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Introduction

State space methods are used for a wide variety of time series
problems

They are important in and of themselves in economics (e.g.
trend-cycle decompositions, structural time series models, dealing
with missing observations, etc.)

They can be used to deal with unit root issues and ARMA

Also time-varying parameter (TVP) models can be used to deal with
parameter change/structural breaks/regime change

Dynamic factor models are state space models

Stochastic volatility are state space models

Advantage of state space models: well-developed set of MCMC
algorithms for doing Bayesian inference
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The Local Level Model

Explain basic ideas in simplest state space model: the local level model

For t = 1, ..,T have
yt = αt + εt

εt is i.i.d. N
(
0, h−1

)
.

αt which is not observed (called a state) and follows random walk for
t = 1, ..,T − 1:

αt+1 = αt + ut

ut is i.i.d. N (0,Q)

εt and us are independent of one another for all s and t.

First equation: measurement (observation) equation, second state
equation

α1 is initial condition.

() State Space Models 3 / 77



Relationship to Other Models

Can write
∆yt = εt − εt−1 + ut−1

∆yt is stationary (I (0)) whereas yt has unit root (I (1))
Can write

αt = α1 +
t−1
∑
j=1
uj

this is a trend (stochastic trend)

local level model decomposes yt , into a trend component, αt , and an
error or irregular component, εt .

Test of whether Q = 0 is one way of testing for a unit root.

These results illustrate how all usual univariate time series things:
ARIMA modelling, unit root testing, etc. can be done in state space
framework

() State Space Models 4 / 77



Relationship to Other Models

αt is the mean (or level) of yt .

Mean is varying over time, hence terminology local level model

Measurement equation can be interpreted as simple example of
regression model involving only an intercept.

But the intercept varies over time: time varying parameter model

Extensions of local level model used to investigate parameter change
in various contexts.
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The Likelihood Function of the Local Level Model

Define y = (y1, ..., yT )′ and ε = (ε1, ..., εT )
′ then local level model:

y = IT α+ ε

This is a regression model with explanatory variables IT and
coeffi cients α = (α1, .., αT )

′

Likelihood function has standard form for the Normal linear regression
model

Note relation to Fat Data: T observations and T explanatory
variables

Here hierarchical prior is provided by state equation
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Prior for Local Level Model

State equation gives us:

αt+1|αt ,Q ∼ N (αt , q)

Or

p (α|Q) =
T

∏
t=1
p (αt+1|αt ,Q)

This is a hierarchical prior: since it depends on Q which, in turn,
requires its own prior.

The fact that is it a Normal prior means can use standard results for
Normal linear regression model
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Posterior for Local Level Model

I will not repeat exact formula here
See Topic 1 slides or page 187 of my textbook for natural conjugate
case
But the formulae will depend on Q
Textbook discusses (pages 188-190) discusses one estimation method,
see below for MCMC method
An issue arises: α is T × 1 which can be very large (dimension of
states even larger in general state space models)
Remember: if regression had k explanatory variables, posterior
involved manipulations (inverting, etc.) k × k matrices
If k = T or more, this rapidly gets demanding (or impossible)
For state space models, special methods based on Kalman filtering
used to avoid such manipulations
Will discuss below, but remember that state space models basically
just regression models with a particular hierarchical prior
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Filtering versus Smoothing in the Local Level Model

Notation: superscripts for all observations up to a specific time

E.g. yT = (y1, .., yT )
′ is all observations in the sample

αt = (α1, .., αt )
′ is all states up to the current period (t)

Filtering = using y t

E (αt |y t ) is the filtered estimate of the state
E (yt+1|y t ) is estimate of yt+1 (unknown at time t)
Used for real time forecasting

Smoothing = using yT

E
(
αt |yT

)
is smoothed estimate of state

E.g. estimate of trend inflation using the full sample of data
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The Kalman Filter

I will not derive or state exact formulae, just the main ideas

Good reference: Durbin and Koopman, Time Series Analysis by State
Space Methods

Formulae below depend on Q and h, for now assume it is known

Can prove

αt |y t−1 ∼ N
(
at |t−1,Pt |t−1

)
αt |y t ∼ N

(
at |t ,Pt |t

)
Kalman filter involves simple formulae linking at |t−1,Pt |t−1, at |t ,Pt |t
Also formula for predictive density p (yt+1|y t ) which can be used for
real time forecasting

Formula for likelihood function (used for maximum likelihood
estimation)
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Kalman Filter Recursions

Start with initial condition, a1|1,P1|1 (Bayesians assume prior)

Calculate a2|1, P2|1 using Kalman filtering formulae

Calculate a2|2, P2|2
...

Calculate at |t−1, Pt |t−1
Calculate at |t , Pt |t
etc.
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Kalman Filter Recursions

Each calculation on previous slide only depended on the last one

New observation added, only need to update using this

Simplifies computation: no need for manipulations involving T × T
matrices

At every point in time get filtered estimate of state, predictive density,
etc.

Run the Kalman filter from t = 1, ..,T
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State Smoothing

Smoothing uses full sample, yT

Suitable for estimation (e.g. estimating trend inflation)

Standard recursive formulae exist with same “update one observation
at a time”

Can prove
αt |yT ∼ N

(
at |T ,Pt |T

)
First run Kalman filter from t = 1, ..,T

Then state smoother from t = T , .., 1

Set of simple recursive formulae for at |T and Pt |T
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Summary of Estimation in Local Level Model

Local level model has parameters αT , Q and h

Kalman filter and state smoother provides formula for
p
(
αT |yT ,Q, h

)
and p

(
αT |y t ,Q, h

)
And p

(
y t+1|y t ,Q, h

)
for forecasting

Bayesian can complete the Gibbs sampler with p
(
Q |yT , h, αT

)
and

p
(
h|yT ,Q, αT

)
Exact forms depend on prior, but simple based on Normal linear
regression model
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The Normal Linear State Space Model

General version of Normal linear state space model:

Measurement equation:

yt = Wtδ+ Ztβt + εt

State equation:
βt+1 = Ttβt + ut

yt and εt defined as for regression model

Illustrate as though for a regression or AR model, but much more
general

General theory has yt being M × 1 vector
Usual for macroeconomics: VARs have M variables, DSGE models
involve M variables

But my applications will be for single equation: M = 1
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The Normal Linear State Space Model

Wt is known M × p0 matrix (e.g. lagged dependent variables or
explanatory variables with constant coeffi cients)

Zt is known M ×K matrix (e.g. lagged dependent variables or
explanatory variables with time varying coeffi cients)

βt is k × 1 vector of states (e.g. regression or AR coeffi cients)
εt ind N (0,Σt )
ut ind N (0,Qt ).

εt and us are independent for all s and t.

Tt is a k × k matrix (usually fixed, but sometimes not).
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Key idea: for given values for δ, Tt , Σt and Qt (called “system
matrices”) posterior simulators for βt for t = 1, ..,T exist.

E.g. Carter and Kohn (1994, Btka), Fruhwirth-Schnatter (1994,
JTSA), DeJong and Shephard (1995, Btka) and Durbin and
Koopman (2002, Btka).

I will not present details of these (standard) algorithms

I have outlined general form for the local level model above

Recently other algorithms have been proposed in several papers by
Joshua Chan (Australian National University) and Bill McCausland
(University of Montreal)

These do not use Kalman filter, but exploit special band structure of
large T × T matrices to invert key matrices directly
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Notation: βt =
(

β′1, .., β
′
t

)′ stacks all the states up to time t (and
similar superscript t convention for other things)

Gibbs sampler: p
(

βT |yT , δ,TT ,ΣT ,QT
)
drawn use such an

algorithm

p
(

δ|yT , βT ,TT ,ΣT ,QT
)
, p
(
TT |yT , βT , δ,ΣT ,QT

)
,

p
(

ΣT |yT , βT , δ,TT ,QT
)
and p

(
QT |yT , βT , δ,TT ,ΣT

)
depend

on precise form of model (typically simple since, conditional on βT

have a Normal linear model)

Typically restricted versions of this general model used

TVP-VAR of Primiceri (2005, ReStud) has δ = 0,Tt = I and Qt = Q

Computer tutorial 4 considers a time-varying parameter AR model

Zt contains lags of dependent variable, δ = 0,Tt = I and Qt is a
diagonal matrix
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Example of an MCMC Algorithm

Special case δ = 0,Tt = I ,Σt = h and Qt = Q
Homoskedastic TVP-VAR of Cogley and Sargent (2001, NBER)

Need prior for all parameters

But state equation implies hierarchical prior for βT :

βt+1|βt ,Q ∼ N (βt ,Q)

Formally:

p
(

βT |Q
)
=

T

∏
t=1
p
(

βt |βt−1,Q
)

Hierarchical: since it depends on Q which, in turn, requires its own
prior.
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Note β0 enters prior for β1.

Need prior for β0
Standard treatments exist.

E.g. assume β0 = 0, then:

β1|Q ∼ N (0,Q)

Or Carter and Kohn (1994) simply assume β0 has some prior that
researcher chooses

h is error precision in measurement equation, just use Gamma prior
for it as in Normal linear regression model
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Common to use Wishart prior for Q−1

Q−1 ∼ W
(
Q−1, νQ

)
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Digression

Remember regression models had parameters β and σ2

There proved convenient to work with h = 1
σ2

With Q proves convenient to work with Q−1

In regression h typically had Gamma distribution

With state equations (more than one equation) Q−1 will typically
have Wishart distribution

Wishart is matrix generalization of Gamma

Details see appendix to textbook.

If Σ−1 is W (C , c) then “Mean” is cC and c is degrees of freedom.

Note: easy to take random draws from Wishart.
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Want MCMC algorithm which sequentially draws from
p
(
h−1|yT , βT ,Q

)
, p
(
Q−1|yT , h, βT

)
and p

(
βT |yT , h,Q

)
.

For p
(

βT |yT , h,Q
)
use standard algorithm for state space models

(e.g. Carter and Kohn, 1994)

Can derive p
(
h|yT , βT ,Q

)
using Normal linear regression model

results

That is, conditional on βT , measurement equation is just a regression
with known coeffi cients.
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p
(
Q−1|yT , h, βT

)
use multiple equation extension of Normal linear

regression model

Conditional on βT , state equation is also like a series of regression
equations

This leads to:
Q−1|yT , βT ∼ W

(
Q
−1
, νQ

)
where

νQ = T + νQ

Q = Q +
T

∑
t=1

(
βt+1 − βt

) (
βt+1 − βt

)′
.
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DSGE Models as State Space Models

DSGE = Dynamic, stochastic general equilibrium models popular in
modern macroeconomics and commonly used in policy circles (e.g.
central banks).

I will not explain the macro theory, other than to note they are:

Derived from microeconomic principles (based on agents and firms
decision problems), dynamic (studying how economy evolves over
time) and general equilibrium.

Solution (using linear approximation methods) is a linear state space
model

Note: recent work with second order approximations yields nonlinear
state space model

Survey: An and Schorfheide (2007, Econometric Reviews)

Computer code: http://www.dynare.org/ or some authors post code
(e.g. code for Del Negro and Schorfheide 2008, JME on web)
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Estimation Strategy for DSGE

Most linearized DSGE models written as:

Γ0 (θ) zt = Γ1 (θ)Et (zt+1) + Γ2 (θ) zt−1 + Γ3 (θ) ut

zt is vector containing both observed variables (e.g. output growth,
inflation, interest rates) and unobserved variables (e.g. technology
shocks, monetary policy shocks).

Note, theory usually written in terms of zt as deviation of variable
from steady state (an issue I will ignore here to keep exposition
simple)

θ are structural parameters (e.g. parameters for steady states, tastes,
technology, policy, etc.).

ut are structural shocks (N (0, I )).

Γj (θ) are often highly nonlinear functions of θ
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Solving the DSGE Model

Methods exist to solve linear rational expectations models such as the
DSGE

If unique equilibrium exists can be written as:

zt = A (θ) zt−1 + B (θ) ut

Looks like a VAR, but....

Some elements of zt typically unobserved

and highly nonlinear restrictions involved in A (θ) and B (θ)
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Write DSGE Model as State Space Model

Let yt be elements of zt which are observed.

Measurement equation:
yt = Czt

where C is matrix which picks out observed elements of zt
Equation on previous slide is state equation in states zt
Thus we have state space model

Special case since measurement equation has no errors (although
measurement errors often added) and state equation has some states
which are observed.

But state space algorithms described earlier in this lecture still work

Remember, before I said: “for given values for system matrices,
posterior simulators for the states exist”

If θ were known, DSGE model provides system matrices in Normal
linear state space model
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Estimating the Structural Parameters

If A (θ) and B (θ) involved simple linear restrictions, then linear
methods similar to regressions could be used to carry out inference on
θ.

Unfortunately, restrictions in A (θ) and B (θ) are typically nonlinear
and complicated

Parameters in θ are structural so we are likely to have prior
information about them

Example from Del Negro and Schorfheide (2008, JME):

“Household-level data on wages and hours worked could be used to
form a prior for a labor supply elasticity”

“Product level data on price changes could be the basis for a
price-stickiness prior”
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Estimating the Structural Parameters (cont.)

Prior for structural parameters, p (θ), can be formed from other
sources of information (e.g. micro studies, economic theory, etc.)

Here: prior times likelihood is a mess

Thus, no analytical posterior for θ, no Gibbs sampler, etc...

Solution: Metropolis-Hastings algorithm (see my textbook chapter 5,
section 5)
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Popular (e.g. DYNARE) to use random walk Metropolis-Hastings
with DSGE models.

Note acceptance probability depends only on posterior = prior times
likelihood

DSGE Prior chosen as discussed above

Algorithms for Normal linear state space models evaluate likelihood
function
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Nonlinear State Space Models

Normal linear state space model useful for empirical macroeconomists

E.g. trend-cycle decompositions, TVP-VARs, linearized DSGE
models, dynamic factor models, etc.

Some models have yt being a nonlinear function of the states (e.g.
DSGE models which have not been linearized)

Increasing number of Bayesian tools for nonlinear state space models
(e.g. the particle filter)

Here we will focus on stochastic volatility
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Stochastic Volatility

Popular in finance, but increasingly macroeconomists realize
importance of allowing for time-varying volatility

Note: multivariate stochastic volatility in VARs is very popular (also
nonlinear state space model, simple extension of univariate case)

Stochastic volatility model:

yt = exp
(
ht
2

)
εt

ht+1 = µ+ φ (ht − µ) + ηt

εt is i.i.d. N (0, 1) and ηt is i.i.d. N
(
0, σ2η

)
. εt and ηs are

independent.

This is state space model with states being ht , but measurement
equation is not a linear function of ht
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ht is log of the variance of yt (log volatility)

Since variances must be positive, common to work with log-variances

Note µ is the unconditional mean of ht .

Initial conditions: if |φ| < 1 (stationary) then:

h0 ∼ N
(

µ,
σ2η

1− φ2

)

if φ = 1, µ drops out of the model and However, when φ = 1, need a
prior such as h0 ∼ N (h,V h)
e.g. Primiceri (2005) chooses V h using training sample
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MCMC Algorithm for Stochastic Volatility Model

MCMC algorithm involves sequentially drawing from
p
(
hT |yT , µ, φ, σ2η

)
, p
(

φ|yT , µ, σ2η, hT
)
, p
(

µ|yT , φ, σ2η, hT
)
and

p
(

σ2η |yT , µ, φ, hT
)

Last three standard forms based on results from Normal linear
regression model and will not present here.

Several algorithms exist for p
(
hT |yT , µ, φ, σ2η

)
Here we describe a popular one from Kim, Shephard and Chib (1998,
ReStud)

For complete details, see their paper. Here we outline ideas.
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Square and log the measurement equation:

y ∗t = ht + ε∗t

where y ∗t = ln
(
y2t
)
and ε∗t = ln

(
ε2t
)
.

Now the measurement equation is linear so maybe we can use
algorithm for Normal linear state space model?

No, since error is no longer Normal (i.e. ε∗t = ln
(
ε2t
)
)

Idea: use mixture of different Normal distributions to approximate
distribution of ε∗t .
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Mixtures of Normal distributions are very flexible and have been used
widely in many fields to approximate unknown or inconvenient
distributions.

p (ε∗t ) ≈
7

∑
i=1
qi fN

(
ε∗t |mi , v2i

)
where fN

(
ε∗t |mi , v2i

)
is the p.d.f. of a N

(
mi , v2i

)
since εt is N (0, 1), ε∗t involves no unknown parameters

Thus, qi ,mi , v2i for i = 1, .., 7 are not parameters, but numbers (see
Table 4 of Kim, Shephard and Chib, 1998).
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Mixture of Normals can also be written in terms of component
indicator variables, st ∈ {1, 2, .., 7}

ε∗t |st = i ∼ N
(
mi , v2i

)
Pr (st = i) = qi

MCMC algorithm does not draw from p
(
hT |yT , µ, φ, σ2η

)
, but from

p
(
hT |yT , µ, φ, σ2η, sT

)
.

But, conditional on sT , knows which of the Normals ε∗t comes from.

Result is a Normal linear state space model and familiar algorithm can
be used.

Finally, need p
(
sT |yT , µ, φ, σ2η, hT

)
but this has simple form (see

Kim, Shephard and Chib , 1998)
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Summary and Other Directions

This completes discussion of general ideas underlying state space
models and few key models
Computer tutorial 4 considers time-varying parameter AR model
Suitable for modelling parameter change (structural breaks/regime
change, etc.)
Computer tutorial 5 considers the popular unobserved components
stochastic volatility model
State space methods growing in popularity in many other contexts
SSVS and Lasso methods used with state space models
Frühwirth-Schnatter and Wagner (2010). “Stochastic model
specification search for Gaussian and partial non-Gaussian state space
models,” Journal of Econometrics.
Dynamic mixture models used to model structural breaks, outliers,
nonlinearities, etc.
Giordani, Kohn and van Dijk (2007, JoE).
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A Macroeconomic Application: Inflation Forecasting using
Dynamic Model Averaging

I will end this course with application which involves time series
regression, state space models, model averaging and forecasting as
way of summarizing major themes of this course

Based on the paper: Koop and Korobilis (2012, International
Economic Review)

Macroeconomists typically have many time series variables

But even with all this information forecasting of macroeconomic
variables like inflation, GDP growth, etc. can be very hard

Sometimes hard to beat very simple forecasting procedures (e.g.
random walk)

Imagine a regression of inflation on many predictors

Such a regression might fit well in practice, but forecast poorly
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Why? There are many reasons, but three stand out:

Regressions with many predictors can over-fit (over-parameterization
problems)

Marginal effects of predictors change over time (parameter
change/structural breaks)

The relevant forecasting model may change (model change)

We use an approach called Dynamic Model Averaging (DMA) in an
attempt to address these problems
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The Generalized Phillips Curve

Phillips curve: inflation depends on unemployment rate

Generalized Phillips curve: Inflation dependent on lagged inflation,
unemployment and other predictors

Many papers use generalized Phillips curve models for inflation
forecasting

Regression-based methods based on:

yt = φ+ x ′t−1β+
p

∑
j=1

γjyt−j + εt

yt is inflation and xt−1 are lags of other predictors

To make things concrete, following is our list of predictors (other
papers use similar)
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UNEMP: unemployment rate.

CONS: the percentage change in real personal consumption
expenditures.

INV: the percentage change in private residential fixed investment.

GDP: the percentage change in real GDP.

HSTARTS: the log of housing starts (total new privately owned
housing units).

EMPLOY: the percentage change in employment (All Employees:
Total Private Industries, seasonally adjusted).

PMI: the change in the Institute of Supply Management
(Manufacturing): Purchasing Manager’s Composite Index.
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TBILL: three month Treasury bill (secondary market) rate.

SPREAD: the spread between the 10 year and 3 month Treasury bill
rates.

DJIA: the percentage change in the Dow Jones Industrial Average.

MONEY: the percentage change in the money supply (M1).

INFEXP: University of Michigan measure of inflation expectations.

COMPRICE: the change in the commodities price index (NAPM
commodities price index).

VENDOR: the change in the NAPM vendor deliveries index.
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Forecasting With Generalized Phillips Curve

Write more compactly as:

yt = ztθ + εt

zt contains all predictors, lagged inflation, an intercept

Note zt = information available for forecasting yt
When forecasting h periods ahead will contain variables dated t − h
or earlier
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Consider forecasting yτ+1.

Recursive forecasting methods: θ̂ = estimate using data through τ.

So θ̂ will change (a bit) with τ, but can change too slowly

Rolling forecasts use: θ̂ an estimate using data from τ − τ0 through
τ.

Better at capturing parameter change, but need to choose τ0

Recursive and rolling forecasts might be imperfect solutions

Why not use a model which formally models the parameter change as
well?
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Time Varying Parameter (TVP) Models

TVP models gaining popularity in empirical macroeconomics

yt = ztθt + εt

θt = θt−1 + ηt

εt
ind∼ N (0,Ht )

ηt
ind∼ N (0,Qt )

State space methods described above can be used to estimate them

() State Space Models 47 / 77



Why not use TVP model to forecast inflation?

Advantage: models parameter change in a formal manner

Disadvantage: same predictors used at all points in time.

If number of predictors large, over-fit, over-parameterization problems

In our empirical work, we show very poor forecast performance
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Dynamic Model Averaging (DMA)

Define K models which have z (k )t for k = 1, ..,K , as predictors

z (k )t is subset of zt .

Set of models:

yt = z (k )t θ
(k )
t + ε

(k )
t

θ
(k )
t+1 = θ

(k )
t + η

(k )
t

ε
(k )
t is N

(
0,H (k )t

)
η
(k )
t is N

(
0,Q(k )t

)
Let Lt ∈ {1, 2, ..,K} denote which model applies at t
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Why not just forecast using BMA over these TVP models at every
point in time?

Different weights in averaging at every point in time.

Or why not just select a single TVP forecasting model at every point
in time?

Different forecasting models selected at each point in time.

If K is large (e.g. K = 2m), this is computationally infeasible.

With cross-sectional BMA have to work with model space K = 2m

which is computationally burdensome

In present time series context, forecasting through time τ involves
2mτ models.

Also, Bayesian inference in TVP model requires MCMC (unlike
cross-sectional regression). Computationally burdensome.

Even clever algorithms like MC-cubed are not good enough to handle
this.
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Another strategy has been used to deal with similar problems in
different contexts (e.g. multiple structural breaks): Markov switching

Markov transition matrix, P,

Elements pij = Pr (Lt = i |Lt−1 = j) for i , j = 1, ..,K .
“If j is the forecasting model at t − 1, we switch to forecasting model
i at time t with probability pij"

Bayesian inference is theoretically straightforward, but
computationally infeasible

P is K ×K : an enormous matrix.
Even if computation were possible, imprecise estimation of so many
parameters
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Solution: DMA

Adopt approach used by Raftery et al (2010 Technometrics) in an
engineering application

Involves two approximations

First approximation means we do not need MCMC in each TVP
model (only need run a standard Kalman filtering and smoothing)

See paper for details. Idea: replace Q(k )t and H (k )t by estimates
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Sketch of some Kalman filtering ideas (where y t−1 are observations
through t − 1)

θt−1|y t−1 ∼ N
(

θ̂t−1,Σt−1|t−1
)

Textbook formula for θ̂t−1 and Σt−1|t−1
Then update

θt |y t−1 ∼ N
(

θ̂t−1,Σt |t−1
)

Σt |t−1 = Σt−1|t−1 +Qt

Get rid of Qt by approximating:

Σt |t−1 =
1
λ

Σt−1|t−1

0 < λ ≤ 1 is forgetting factor
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Forgetting factors like this have long been used in state space
literature

Implies that observations j periods in the past have weight λj .

Or effective window size of 1
1−λ .

Choose value of λ near one

λ = 0.99: observations five years ago ≈ 80% as much weight as last
period’s observation.

λ = 0.95: observations five years ago ≈ 35% as much weight as last
period’s observations.

We focus on λ ∈ [0.95, 1.00].
If λ = 1 no time variation in parameters (standard recursive
forecasting)
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Back to Model Averaging/Selection

Goal for forecasting at time t given data available at time t − 1 is
πt |t−1,k ≡ Pr

(
Lt = k |y t−1

)
Can average across k = 1, ..,K forecasts using πt |t−1,k as weights
(DMA)

E.g. point forecasts (θ̂
(k )
t−1 from Kalman filter in model k):

E
(
yt |y t−1

)
=

K

∑
k=1

πt |t−1,kz
(k )
t θ̂

(k )
t−1

Can forecast with model j at time t if πt |t−1,j is highest (Dynamic
model selection: DMS)

Raftery et al (2010) propose another forgetting factor to approximate
πt |t−1,k
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Complete details in Raftery et al’s paper.

Basic idea is that can use similar state space updating formulae for
models as is done with states

Then use similar forgetting factor to get approximation

πt |t−1,k =
πα
t−1|t−1,k

∑K
l=1 πα

t−1|t−1,l

0 < α ≤ 1 is forgetting factor with similar interpretation to λ

Focus on α ∈ [0.95, 1.00]
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Interpretation of forgetting factor α

Easy to show:

πt |t−1,k =
t−1
∏
i=1

[
pk
(
yt−i |y t−i−1

)]αi

pk
(
yt |y t−1

)
is predictive density for model k evaluated at yt

(measure of forecast performance of model k)

Model k will receive more weight at time t if it has forecast well in
the recent past

Interpretation of “recent past” is controlled by the forgetting factor, α

α = 0.99: forecast performance five years ago receives 80% as much
weight as forecast performance last period

α = 0.95: forecast performance five years ago receives only about
35% as much weight.

α = 1: can show πt |t−1,k is proportional to the marginal likelihood
using data through time t − 1 (standard BMA)
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Summary So Far

We want to do DMA or DMS

These use TVP models which allow marginal effects to change over
time

These allow for forecasting model to switch over time

So can switch from one parsimonious forecasting model to another
(avoid over-parametization)

But a full formal Bayesian analysis is computationally infeasible

Sensible approximations make it computationally feasible.

State space updating formula must be run K times, instead of
(roughly speaking) KT MCMC algorithms
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Forecasting US Inflation

Data from 1960Q1 through 2008Q4

Real time data (forecasting at time τ using data as known at time τ)

Two measure of inflation based on PCE deflator (core inflation) and
GDP deflator

14 predictors listed previously (all variables transformed to be
approximately stationary)

All models include an intercept and two lags of the dependent variable

3 forecast horizons: h = 1,4, 8
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Is DMA Parsimonious?

Even though 14 potential predictors, most probability is attached to
very parsimonious models with only a few predictors.

Sizek = number of predictors in model k

(Sizek does not include the intercept plus two lags of the dependent
variable)

Figure 1 plots

E (Sizet ) =
K

∑
k=1

πt |t−1,kSizek
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Figure 1: Expected Number of Predictors
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Which Variables are Good Predictors for Inflation?

Posterior inclusion probabilities for j th predictor =

∑
k∈J

πt |t−1,k

where k ∈ J indicates models which include j th predictor
See Figure 2, 3 and 4 for 2 measures of inflation and 3 forecast
horizons

Any predictor where the inclusion probability is never above 0.5 is
excluded from the appropriate figure.

Lots of evidence of predictor change in all cases.

DMA/DMS will pick this up automatically
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Figure 2: Posterior Probability of Inclusion of Predictors, h = 1. GDP
deflator inflation top, PCE deflator inflation bottom
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Figure 3: Posterior Probability of Inclusion of Predictors, h = 4. GDP
deflator inflation top, PCE deflator inflation bottom
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Figure 4: Posterior Probability of Inclusion of Predictors, h = 8. GDP
deflator inflation top, PCE deflator inflation bottom
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Forecast Performance

recursive forecasting exercise

forecast evaluation begins in 1970Q1

Measures of forecast performance using point forecasts

Mean squared forecast error (MSFE) and mean absolute forecast error
(MAFE).

Forecast metric involving entire predictive distribution: the sum of log
predictive likelihoods.

Predictive likelihood = Predictive density for yt (given data through
time t − 1) evaluated at the actual outcome.
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Forecasting Methods

DMA with α = λ = 0.99.

DMS with α = λ = 0.99.

DMA with α = λ = 0.95.

DMS with α = λ = 0.95.

DMA, with constant coeffi cients (λ = 1, α = 0.99)

BMA as a special case of DMA (i.e. we set λ = α = 1).

TVP-AR(2)-X: Traditional TVP model .

TVP-AR(2) model (as preceding but excluding predictors)
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Traditional g-prior BMA

UC-SV: Unobserved components with stochastic volatility model of
Stock and Watson (2007).

Recursive OLS using AR(p)

As preceding, but adding the predictors.

Rolling OLS using AR(p) (window of 40 quarters)

As preceding, but adding the predictors

Random walk

Note: in recursive and rolling OLS forecasts p selected at each point
in time using BIC
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Discussion of Log Predictive Likelihoods

Preferred method of Bayesian forecast comparison

Some variant of DMA or DMS always forecast best.

DMS with α = λ = 0.95 good for both measures of inflation at all
horizons.

Conventional BMA forecasts poorly.

TVP-AR(2) and UC-SV have substantially lower predictive likelihoods
than the DMA or DMS approaches.

Of the non-DMA approaches, UC-SV approach of Stock and Watson
(2007) consistently is the best performer.

TVP model with all predictors tends to forecast poorly

Shrinkage provided by DMA or DMS is of great value in forecasting.

DMS tends to forecast a bit better than DMA
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Discussion of MSFE and MAFE

Patterns noted with predictive likelihoods mainly still hold (although
DMA does better relative to DMS)

Simple forecasting methods (AR(2) or random walk model) are
inferior to DMA and DMS

Rolling OLS using all predictors forecast bests among OLS-based
methods.

DMS and DMA with α = λ = 0.95 always lead to lower MSFEs and
MAFEs than rolling OLS with all the predictors.

In some cases rolling OLS with all predictors leads to lower MSFEs
and MAFEs than other implementations of DMA or DMS.

In general: DMA and DMS look to be safe options. Usually they do
best, but where not they do not go too far wrong

Unlike other methods which might perform well in some cases, but
very poorly in others
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Forecast results: GDP deflator inflation, h = 1
MAFE MSFE log(PL)

DMA (α = λ = 0.99) 0.248 0.306 -0.292
DMS (α = λ = 0.99) 0.256 0.318 -0.277
DMA (α = λ = 0.95) 0.248 0.310 -0.378
DMS (α = λ = 0.95) 0.235 0.297 -0.237
DMA (λ = 1, α = 0.99) 0.249 0.306 -0.300
BMA (DMA with α = λ = 1) 0.256 0.316 -0.320
TVP-AR(2) (λ = 0.99) 0.260 0.327 -0.344
TVP-AR(2)-X (λ = 0.99) 0.309 0.424 -0.423
BMA-MCMC (g = 1

T ) 0.234 0.303 -0.369
UC-SV (γ = 0.2) 0.256 0.332 -0.320
Recursive OLS - AR(BIC) 0.251 0.326 -
Recursive OLS - All Preds 0.265 0.334 -
Rolling OLS - AR(2) 0.251 0.325 -
Rolling OLS - All Preds 0.252 0.327 -
Random Walk 0.262 0.349 -
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Forecast results: GDP deflator inflation, h = 4
MAFE MSFE log(PL)

DMA (α = λ = 0.99) 0.269 0.349 -0.421
DMS (α = λ = 0.99) 0.277 0.361 -0.406
DMA (α = λ = 0.95) 0.255 0.334 -0.455
DMS (α = λ = 0.95) 0.249 0.316 -0.307
DMA (λ = 1, α = 0.99) 0.277 0.355 -0.445
BMA (DMA with α = λ = 1) 0.282 0.363 -0.463
TVP-AR(2) (λ = 0.99) 0.320 0.401 -0.480
TVP-AR(2)-X (λ = 0.99) 0.336 0.453 -0.508
BMA-MCMC (g = 1

T ) 0.285 0.364 -0.503
UC-SV (γ = 0.2) 0.311 0.396 -0.473
Recursive OLS - AR(BIC) 0.344 0.433 -
Recursive OLS - All Preds 0.302 0.376 -
Rolling OLS - AR(2) 0.328 0.425 -
Rolling OLS - All Preds 0.273 0.349 -
Random Walk 0.333 0.435 -
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Forecast results: GDP deflator inflation, h = 8
MAFE MSFE log(PL)

DMA (α = λ = 0.99) 0.333 0.413 -0.583
DMS (α = λ = 0.99) 0.338 0.423 -0.578
DMA (α = λ = 0.95) 0.293 0.379 -0.570
DMS (α = λ = 0.95) 0.295 0.385 -0.424
DMA (λ = 1, α = 0.99) 0.346 0.423 -0.626
BMA (DMA with α = λ = 1) 0.364 0.449 -0.690
TVP-AR(2) (λ = 0.99) 0.398 0.502 -0.662
TVP-AR(2)-X (λ = 0.99) 0.410 0.532 -0.701
BMA-MCMC (g = 1

T ) 0.319 0.401 -0.667
UC-SV (γ = 0.2) 0.350 0.465 -0.613
Recursive OLS - AR(BIC) 0.436 0.516 -
Recursive OLS - All Preds 0.369 0.441 -
Rolling OLS - AR(2) 0.380 0.464 -
Rolling OLS - All Preds 0.325 0.398 -
Random Walk 0.428 0.598 -
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Forecast results: core inflation, h = 1
MAFE MSFE log(PL)

DMA (α = λ = 0.99) 0.253 0.322 -0.451
DMS (α = λ = 0.99) 0.259 0.326 -0.430
DMA (α = λ = 0.95) 0.267 0.334 -0.519
DMS (α = λ = 0.95) 0.236 0.295 -0.348
DMA (λ = 1, α = 0.99) 0.250 0.317 -0.444
BMA (DMA with α = λ = 1) 0.259 0.331 -0.464
TVP-AR(2) (λ = 0.99) 0.280 0.361 -0.488
TVP-AR(2)-X (λ = 0.99) 0.347 0.492 -0.645
BMA-MCMC (g = 1

T ) 0.269 0.352 -0.489
UC-SV (γ = 0.2) 0.269 0.341 -0.474
Recursive OLS - AR(BIC) 0.310 0.439 -
Recursive OLS - All Preds 0.303 0.421 -
Rolling OLS - AR(2) 0.316 0.430 -
Rolling OLS - All Preds 0.289 0.414 -
Random Walk 0.294 0.414 -
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Forecast results: core inflation, h = 4
MAFE MSFE log(PL)

DMA (α = λ = 0.99) 0.311 0.406 -0.622
DMS (α = λ = 0.99) 0.330 0.431 -0.631
DMA (α = λ = 0.95) 0.290 0.382 -0.652
DMS (α = λ = 0.95) 0.288 0.353 -0.499
DMA (λ = 1, α = 0.99) 0.315 0.412 -0.636
BMA (DMA with α = λ = 1) 0.325 0.429 -0.668
TVP-AR(2) (λ = 0.99) 0.355 0.459 -0.668
TVP-AR(2)-X (λ = 0.99) 0.378 0.556 -0.764
BMA-MCMC (g = 1

T ) 0.307 0.414 -0.633
UC-SV (γ = 0.2) 0.340 0.443 -0.651
Recursive OLS - AR(BIC) 0.390 0.513 -
Recursive OLS - All Preds 0.325 0.442 -
Rolling OLS - AR(2) 0.378 0.510 -
Rolling OLS - All Preds 0.313 0.422 -
Random Walk 0.407 0.551 -

() State Space Models 75 / 77



Forecast results: core inflation, h = 8
h=8

MAFE MSFE log(PL)

DMA (α = λ = 0.99) 0.357 0.448 -0.699
DMS (α = λ = 0.99) 0.369 0.469 -0.699
DMA (α = λ = 0.95) 0.317 0.403 -0.673
DMS (α = λ = 0.95) 0.293 0.371 -0.518
DMA (λ = 1, α = 0.99) 0.366 0.458 -0.733
BMA (DMA with α = λ = 1) 0.397 0.490 -0.779
TVP-AR(2) (λ = 0.99) 0.450 0.573 -0.837
TVP-AR(2)-X (λ = 0.99) 0.432 0.574 -0.841
BMA-MCMC (g = 1

T ) 0.357 0.454 -0.788
UC-SV (γ = 0.2) 0.406 0.528 -0.774
Recursive OLS - AR(BIC) 0.463 0.574 -
Recursive OLS - All Preds 0.378 0.481 -
Rolling OLS - AR(2) 0.428 0.540 -
Rolling OLS - All Preds 0.338 0.436 -
Random Walk 0.531 0.698 -
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Conclusions for DMA Application

When forecasting in the presence of change/breaks/turbulence want
an approach which:

Allows for forecasting model to change over time

Allows for marginal effects of predictors to change over time

Automatically does the shrinkage necessary to reduce risk of
overparameterization/over-fitting

In theory, DMA and DMS should satisfy these criteria

In practice, we find DMA and DMS to forecast well in an exercise
involving US inflation.
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