US data set from 1953Q1 to 2006Q3 as was used to
illustrate VAR methods

Three variables: Inflation rate ∆πt , the unemployment rate ut and
the interest rate rt
VAR lag length is 2.

Training sample prior: prior hyperparameters are set to OLS quantities
calculating using an initial part of the data

Our training sample contains 40 observations.

Data through 1962Q4 used to choose prior hyperparameter values,
then Bayesian estimation uses data beginning in 1963Q1.
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βOLS is OLS estimate of VAR coeffi cients in constant-coeffi cient VAR
using training sample

V (βOLS ) is estimated covariance of βOLS .

Prior for β0:
β0 ∼ N (βOLS , 4 · V (βOLS ))

Prior for Σ−1 Wishart prior with ν = M + 1, S = I

Prior for Q−1 Wishart prior with νQ = 40,Q = 0.0001 · 40 · V (βOLS )

Gary Koop () Lecture 4: TVP-VARs September 18, 2012 8 / 28



With TVP-VAR we have different set of VAR coeffi cients in every
time period

So different impulse responses in every time period.

Figure 1 presents impulse responses to a monetary policy shock in
three time periods: 1975Q1, 1981Q3 and 1996Q1.

Impulse responses defined in same way as we did for VAR

Posterior median is solid line and dotted lines are 10th and 90th

percentiles.
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Figure 1: Impulse responses at different times
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Optional Topic: Combining other Priors with the TVP Prior

Often Bayesian TVP-VARs work very well in practice.

In some case the basic TVP-VAR does not work as well, due to
over-parameterization problems.

Previously, we noted worries about proliferation of parameters in
VARs, which led to use of priors such as the Minnesota prior or the
SSVS prior.

With many parameters and short macroeconomic time series, it can
be hard to obtain precise estimates of coeffi cients.

Risk of over-fitting

Priors which exhibit shrinkage of various sorts can help mitigate these
problems.

With TVP-VAR proliferation of parameters problems is even more
severe.

Hierarchical prior of state equation is big help, but may want more in
some cases.
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Optional Topic (cont.): Combining TVP Prior with
Minnesota Prior

E.g. Ballabriga, Sebastian and Valles (1999, JIE), Canova and
Ciccarelli (2004, JOE), and Canova (2007, book)
Replace TVP-VAR state equation by

βt+1 = A0βt + (I − A0) β0 + ut

ut is i.i.d. N (0,Q)
A0, β0 and Q can be unknown parameters or set to known values
E.g. Canova (2007) sets β0 and Q to have forms based on the
Minnesota prior and sets A0 = cI where c is a scalar.
Note if c = 1, then E

(
βt+1

)
= E (βt ) (as in TVP-VAR)

If c = 0 then E
(

βt+1
)
= β0 (as in Minnesota prior)

Q based on prior covariance of Minnesota prior
c can either be treated as an unknown parameter or a value can be
selected for it.
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Optional Topic (cont.): Combining TVP Prior with SSVS
Prior

Same setup as preceding slide
Set β0 = 0.
Let a0 = vec (A0)
Use SSVS prior for a0
a0j (the j th element of a0) has prior:

a0j |γj ∼
(
1− γj

)
N
(
0, κ20j

)
+ γjN

(
0, κ21j

)
as before, γj is dummy variable

κ20j is very small (so that a0j is constrained to be virtually zero)

κ21j is large (so that a0j is relatively unconstrained).
Property: with probability γj , a0j is evolving according to a random
walk in the usual TVP fashion
With probability

(
1− γj

)
, a0j ≈ 0
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Optional Topic (cont.): MCMC Algorithm

I will not provide complete details, but note only:

These are Normal linear state space models so standard algorithms
(e.g. Carter and Kohn) can draw βT

For TVP+Minnesota prior this is enough (other parameters fixed)

For TVP+SSVS simple to adapt MCMC algorithm for SSVS with
VAR
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Optional Topic (cont.): Adding Another Layer to the Prior
Hierarchy

Another approach used by Chib and Greenberg (1995, JOE) for SUR
model

Adapted for VARs by, e.g., Ciccarelli and Rebucci (2002)

yt = Ztβt + εt

βt+1 = A0θt+1 + ut
θt+1 = θt + ηt

all assumptions as for TVP-VAR, plus ηt is i.i.d. N (0,R)

Slightly more general that previous Normal linear state space model,
but very similar MCMC (so will not discuss MCMC)
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Optional Topic (cont.): Adding Another Layer to the Prior
Hierarchy

Why might this generalization be useful?

Can be written as:

yt = Ztβt + εt

βt+1 = βt + vt

where vt = A0ηt + ut − ut−1.
So still a TVP-VAR with random walk state equation but state
equation errors have different form (MA(1)).

Also can see that:
E
(

βt+1|βt
)
= A0βt
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Optional Topic (cont.): Adding Another Layer to the Prior
Hierarchy

A0 can be chosen to reflect some other prior information

E.g. SSVS prior as above

E.g. Ciccarelli and Rebucci (2002) is panel VAR application

G countries and, for each country, kG explanatory variables exist with
time-varying coeffi cients.

They set
A0 = ιG ⊗ IkG

Implies time-varying component in each coeffi cient which is common
to all countries

Parsimony: θt is of dimension kG whereas βt is of dimension kG × G .
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Imposing Inequality Restrictions on the VAR Coeffi cients

Another way of ensuring shrinkage

E.g. restrict βt to be non-explosive (i.e. roots of the VAR polynomial
defined by βt lie outside the unit circle)

Sometimes (given over-fitting and imprecise estimates) can get
posterior weight in explosive region

Even small amount of posterior probability in explosive regions for βt
can lead to impulse responses or forecasts which have
counter-intuitively large posterior means or standard deviations.

Koop and Potter (2009, on my website) discusses how to do this. I
will not present details, but outline basic idea
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With unrestricted TVP-VAR, took draws p
(

βT |yT ,Σ,Q
)
using

MCMC methods for Normal linear state space models

One method to impose inequality restrictions involves:

Draw βT in the unrestricted VAR. If any drawn βt violates the
inequality restriction then the entire vector βT is rejected.

Problem: this algorithm can get stuck, rejecting virtually every βT

(all you need is a single drawn βt to violate inequality and entire βT

is rejected)

Note: algorithms like Carter and Kohn are “multi-move algorithms”
(draw βT all at same time).

Alternative is “single move algorithm”: drawing βt for t = 1, ..,T one
at a time from p

(
βt |yT ,Σ,Q, β−t

)
where

β−t =
(

β′1, .., βt−1, βt+1, .., β
′
T

)′
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Koop and Potter (2009) suggest using single move algorithm

Reject βt only (not βT ) if it violates inequality restriction

Usually multi-move algorithms are better than single-move algorithms
since latter can be slow to mix.

I.e. they produce highly correlated series of draws which means that,
relative to multi-move algorithms, more draws must be taken to
achieve a desired level of accuracy.

But if multi-move algorithm gets stuck, single move might be better.
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Dynamic Mixture Models

Remember: Normal linear state space model depends on so-called
system matrices, Zt , Qt , Tt , Wt and Σt .
Suppose some or all of them depend on an s × 1 vector K̃t
Suppose K̃t is Markov random variable (i.e.

p
(
K̃t |K̃t−1, .., K̃1

)
= p

(
K̃t |K̃t−1

)
or independent over t

Particularly simple if K̃t is a discrete random variable.

Result is called a dynamic mixture model

Gerlach, Carter and Kohn (2000, JASA) have an effi cient MCMC
algorithm
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Why are dynamic mixture models useful in empirical macroeconomics?

E.g. TVP-VAR:
yt = Ztβt + εt

βt+1 = βt + ut

εt is i.i.d. N (0,Σ)

BUT: ut is i.i.d. N
(
0, K̃tQ

)
.

Let K̃t ∈ {0, 1} with hierarchical prior:

p
(
K̃t = 1

)
= q.

p
(
K̃t = 0

)
= 1− q

where q is an unknown parameter.
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Property:

If K̃t = 1 then usual TVP-VAR:

βt+1 = βt + ut

If K̃t = 0 then VAR coeffi cients do not change at time t:

βt+1 = βt

Parsimony.

This model can have flexibility of TVP-VAR if the data warrant it
(i.e. can select K̃t = 1 for t = 1, ..,T ).

But can also select a much more parsimonious representation.

An extreme case: if K̃t = 0 for t = 1, ..,T then back to VAR without
time-varying parameters.
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I will not present details of MCMC algorithm since it is becoming a
standard one

See also the Matlab code on my website

Dynamic mixture models used to model structural breaks, outliers,
nonlinearities, etc.

E.g. Giordani, Kohn and van Dijk (2007, JoE).

Gary Koop () Lecture 4: TVP-VARs September 18, 2012 24 / 28



TVP-VARs with Stochastic Volatility

In empirical work, you will usually want to add multivariate stochastic
volatility to the TVP-VAR

But this can be dealt with quickly, since the appropriate algorithms
were described in the lecture on State Space Modelling

Remember, in particular, the approaches of Cogley and Sargent
(2005) and Primiceri (2005).

MCMC: need only add another block to our algorithm to draw Σt for
t = 1, ..,T .

Homoskedastic TVP-VAR MCMC: p
(
Q−1|yT , βT

)
,

p
(

βT |yT ,Σ,Q
)
and p

(
Σ−1|yT , βT

)
Heteroskedastic TVP-VAR MCMC: p

(
Q−1|yT , βT

)
,

p
(

βT |yT ,Σ1, ..,ΣT ,Q
)
and p

(
Σ−11 , ..,Σ

−1
T |yT , β

T
)
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Empirical Illustration of Bayesian Inference in TVP-VARs
with Stochastic Volatility

Continue same illustration as before.

All details as for homoskedastic TVP—VAR

Plus allow for multivariate stochastic volatility as in Primiceri (2005).

Priors as in Primiceri

Can present empirical features of interest such as impulse responses

But (for brevity) just present volatility information

Figure 2: time-varying standard deviations of the errors in the three
equations (i.e. the posterior means of the square roots of the diagonal
element of Σt)
If time permits, I will show empirical results from dynamic mixture
version of model from my paper with Leon-Gonzalez and Strachan
(working paper version available on my website)
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Figure 2: Volatilities in the 3 Equations
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Summary

TVP-VARs are useful for the empirical macroeconomists since they:

are multivariate

allow for VAR coeffi cients to change

allow for error variances to change

They are state space models so Bayesian inference can use familar
MCMC algorithms developed for state space models.

They can be over-parameterized so care should be taken with priors.

I think this is enough material to be digested in a short course,
however....

If there is extra time I will give a brief introduction to Bayesian
analysis of factor models
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