
1 A Non-technical Introduction to

Regression

� Chapters 1 and Chapter 2 of the textbook are reviews
of material you should know from your previous study
(e.g. in your second year course). They cover, in a
non-technical fashion some basic concepts (e.g. data
types, graphs, descriptive statistics, correlation and
regression).

� Since you have covered this material before, I will
go through this material quickly, with a focus on the
most important tool of the applied economist: re-
gression. But please read through chapters 1 and 2,
particularly if you need some review of this material.

� Regression is used to help understand the relation-
ships between many variables.



Regression as a Best Fitting Line

� We begin with simple regression to understand the
relationship between two variables, X and Y .

� Example: see Figure 2.1 which is XY-plot of X = out-
put versus Y = costs of production for 123 electric
utility companies in the U.S. in 1970.



� The microeconomist will want to understand the re-
lationship between output and costs.

� Regression �ts a line through the points in the XY-
plot that best captures the relationship between out-
put and costs.



Simple Regression: Some Theory

� Question: What do we mean by �best �tting� line?

� Assume a linear relationship between X = output
and Y = costs

Y = �+ �X;

where � is the intercept of the line and � its slope.

� Even if straight line relationship were true, we would
never get all points on an XY-plot lying precisely on
it due to measurement error.

� True relationship probably more complicated, straight
line may just be an approximation.



� Important variables which a¤ect Y may be omitted.

� Due to these factors we add an error, ", which yields
the regression model :

Y = �+ �X + ":

� What we know: X and Y .

� What we do not know: �; � and ".

� Regression analysis uses data (X and Y ) to make a
guess or estimate of what � and � are.

� Notation: b� and b� are the estimates of � and �.



Distinction Between Errors and Residuals

� We have data for i = 1; :; ; N individuals (or coun-
tries, or companies, etc.).

� Individual observations are denoted using subscripts:
Yi for i = 1; ::; N and Xi for i = 1; ::; N

� True Regression Line hold for every observation:

Yi = �+ �Xi + "i:

� Error for ith individual can be written as:

"i = Yi � �� �Xi:

� If we replace � and � by estimates, we get the �tted
(or estimated) regression line:



cYi = b�+ b�Xi:
and residuals are given by

b"i = Yi � b�� b�Xi:
� Residuals measure distance that each observation is
from the �tted regression line.

� A �good �tting� regression line will have observa-
tions lying near the regression line and, thus, residu-
als will be small.



Derivation of OLS Estimator

� How do we choose and b� and b�?
� A regression line which �ts well will make residuals
as small as possible.

� Usual way of measuring size of the residuals is the
sum of squared residuals (SSR), which can be writ-
ten in the following (equivalent) ways:

SSR =
NX
i=1

b"2i
=

NX
i=1

�
Yi � b�� b�Xi�2

=
NX
i=1

�
Yi � cYi�2 :



� The ordinary least squares (OLS) estimator �nds val-
ues of b� and b� which minimize SSR

� The formula for the OLS estimator will be discussed
later. For now, note that standard econometrics soft-
ware packages (e.g. PC-Give, E-views, Stata or Mi-
cro�t) will calculate b� and b�.



Jargon of Regression

� Y = dependent variable.

� X = explanatory (or independent) variable.

� � and � are coe¢ cients.

� b� and b� and are OLS estimates of coe¢ cients
� �Run a regression of Y on X�



Interpreting OLS Estimates

� Remember �tted regression line is

cYi = b�+ b�Xi:
� Interpretation of b� is estimated value of Y ifX = 0.
This is often not of interest.

� Example: X = lot size, Y = house price. b� =
estimated value of a house with lot size = 0 (not of
interest since houses with lot size equal zero do not
exist).

� b� is usually (but not always) the coe¢ cient of most
interest.



� The following are a few di¤erent ways of interpretingb�.
� b� is slope of the best �tting straight line through an
XY-plot such as Figure 2.1:

�

b� = dcYi
dXi

:



� b� is the marginal e¤ect of X on Y . It is a measure
of how much the explanatory variable in�uences the
dependent variable.

� b� is measure of how much Y tends to change when
X is changed by one unit.

� The de�nition of �unit� depends on the particular
data set being studied.



Example: Costs of production in the electric utility
industry data set

� Using data set in Figures 2.1 and 2.2 we �nd b� =
4:79.

� This is a measure of how much costs tend to change
when output changes by a small amount.

� Costs are measured in terms of millions of dollars
and output is measured as millions of kilowatt hours
of electricity produced.

� Thus: if output is increased by one million kilowatt
hours (i.e. a change of one unit in the explanatory
variable), costs will tend to increase by $4; 790; 000.



Measuring the Fit of a Regression Model

� The most common measure of �t is referred to as
the R2.

� Intuition: �Variability�= (e.g.) how costs vary across
companies

� Total variability in dependent variable Y =

Variability explained by the explanatory variable (X) in
the regression

+

Variability that cannot be explained and is left as an error.

� R2 measures the proportion of the variability in Y
that can be explained by X.



Formalizing the De�nition of R2

� Remember (or see Chapter 1 or Appendix B) that
variance is a measure of dispersion or variability.

� Variance of any variable can be estimated by:

var (Y ) =

PN
i=1

�
Yi � Y

�2
N � 1

;

where Y =
PN
i=1 Yi
N is the mean, or average value, of the

variable.

� Total sum of squares (TSS) is proportional to vari-
ance of dependent variable:



TSS =
NX
i=1

�
Yi � Y

�2
:

� The following is not hard to prove:

TSS = RSS + SSR

� RSS is regression sum of squares, a measure of the
explanation provided by the regression model:

RSS =
NX
i=1

� bYi � Y �2 :

� SSR is the sum of squared residuals.

� This formalizes the idea that �variability in Y can be
broken into explained and unexplained parts�

� We can now de�ne our measure of �t:



R2 =
RSS

TSS

or, equivalently,

R2 = 1� SSR
TSS

:

� Note that TSS, RSS and SSR are all sums of
squared numbers and, hence, are all non-negative.
This implies TSS � RSS and TSS � SSR. Us-
ing these facts, it can be seen that 0 � R2 � 1.

� Intuition: small values of SSR indicate that the
residuals are small and, hence, that the regression
model is �tting well. Thus, values of R2 near 1 im-
ply a good �t and that R2 = 1 implies a perfect
�t.



� Intuition: RSS measures how much of the variation
in Y the explanatory variables explain. If RSS is
near zero, then we have little explanatory power (a
bad �t) and R2 near zero.

� Example: In the regression of Y = cost of production
onX = output for the 123 electric utility companies,
R2 = :92. The �t of the regression line is quite
good.

� 92% of the variation in costs across companies can
be explained by the variation in output.

� In simple regression (but not multiple regression),
R2 is the correlation between Y and X squared.



Basic Statistical Concepts in the Regression Model

� b� and b� or only estimates of � and �. How accurate
are the estimates?

� This can be investigated through con�dence inter-
vals.

� Closely related to the con�dence interval is the con-
cept of a hypothesis test.

� Intuition relating to con�dence intervals and hypoth-
esis tests given here, formal derivation provided in
next chapter.



Con�dence Intervals

� Example: b� = 4:79 is the point estimate of � in the
regression of costs of production on output using our
electric utility industry data set

� Point estimate is best guess of what � is.

� Con�dence intervals provide interval estimates which
give a range in which you are highly con�dent that
� must lie.

� Example: If con�dence interval is [4:53; 5:05]�We
are con�dent that � is greater than 4:53 and less
than 5:05�

� We can obtain di¤erent con�dence intervals corre-
sponding to di¤erent levels of con�dence.



� 95% con�dence interval: �we are 95% con�dent that
� lies in the interval�

� 90% con�dence interval we can say that �we are
90% con�dent that � lies in the interval�, etc..

� The degree of con�dence (e.g. 95%) is referred to
as the con�dence level.

� Example: for the electric utility data set, the 95%
con�dence interval for � is [4:53; 5:05].

� "We are 95% con�dent that the marginal e¤ect of
output on costs is at least 4:53 and at most 5:05".



Hypothesis Testing

� Hypothesis testing involves specifying a hypothesis
to test. This is referred to as the null hypothesis,
H0.

� It is compared to an alternative hypothesis, H1.

� E.g. H0 : � = 0 vs. H1 : � 6= 0 is common
(and software packages will print out results for this
hypothesis test)

� Many economic questions of interest have form: �Does
the explanatory variable have an e¤ect on the depen-
dent variable?�or, equivalently, �Does � = 0 in the
regression of Y on X?�



Aside on Con�dence Intervals and Hypothesis Testing

� Hypothesis testing and con�dence intervals are closely
related.

� Can test whether � = 0 by looking at the con�dence
interval for � and see whether it contains zero.

� If it does not then we can �reject the hypothesis that
� = 0� or conclude �X has signi�cant explanatory
power for Y � or �� is signi�cantly di¤erent from
zero�or �� is statistically signi�cant�.

� If con�dence interval does include zero then we change
the word �reject� to �accept� and �has signi�cant
explanatory power� with �does not have signi�cant
explanatory power�, and so on.



� Con�dence interval approach to hypothesis testing
is equivalent to approach to hypothesis testing dis-
cussed next

� Just as con�dence intervals came with various lev-
els of con�dence (e.g. 95%), hypothesis tests come
with various levels of signi�cance.

� Level of signi�cance is 100% minus the con�dence
level.

� E.g. if a 95% con�dence interval does not include
zero, then you may say �I reject the hypothesis that
� = 0 at the 5% level of signi�cance� (i.e. 100%-
95%=5%).



Hypothesis Testing (continued)

� First step: specify a hypothesis to test and choosing
a signi�cance level.

� E.g. H0: � = 0 and the 5% level of signi�cance.

� Second step: calculate a test statistic and compare
it to a critical value (a concept we will de�ne in
Chapter 3).

� E.g. For H0: � = 0, the test statistic is known as a
t-statistic (or t-ratio or t-stat):

t =
b�
sb
;

where we will explain sb later.



� Idea underlying hypothesis testing is that we accept
H0 if the value of the test statistic is consistent with
what could plausibly happen if H0 is true.

� If H0 is true, then we would expect b� to be small
(i.e. if � = 0 then expect b� near zero).

� But if b� is large this is evidence against H0.
� Formally test statistic is large or small relative to
�critical value taken from statistical tables of the
Student-t distribution� (de�ne later).

� For empirical practice, do not need critical value
since P-value for this and other tests produced by
computer packages.

� P-value is level of signi�cance at which you can reject
H0.



� E.g. with 5% level of signi�cance and software pack-
age gives P-value of 0:05 then reject H0.

� If the P-value is less than 0:05 then you can also
reject H0.

� Students often want to interpret the P-value as mea-
suring the probability that � = 0.

� E.g. if P-value less than 0:05 one wants to say
"There is less than a 5% probability that � = 0 and,
since this is very small, I can reject the hypothesis
that � = 0."

� This is not formally correct. But, it does provide
some informal intuition to motivate why small P-
values lead you to reject H0.



Hypothesis Testing involving R2: The F-statistic

� Another popular hypothesis to test is H0: R2 = 0.

� If R2 = 0 then X does not have any explanatory
power for Y .

� Note: for simple regression, this test is equivalent to
a test of � = 0. However, for multiple regression
(which we will discuss shortly), the test of R2 =
0 will be di¤erent than tests of whether regression
coe¢ cients equal zero.

� Same strategy: calculate a test statistic and compare
to a critical value.

� Or most software will also calculate a P-value which
directly gives a measure of the plausibility of H0 :
R2 = 0



� Test statistic is called the F-statistic:

F =
(N � 2)R2�
1�R2

� :

� The appropriate statistical table for obtaining the
critical value is F-distribution (to be explained later)

� Or if the P-value for the F-test is less than 5% (i.e.
0:05), we conclude R2 6= 0.

� If the P-value for the F-test is greater than or equal
to 5% , we conclude R2 = 0.

� Can use levels of signi�cance other than 5%.



Computer packages typically provide the following:

� b�, the OLS estimate of �.
� The 95% con�dence interval, which gives an interval
where we are 95% con�dent � will lie.

� Standard deviation (or standard error) of b�, sb, which
is a measure of how accurate b�.

� The test statistic, t, for testing H0: � = 0.

� The P-value for testing H0: � = 0.

� R2 which measures the proportion of the variability
in Y explained by X

� The F-statistic and P-value for testing H0 : R2 = 0.



Example: Cost of Production in the Electric Utility
Industry

� Regression of Y = the costs of production and X =
output of electricity by 123 electric utility companies.

� Table 2.1 presents regression results in the form they
would be produced by most software packages.

Table 2.1: Regression Results Using Electric Utility Data Set

Variable Coe¤
Stand
Error

t-stat P-value
95% conf.
interval

Intercept 2:19 1:88 1:16 0:25 [�1:53; 5:91]
Output 4:79 0:13 36:36 5� 10�67 [4:53; 5:05]

R2 = 0:92 and the P-value for testing H0 : R2 = 0 is
5:4� 10�67.



Multiple Regression

� Multiple regression same as simple regression except
many explanatory variables.

� Intuition and derivation of multiple and simple re-
gression very similar.

� We will emphasise only the few di¤erences between
simple and multiple regression.



Example: Explaining House Prices

� Data on N = 546 houses sold in Windsor, Canada.

� Dependent variable, Y , is the sales price of the house
in Canadian dollars.

� Four explanatory variables:

� X1= the lot size of the property (in square feet)

� X2 = the number of bedrooms

� X3 = the number of bathrooms

� X4 = the number of storeys (excluding the base-
ment).



OLS Estimation of the Multiple Regression Model

� With k explanatory variables model is:

Yi = �+ �1X1i + �2X2i + ::+ �kXki + "i;

� i subscripts to denote observations, i = 1; ::; N .

� With multiple regression have to estimate � and
�1; ::; �k.

� OLS estimates are found by choosing the values ofb� and b�1; b�2; ::; b�k that minimize the SSR:

SSR =
NX
i=1

�
Yi � b�� b�1X1i � b�2X2i � ::� b�kXki�2 :

� Computer packages will calculate OLS estimates.



Statistical Aspects of Multiple Regression

� Largely the same as for simple regression.

� Formulae for con�dence intervals, test statistics, etc.
have only minor modi�cations.

� R2 is still a measure of �t.

� Can test R2 = 0 in same manner as for simple re-
gression.

� If you �nd R2 6= 0 then you conclude that the ex-
planatory variables together provide signi�cant ex-
planatory power (Note: this does not necessarily
mean each individual explanatory variable is signi�-
cant).



� Con�dence intervals can be calculated for each indi-
vidual coe¢ cient as before.

� Can test �j = 0 for each individual coe¢ cient (j =
1; 2; ::; k) as before.

� Emphasize: now we have a con�dence interval and
a test statistic for each coe¢ cient.



Interpreting OLS Estimates in the Multiple Regression
Model

� Mathematical Intuition: Total vs. partial derivative

Simple regression:

� =
dY

dX

Multiple Regression:

�j =
@Y

@Xj

for the jth coe¢ cient j = 1; ::; k.



Interpreting OLS Estimates in the Multiple Regression
Model

� Verbal intuition: with simple regression � is the mar-
ginal e¤ect of X on Y

Multiple regression: �j is the marginal e¤ect of Xj on
Y , ceteris paribus

�j is the e¤ect of a small change in the j
th explanatory

variable on the dependent variable, holding all the other
explanatory variables constant.



Example: Explaining House Prices (continued)

Multiple regression results using the house price data set:

Table 2.2: Multiple Regression Using House Price Data Set

Variable Coe¢ cient t-stat P-value
95% conf.
interval

Intercept �4009:55 �1:11 0:27 [�11087; 3068]
Lot Size 5:43 14:70 2� 10�41 [4:70; 6:15]
# bedrm 2824:61 2:33 0:02 [439; 5211]

# bathrm 17105:17 9:86 3� 10�21 [13698; 20512]

# storeys 7634:90 7:57 1� 10�13 [5655; 9615]

Furthermore, R2 = 0:54 and the P-value for testingH0 :
R2 = 0 is 1:2� 10�88.



Example: Explaining House Prices (continued)

� How can we interpret the fact that b�1 = 5:43?
� An extra square foot of lot size will tend to add $5:43
onto the price of a house, ceteris paribus.

� For houses with the same number of bedrooms, bath-
rooms and storeys, an extra square foot of lots size
will tend to add $5:43 onto the price of a house.

� If we compare houses with the same number of bed-
rooms, bathrooms and storeys, those with larger lots
tend to be worth more. In particular, an extra square
foot in lot size is associated with an increased price
of $5:43.



� Con�dence interval for �1: �I am 95% con�dent that
the marginal e¤ect of lot size on house price (hold-
ing other explanatory variables constant) is at least
$4:70 and at most $6:15�

� Hypothesis testing: �Since the P-value for testing
H0 : �1 = 0 is less than 0:05, we can conclude that
�1 is signi�cant at the 5% level of signi�cance"

� Can make similar statements for the other coe¢ -
cients.

� Since R2 = 0:54 can say: �54% of the variability in
house prices can be explained by the four explanatory
variables�

� Since the P-value for testing H0 : R2 = 0 is less
than 0:05, we can conclude that the explanatory vari-
ables (jointly) have signi�cant explanatory power at
the 5% level of signi�cance



Which Explanatory Variables to Choose in a Multiple
Regression Model?

� We will relate this question to topics of omitted vari-
ables bias and multicollinearity.

� First note that there are two important considera-
tions which pull in opposite directions.

� It is good to include all variables which help explain
the dependent variable (include as many explanatory
variables as possible).

� Including irrelevant variables (i.e. ones with no ex-
planatory power) will lead to less precise estimates
(include as few explanatory variables as possible).

� Playing o¤ these two competing considerations is an
important aspect of any empirical exercise. Hypoth-
esis testing procedures can help with this.



Omitted Variables Bias

� To illustrate this problem we use the house price data
set.

� A simple regression of Y = house price on X =
number of bedrooms yields a coe¢ cient estimate of
13; 269:98.

� But in multiple regression (see Table 2.2), coe¢ cient
on number of bedrooms was 2; 824:61.

� Why are these two coe¢ cients on the same explana-
tory variable so di¤erent? i.e. 13; 269:98 is much
bigger than 2; 824:61.



Answer 1: They just come from two di¤erent regressions
which control for di¤erent explanatory variables (di¤erent
ceteris paribus conditions).

Answer 2:

� Imagine a friend asked: �I have 2 bedrooms and I am
thinking of building a third, how much will it raise
the price of my house?�

� Simple regression: �Houses with 3 bedrooms tend to
cost $13,269.98 more than houses with 2 bedrooms�

� Does this mean adding a 3rd bedroom will tend to
raise price of house by $13,269.98? Not necessarily,
other factors in�uence house prices.

� Houses with three bedrooms also tend to be desirable
in other ways (e.g. bigger, with larger lots, more
bathrooms, more storeys, etc.). Call these �good
houses�.



� Simple regression notes �good houses� tend to be
worth more than others.

� Number of bedrooms is acting as a proxy for all these
�good house� characteristics and hence its coe¢ -
cient becomes very big (13,269.98) in simple regres-
sion.

� Multiple regression can estimate separate e¤ects due
to lot size, number of bedroom, bathrooms and storeys.

� Tell your friend: �Adding a third bedroom will tend
to raise your house price by $2,824.61�.

� Multiple regressions which contains all (or most) of
house characteristics will tend to be more reliable
than simple regression which only uses one charac-
teristic.



� Take a look at the correlation matrix for this data
set:

Table 2.3: Correlations Matrix for House Price Data Set
Price Lot Size # bed # bath # storey

Price 1
Lot Size 0:54 1
# bed 0:37 0:15 1
# bath 0:52 0:19 0:37 1
# storey 0:42 0:08 0:41 0:32 1

� Positive correlations between explanatory variables
indicate that houses with more bedrooms also tend
to have larger lot size, more bathrooms and more
storeys.



Omitted Variable Bias

�Omitted variable bias� is a statistical term for these is-
sues.

IF

1. We exclude explanatory variables that should be
present in the regression,

AND

2. these omitted variables are correlated with the in-
cluded explanatory variables,

THEN

3. the OLS estimates of the coe¢ cients on the in-
cluded explanatory variables will be biased.



Example: Explaining House Prices (continued)

� Simple regression used Y = house prices and X =
number of bedrooms.

� Many important determinants of house prices omit-
ted.

� Omitted variables were correlated with number of
bedrooms. Hence, the OLS estimate from the simple
regression of 13; 269:98 was biased.



Practical Advice for Selecting Explanatory Variables

� Include (insofar as possible) all explanatory variables
which you think might possibly explain your depen-
dent variable. This will reduce the risk of omitted
variable bias.

� However, including irrelevant explanatory variables
reduces accuracy of estimation and increases con�-
dence intervals.

� So do t-tests (or other hypothesis tests) to decide
whether variables are signi�cant. Run a new regres-
sion omitting the explanatory variables which are not
signi�cant.



Multicollinearity

� Intuition: If explanatory variables are highly corre-
lated with one another then regression model has
trouble telling which individual variable is explaining
Y .

� Symptom: Individual coe¢ cients may look insigni�-
cant, but regression as a whole may look signi�cant
(e.g. R2 big, F-stat big, but t-stats on individual
coe¢ cients small).

� Looking at a correlation matrix for explanatory vari-
ables can often be helpful in revealing extent and
source of multicollinearity problem.



Example of Multicollinearity

� Y = exchange rate

� Explanatory variable(s) = interest rate

� X1 = bank prime rate

� X2 = Treasury bill rate

� Using both X1 and X2 will probably cause multi-
collinearity problem

� Solution: Include either X1 or X2 but not both.

� In some cases this �solution�will be unsatisfactory if
it causes you to drop out explanatory variables which
economic theory says should be there.



Multiple Regression with Dummy Variables

� Dummy variable is either 0 or 1.

� Use to turn qualitative (Yes/No) data into 1/0.

� Example: Explaining House Prices (continued)



� Data set has 5 potential dummy explanatory vari-
ables

� D1 = 1 if the house has a driveway (= 0 if it does
not)

� D2 = 1 if the house has a recreation room (= 0 if
not)

� D3 = 1 if the house has a basement (= 0 if not)

� D4 = 1 if the house has gas central heating (= 0 if
not)

� D5 = 1 if the house has air conditioning (= 0 if
not)



Simple Regression with a Dummy Variable

� One dummy explanatory variable, D:

Yi = �+ �Di + "i

for i = 1; ::; N observations.

� OLS estimation produces b� and b�, and �tted regres-
sion line is: bYi = b�+ b�Di:

� Since Di is either 0 or 1, we either have bYi = b� orbYi = b�+ b�.



Example: Explaining House Prices (continued)

� Regress Y = house price on D = dummy for air
conditioning (=1 if house has air conditioning, = 0
otherwise).

� Fitted regression line is:

bYi = 59884:85 + 25995:74Di:
� Average price of house with air conditioning is $85; 881

� Average price of house without air conditioning is
$59; 885

� Remember, however, omitted variables bias (this sim-
ple regression no doubt su¤ers from it)



Multiple Regression with Dummy Variables

Yi = �+ �1D1i + ::+ �kDki + "i

� Example: Explaining House Prices (continued)

� Regress Y = house price onD1 = driveway dummy
and D2 = rec room dummy.

� Fitted regression line:

bYi = 47099:08 + 21159:91D1i + 16023:69D2i:
� Putting in either 0 or 1 values for the dummy vari-
ables, we obtain the �tted values for Y for the four
categories of houses:



1. Houses with a driveway and recreation room (D1 =
1 andD2 = 1) have bYi = 47099+21160+16024 =
$84; 283.

2. Houses with a driveway but no recreation room (D1 =
1 and D2 = 0) have bYi = 47099 + 21160 =

$68; 259.

3. Houses with a recreation room but no driveway (D1 =
0 and D2 = 1) have bYi = 47099 + 16024 =

$63; 123.

4. Houses with no driveway and no recreation room
(D1 = 0 and D2 = 0) have bYi = $47; 099:

� Multiple regression with dummy variables may be
used to classify the houses into di¤erent groups and
to �nd average house prices for each group.



Multiple Regression with Dummy and non-Dummy
Explanatory Variables

� E.g. one dummy variable (D) and one regular non-
dummy explanatory variable (X):

Yi = �+ �1Di + �2Xi + "i:

� Example: Explaining House Prices (continued)

� Regress Y = house price on D = air conditioning
dummy and X = lot size.

� Obtain b� = 32; 693; b�1 = 20175 and b�2 = 5:638.
� Get two di¤erent �tted regression lines



bYi = b�+ b�1 + b�2Xi = 52868 + 5:638Xi
if Di = 1 (i.e. the ith house has an air conditioner) and

bYi = b�+ b�2Xi = 32693 + 5:638Xi
if Di = 0 (i.e. the house does not have an air condi-
tioner).

� Note that the two regression lines have the same
slope and only di¤er in their intercepts.



Interacting Dummy with non-Dummy Explanatory
Variables

� Consider the following regression model:

Yi = �+ �1Di + �2Xi + �3Zi + "i;

where D and X are dummy and non-dummy explanatory
variables and Z = DX.

� How do we interpret results from a regression of Y
on D;X and Z?

� Note that Zi is either 0 (for observations with Di =
0) or Xi (for observations with Di = 1).

� Fitted regression lines for individuals with Di = 0

and Di = 1 are:



� If Di = 0 then bYi = b�+ b�2Xi
� If Di = 1 then bYi = �b�+ b�1�+ �b�2 + b�3�Xi
� Two di¤erent regression lines corresponding to D =

0 and D = 1 exist and have di¤erent intercepts and
di¤erent slopes.

� Marginal e¤ect of X on Y is di¤erent for observa-
tions with Di = 0 than with Di = 1.



Example: Explaining House Prices (continued)

� Regress Y = house price on D = air conditioner
dummy, X = lot size and Z = D �X

� b� = 35684, b�1 = 7613, b�2 = 5:02 and b�3 = 2:25.
� Marginal e¤ect of lot size on housing is 7:27 (i.e.b�2 + b�3) for houses with air conditioners and only
5:02 for houses without.



Working with Dummy Dependent Variables

� Example: Dependent variable is a transport choice.

� 1 = �Yes I take my car to work�

� 0 = �No I do not take my car to work�

� We will not discuss this case in this course.

� Note only the following points:

� There are some problems with OLS estimation. But
OLS estimation might be adequate in many cases.

� Better estimation methods are �Logit�and �Probit�
available in many software packages.



Chapter Summary

This non-technical introduction to regression, you should
be able to get started in actually doing some empirical
work (at least with cross-sectional data).The major points
covered in this chapter include:

1. Simple regression quanti�es e¤ect of an explanatory
variable, X, on a dependent variable, Y , through a
regression line Y = �+ �X.

2. Estimation of � and � involves choosing estimates
which produces the "best �tting" line through an XY
graph. These are called ordinary least squares (OLS)
estimates, are labelled b� and b� and are obtained by
minimizing the sum of squared residuals (SSR).

3. Regression coe¢ cients should be interpreted as mar-
ginal e¤ects (i.e. as measures of the e¤ect on Y of
a small change in X).



4. R2 is a measure of how well the regression line �ts
the data.

5. The con�dence interval provides an interval estimate
of any coe¢ cient (e.g. an interval for � in which you
can be con�dent � lies).

6. A hypothesis test of whether � = 0 can be used
to �nd out whether the explanatory variable belongs
in the regression. A hypothesis test can either be
done by comparing a test statistic (i.e. the t-stat)
to a critical value taken from statistical tables or by
examining P-value. If the P-value for the hypothesis
test of whether � = 0 is less than 0:05 then you can
reject the hypothesis at the 5% level of signi�cance.

7. The multiple regression model has more than one
explanatory variable. The basic intuition (e.g. OLS
estimates, con�dence intervals, etc.) is the same
as for the simple regression model. However, with
multiple regression the interpretation of regression
coe¢ cients is subject to ceteris paribus conditions.



8. If important explanatory variables are omitted from
the regression and are correlated with included ex-
planatory variables, omitted variables bias occurs.

9. If explanatory variables are highly correlated with one
another, coe¢ cient estimates and statistical tests
may be misleading. This is referred to as the multi-
collinearity problem.

10. The statistical techniques associated with the use of
dummy explanatory variables are exactly the same as
with non-dummy explanatory variables.

11. A regression involving only dummy explanatory vari-
ables classi�es the observations into various groups
(e.g. houses with air conditioners and houses with-
out). Interpretation of results is aided by careful
consideration of what the groups are.



12. A regression involving dummy and non-dummy ex-
planatory variables classi�es the observations into
groups and says that each group will have a regres-
sion line with a di¤erent intercept. All these regres-
sion lines have the same slope.

13. Regression involving dummy, non-dummy and inter-
action (i.e. dummy times non-dummy variables) ex-
planatory variables classi�es the observations into
groups and says that each group will have a di¤erent
regression line with di¤erent intercept and slope.


