1 A Non-technical Introduction to

Regression

e Chapters 1 and Chapter 2 of the textbook are reviews
of material you should know from your previous study
(e.g. in your second year course). They cover, in a
non-technical fashion some basic concepts (e.g. data
types, graphs, descriptive statistics, correlation and
regression).

e Since you have covered this material before, | will
go through this material quickly, with a focus on the
most important tool of the applied economist: re-
gression. But please read through chapters 1 and 2,
particularly if you need some review of this material.

e Regression is used to help understand the relation-
ships between many variables.



Regression as a Best Fitting Line

e \We begin with simple regression to understand the
relationship between two variables, X and Y.

e Example: see Figure 2.1 which is XY-plot of X = out-
put versus Y = costs of production for 123 electric
utility companies in the U.S. in 1970.
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e [ he microeconomist will want to understand the re-
lationship between output and costs.

e Regression fits a line through the points in the XY-
plot that best captures the relationship between out-
put and costs.



Simple Regression: Some Theory

e Question: What do we mean by “best fitting” line?

e Assume a linear relationship between X = output
and Y = costs

Y =a+ 8X,

where « is the intercept of the line and 3 its slope.

e Even if straight line relationship were true, we would
never get all points on an XY-plot lying precisely on

it due to measurement error.

e True relationship probably more complicated, straight
line may just be an approximation.



Important variables which affect Y may be omitted.

Due to these factors we add an error, £, which yields
the regression model:

Y =a+ X + ¢

What we know: X and Y.

What we do not know: «, 3 and ¢.

Regression analysis uses data (X and Y') to make a
guess or estimate of what o and 3 are.

Notation: & and E are the estimates of v and (.



Distinction Between Errors and Residuals

We have data for ¢ = 1,.,, N individuals (or coun-
tries, or companies, etc.).

Individual observations are denoted using subscripts:
Y, fore =1,..,N and X; fore =1,.., N

True Regression Line hold for every observation:

Yi=a+0X;+e;.

Error for it" individual can be written as:

e’:“z'ZY;'—Oé—BX?;.

If we replace a and 3 by estimates, we get the fitted
(or estimated) regression line:
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and residuals are given by

g =Y, —a— BX;

e Residuals measure distance that each observation is

from the fitted regression line.

e A “good fitting” regression line will have observa-
tions lying near the regression line and, thus, residu-

als will be small.



Derivation of OLS Estimator
e How do we choose and & and B?

e A regression line which fits well will make residuals

as small as possible.

e Usual way of measuring size of the residuals is the
sum of squared residuals (SSR), which can be writ-
ten in the following (equivalent) ways:

SSR = Y &



e The ordinary least squares (OLS) estimator finds val-
ues of & and B which minimize SSR

e The formula for the OLS estimator will be discussed
later. For now, note that standard econometrics soft-
ware packages (e.g. PC-Give, E-views, Stata or Mi-
crofit) will calculate & and .



Jargon of Regression

Y = dependent variable.

X = explanatory (or independent) variable.

« and [ are coefficients.

a and B and are OLS estimates of coefficients

“Run a regression of Y on X"



Interpreting OLS Estimates

e Remember fitted regression line is

—~

e Interpretation of & is estimated value of Y if X = 0.
This is often not of interest.

e Example: X = lot size, Y = house price. a =
estimated value of a house with lot size = 0 (not of
interest since houses with lot size equal zero do not
exist).

e (3 is usually (but not always) the coefficient of most

Interest.



e The following are a few different ways of interpreting

B.

° B is slope of the best fitting straight line through an
XY-plot such as Figure 2.1:

Figure 2.2: X-plot of Output versus Costs with Fitted Regression Line
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° B is the marginal effect of X on Y. It is a measure
of how much the explanatory variable influences the
dependent variable.

° B is measure of how much Y tends to change when
X iIs changed by one unit.

e The definition of “unit” depends on the particular
data set being studied.



Example: Costs of production in the electric utility
industry data set

e Using data set in Figures 2.1 and 2.2 we find 8 =
4.79.

e This is a measure of how much costs tend to change
when output changes by a small amount.

e (Costs are measured in terms of millions of dollars
and output is measured as millions of kilowatt hours
of electricity produced.

e Thus: if output is increased by one million kilowatt
hours (i.e. a change of one unit in the explanatory
variable), costs will tend to increase by $4, 790, 000.



Measuring the Fit of a Regression Model

e [ he most common measure of fit is referred to as
the R2.

e Intuition: “Variability” = (e.g.) how costs vary across
companies

e Total variability in dependent variable Y =

Variability explained by the explanatory variable (X) in
the regression

_'_

Variability that cannot be explained and is left as an error.

e R? measures the proportion of the variability in Y
that can be explained by X.



Formalizing the Definition of R?

e Remember (or see Chapter 1 or Appendix B) that

variance is a measure of dispersion or variability.

e Variance of any variable can be estimated by:

>N, (v -Y)°
N -1 ’

var (Y) =

v _ Y Y
where Y = =g s the mean, or average value, of the
variable.

e Total sum of squares (1'S\S) is proportional to vari-
ance of dependent variable:



N _\2
TSS =3 (Yi-Y)".
1=1

The following is not hard to prove:

TSS =RS5S5S+ SSR

RSS is regression sum of squares, a measure of the
explanation provided by the regression model:

N 2
RSS:Z(Y;-—Y).

1=1

SSR is the sum of squared residuals.

This formalizes the idea that “variability in Y can be
broken into explained and unexplained parts”

We can now define our measure of fit:



_ RSS

R2=_""
TSS
or, equivalently,
R2=1_ SS_R
TSS

e Note that T'SS, RSS and SSR are all sums of
squared numbers and, hence, are all non-negative.
This implies T'SS > RSS and T'SS > SSR. Us-
ing these facts, it can be seen that 0 < R2< 1.

e Intuition: small values of SSR indicate that the
residuals are small and, hence, that the regression
model is fitting well. Thus, values of R2 near 1 im-
ply a good fit and that R? = 1 implies a perfect
fit.



Intuition: RSS measures how much of the variation
in Y the explanatory variables explain. If RSS is
near zero, then we have little explanatory power (a
bad fit) and R? near zero.

Example: In the regression of Y = cost of production
on X = output for the 123 electric utility companies,
R? = .92. The fit of the regression line is quite
good.

02% of the variation in costs across companies can
be explained by the variation in output.

In simple regression (but not multiple regression),
R? is the correlation between Y and X squared.



Basic Statistical Concepts in the Regression Model

e « and B or only estimates of o and 3. How accurate
are the estimates?

e This can be investigated through confidence inter-
vals.

e Closely related to the confidence interval is the con-
cept of a hypothesis test.

e Intuition relating to confidence intervals and hypoth-
esis tests given here, formal derivation provided in
next chapter.



Confidence Intervals

e Example: B — 4.79 is the point estimate of 5 in the
regression of costs of production on output using our
electric utility industry data set

e Point estimate is best guess of what 3 is.

e (Confidence intervals provide interval estimates which
give a range in which you are highly confident that
B must lie.

e Example: If confidence interval is [4.53,5.05]"We
are confident that 3 is greater than 4.53 and less
than 5.05"

e \We can obtain different confidence intervals corre-
sponding to different levels of confidence.



95% confidence interval: “we are 95% confident that
B lies in the interval”

90% confidence interval we can say that “we are
90% confident that 3 lies in the interval’, etc..

The degree of confidence (e.g. 95%) is referred to
as the confidence level.

Example: for the electric utility data set, the 95%
confidence interval for S is [4.53,5.05].

"We are 95% confident that the marginal effect of
output on costs is at least 4.53 and at most 5.05".



Hypothesis Testing

Hypothesis testing involves specifying a hypothesis
to test. This is referred to as the null hypothesis,
Hy.

It is compared to an alternative hypothesis, H1.

Eg. Hog:pB = 0vs. Hy : B # 0 is common
(and software packages will print out results for this
hypothesis test)

Many economic questions of interest have form: “Does
the explanatory variable have an effect on the depen-
dent variable?” or, equivalently, “Does 8 = 0 in the
regression of Y on X7?"



Aside on Confidence Intervals and Hypothesis Testing

e Hypothesis testing and confidence intervals are closely

related.

e Can test whether 8 = 0 by looking at the confidence
interval for 8 and see whether it contains zero.

e If it does not then we can “reject the hypothesis that
B = 0" or conclude “X has significant explanatory
power for Y or “f3 is significantly different from
zero' or “[3 is statistically significant”.

e If confidence interval does include zero then we change
the word “reject” to “accept” and “has significant
explanatory power” with “does not have significant
explanatory power”, and so on.



Confidence interval approach to hypothesis testing
is equivalent to approach to hypothesis testing dis-

cussed next

Just as confidence intervals came with various lev-
els of confidence (e.g. 95%), hypothesis tests come
with various levels of significance.

Level of significance is 100% minus the confidence

level.

E.g. if a 95% confidence interval does not include
zero, then you may say "l reject the hypothesis that

B = 0 at the 5% level of significance” (i.e. 100%-
95%=5%).



Hypothesis Testing (continued)

e First step: specify a hypothesis to test and choosing
a significance level.

e E.g. Hy: S =0 and the 5% level of significance.

e Second step: calculate a test statistic and compare
it to a critical value (a concept we will define in

Chapter 3).

e E.g. For Hy: B = 0, the test statistic is known as a
t-statistic (or t-ratio or t-stat):

—
Sb
where we will explain s later.

t



|ldea underlying hypothesis testing is that we accept
Hy if the value of the test statistic is consistent with
what could plausibly happen if Hy is true.

If Hp is true, then we would expect B to be small
(i.e. if 8 = 0 then expect 8 near zero).

But if B is large this is evidence against Hy.

Formally test statistic is large or small relative to
“critical value taken from statistical tables of the
Student-t distribution” (define later).

For empirical practice, do not need critical value
since P-value for this and other tests produced by
computer packages.

P-value is level of significance at which you can reject
Hy.



E.g. with 5% level of significance and software pack-
age gives P-value of 0.05 then reject Hy.

If the P-value is less than 0.05 then you can also
reject Hp.

Students often want to interpret the P-value as mea-
suring the probability that 5 = 0.

E.g. if P-value less than 0.05 one wants to say
"There is less than a 5% probability that 3 = 0 and,
since this is very small, | can reject the hypothesis
that 5 =0."

This is not formally correct. But, it does provide
some informal intuition to motivate why small P-
values lead you to reject Hy.



Hypothesis Testing involving R?: The F-statistic
Another popular hypothesis to test is Hy: R?2 =0.

If R2 = 0 then X does not have any explanatory
power for Y.

Note: for simple regression, this test is equivalent to
a test of 3 = 0. However, for multiple regression
(which we will discuss shortly), the test of R? =
0 will be different than tests of whether regression
coefficients equal zero.

Same strategy: calculate a test statistic and compare
to a critical value.

Or most software will also calculate a P-value which
directly gives a measure of the plausibility of Hy :
R2 =0



Test statistic is called the F-statistic:
(N —-2)R?

G-r)

The appropriate statistical table for obtaining the

F

critical value is F-distribution (to be explained later)

Or if the P-value for the F-test is less than 5% (i.e.
0.05), we conclude R? # 0.

If the P-value for the F-test is greater than or equal
to 5% , we conclude R? = 0.

Can use levels of significance other than 5%.



Computer packages typically provide the following:
° B the OLS estimate of 3.

e The 95% confidence interval, which gives an interval
where we are 95% confident 8 will lie.

e Standard deviation (or standard error) of 3, sp, Which
is a measure of how accurate £.

e The test statistic, ¢, for testing Hp: 8 = 0.
e The P-value for testing Hy: 8 = 0.

e R? which measures the proportion of the variability
in Y explained by X

e The F-statistic and P-value for testing Hy : R?=0.



Example: Cost of Production in the Electric Utility

Industry

e Regression of Y = the costs of production and X =

output of electricity by 123 electric utility companies.

e Table 2.1 presents regression results in the form they

would be produced by most software packages.

Table 2.1: Regression Results Using Electric Utility Data Set

0
Variable | Coeff >tand t-stat | P-value .95/0 conf.
Error Interval
Intercept | 2.19 | 1.88 1.16 | 0.25 [—1.53,5.91
Output | 4.79 | 0.13 36.36 | 5 x 10~°7 | [4.53,5.05]

R? = 0.92 and the P-value for testing Hy : R2 = 0 is
5.4 x 10707,



Multiple Regression

e Multiple regression same as simple regression except

many explanatory variables.

e Intuition and derivation of multiple and simple re-

gression very similar.

e We will emphasise only the few differences between

simple and multiple regression.



Example: Explaining House Prices

Data on N = 546 houses sold in Windsor, Canada.

Dependent variable, Y, is the sales price of the house
in Canadian dollars.

Four explanatory variables:

X1= the lot size of the property (in square feet)

Xo = the number of bedrooms

X3 = the number of bathrooms

X4 = the number of storeys (excluding the base-
ment).



OLS Estimation of the Multiple Regression Model

e With k explanatory variables model is:

Yi = o+ [1X1; + 5o Xoi + .. + BrpXpi + €,
e 1 subscripts to denote observations, . = 1, .., V.

e With multiple regression have to estimate o and

517 76[{

e OLS estimates are found by choosing the values of
a and B1, Bo, .., Bi that minimize the SSR:

N
. . N 2
SSR =}, (Yi —a— 1 X1 — BaXo — .. — 5/9%:) :
i=1

e Computer packages will calculate OLS estimates.



Statistical Aspects of Multiple Regression

Largely the same as for simple regression.

Formulae for confidence intervals, test statistics, etc.
have only minor modifications.

R? is still a measure of fit.

Can test R? = 0 in same manner as for simple re-
gression.

If you find R? # 0 then you conclude that the ex-
planatory variables together provide significant ex-
planatory power (Note: this does not necessarily
mean each individual explanatory variable is signifi-
cant).



e Confidence intervals can be calculated for each indi-
vidual coefficient as before.

e Can test 3; = 0 for each individual coefficient (j =
1,2,.., k) as before.

e Emphasize: now we have a confidence interval and
a test statistic for each coefficient.



Interpreting OLS Estimates in the Multiple Regression
Model

e Mathematical Intuition: Total vs. partial derivative

Simple regression:

dY
7T ax
Multiple Regression:
oY
) = ox;

for the jth coefficient 3y =1, .., k.



Interpreting OLS Estimates in the Multiple Regression
Model

e Verbal intuition: with simple regression (3 is the mar-
ginal effect of X on Y

Multiple regression: 5, is the marginal effect of X; on
Y, ceteris paribus

[ is the effect of a small change in the jth explanatory
variable on the dependent variable, holding all the other
explanatory variables constant.



Example: Explaining House Prices (continued)

Multiple regression results using the house price data set:

Table 2.2: Multiple Regression Using House Price Data Set

Variable Coefficient | t-stat | P-value .95% conf.
interval

Intercept | —4009.55 | —1.11 | 0.27 (—11087, 3068]
Lot Size | 5.43 14.70 | 2 x 10~* | [4.70, 6.15]

+# bedrm | 2824.61 2.33 0.02 439,5211]

# bathrm | 17105.17 | 9.86 | 3 x 10~ <! | [13698, 20512]
# storeys | 7634.90 | 7.57 |1 x 10~*° | [5655,9615]
Furthermore, R?2 = 0.54 and the P-value for testing Hy :

R2=0is1.2 x 1088,



Example: Explaining House Prices (continued)

How can we interpret the fact that Bl = 5.437

An extra square foot of lot size will tend to add $5.43
onto the price of a house, ceteris paribus.

For houses with the same number of bedrooms, bath-
rooms and storeys, an extra square foot of lots size
will tend to add $5.43 onto the price of a house.

If we compare houses with the same number of bed-
rooms, bathrooms and storeys, those with larger lots
tend to be worth more. In particular, an extra square
foot in lot size is associated with an increased price

of $5.43.



e Confidence interval for 81: “l am 95% confident that
the marginal effect of lot size on house price (hold-
ing other explanatory variables constant) is at least

$4.70 and at most $6.15"

e Hypothesis testing: “Since the P-value for testing
Hg : 1 = 0 is less than 0.05, we can conclude that
B1 is significant at the 5% level of significance"

e Can make similar statements for the other coeffi-
cients.

e Since R? = 0.54 can say: “54% of the variability in
house prices can be explained by the four explanatory
variables”

e Since the P-value for testing Hy : R%2 = 0 is less
than 0.05, we can conclude that the explanatory vari-
ables (jointly) have significant explanatory power at
the 5% level of significance



Which Explanatory Variables to Choose in a Multiple
Regression Model?

e We will relate this question to topics of omitted vari-
ables bias and multicollinearity.

e First note that there are two important considera-
tions which pull in opposite directions.

e |t is good to include all variables which help explain
the dependent variable (include as many explanatory
variables as possible).

e Including irrelevant variables (i.e. ones with no ex-
planatory power) will lead to less precise estimates
(include as few explanatory variables as possible).

e Playing off these two competing considerations is an
important aspect of any empirical exercise. Hypoth-
esis testing procedures can help with this.



Omitted Variables Bias

To illustrate this problem we use the house price data
set.

A simple regression of ¥ = house price on X =
number of bedrooms yields a coefficient estimate of

13, 269.98.

But in multiple regression (see Table 2.2), coefficient
on number of bedrooms was 2,824.61.

Why are these two coefficients on the same explana-
tory variable so different? i.e. 13,269.98 is much
bigger than 2,824.61.



Answer 1: They just come from two different regressions
which control for different explanatory variables (different
ceteris paribus conditions).

Answer 2:

e Imagine a friend asked: “l have 2 bedrooms and | am
thinking of building a third, how much will it raise
the price of my house?”

e Simple regression: “Houses with 3 bedrooms tend to
cost $13,269.98 more than houses with 2 bedrooms”

e Does this mean adding a 3rd bedroom will tend to
raise price of house by $13,269.987 Not necessarily,
other factors influence house prices.

e Houses with three bedrooms also tend to be desirable
in other ways (e.g. bigger, with larger lots, more
bathrooms, more storeys, etc.). Call these “good
houses’ .



Simple regression notes “good houses’ tend to be
worth more than others.

Number of bedrooms is acting as a proxy for all these
“good house” characteristics and hence its coeffi-
cient becomes very big (13,269.98) in simple regres-
sion.

Multiple regression can estimate separate effects due
to lot size, number of bedroom, bathrooms and storeys.

Tell your friend: “Adding a third bedroom will tend
to raise your house price by $2,824.61".

Multiple regressions which contains all (or most) of
house characteristics will tend to be more reliable
than simple regression which only uses one charac-
teristic.



e [Take a look at the correlation matrix for this data

set:

Table 2.3: Correlations Matrix for House Price Data Set

Price | Lot Size | # bed | # bath | # storey
Price 1
Lot Size | 0.54 |1
# bed 0.37 | 0.15 1
# bath | 0.52 | 0.19 0.37 1
# storey | 0.42 | 0.08 0.41 0.32 1

e Positive correlations between explanatory variables

indicate that houses with more bedrooms also tend

to have larger lot size, more bathrooms and more

storeys.




Omitted Variable Bias

“Omitted variable bias” is a statistical term for these is-

SUES.

IF

1. We exclude explanatory variables that should be
present in the regression,

AND

2. these omitted variables are correlated with the in-
cluded explanatory variables,

THEN

3. the OLS estimates of the coefficients on the in-
cluded explanatory variables will be biased.



Example: Explaining House Prices (continued)

e Simple regression used Y = house prices and X =
number of bedrooms.

e Many important determinants of house prices omit-
ted.

e Omitted variables were correlated with number of
bedrooms. Hence, the OLS estimate from the simple
regression of 13,269.98 was biased.



Practical Advice for Selecting Explanatory Variables

Include (insofar as possible) all explanatory variables
which you think might possibly explain your depen-
dent variable. This will reduce the risk of omitted

variable bias.

However, including irrelevant explanatory variables
reduces accuracy of estimation and increases confi-

dence intervals.

So do t-tests (or other hypothesis tests) to decide
whether variables are significant. Run a new regres-
sion omitting the explanatory variables which are not

significant.



Multicollinearity

e Intuition: If explanatory variables are highly corre-
lated with one another then regression model has
trouble telling which individual variable is explaining
Y.

e Symptom: Individual coefficients may look insignifi-
cant, but regression as a whole may look significant
(e.g. R? big, F-stat big, but t-stats on individual
coefficients small).

e Looking at a correlation matrix for explanatory vari-
ables can often be helpful in revealing extent and
source of multicollinearity problem.



Example of Multicollinearity

Y = exchange rate

Explanatory variable(s) = interest rate

X1 = bank prime rate

Xo = Treasury bill rate

Using both X7 and X» will probably cause multi-
collinearity problem

Solution: Include either X7 or X» but not both.

In some cases this “solution” will be unsatisfactory if
it causes you to drop out explanatory variables which
economic theory says should be there.



Multiple Regression with Dummy Variables

e Dummy variable is either 0 or 1.

e Use to turn qualitative (Yes/No) data into 1/0.

e Example: Explaining House Prices (continued)



Data set has 5 potential dummy explanatory vari-
ables

D1 = 1 if the house has a driveway (= 0 if it does
not)

Dy = 1 if the house has a recreation room (= 0 if
not)

D3 = 1 if the house has a basement (= 0 if not)

D4 = 1 if the house has gas central heating (= 0 if
not)

D5 = 1 if the house has air conditioning (= 0 if
not)



Simple Regression with a Dummy Variable

e One dummy explanatory variable, D:

Y,=a+ BD; +¢;

fore. = 1,.., N observations.

e OLS estimation produces & and B and fitted regres-
sion line is:

AN

AN

e Since D, is either 0 or 1, we either have Y; = & or

AN

Yi=a+5



Example: Explaining House Prices (continued)

Regress Y = house price on D = dummy for air
conditioning (=1 if house has air conditioning, = 0
otherwise).

Fitted regression line is:

AN

Y; = 59884.85 + 25995.74D;.

Average price of house with air conditioning is $85, 881

Average price of house without air conditioning is
$59, 885

Remember, however, omitted variables bias (this sim-
ple regression no doubt suffers from it)



Multiple Regression with Dummy Variables

Y, =a+ B1D1; + .. + BpDy; + €

e Example: Explaining House Prices (continued)

e Regress Y = house price onD1 = driveway dummy
and Do = rec room dummy.

e Fitted regression line:

AN

Y; = 47099.08 + 21159.91Dq; + 16023.69D»;.

e Putting in either 0 or 1 values for the dummy vari-
ables, we obtain the fitted values for Y for the four
categories of houses:



. Houses with a driveway and recreation room (D1 =
1and Dy = 1) have Y; = 47099+21160+16024 =
$84, 283.

. Houses with a driveway but no recreation room (D1 =
1 and D, = 0) have Y; = 47099 + 21160 =
$68, 259.

. Houses with a recreation room but no driveway (D7 =
0 and Dy = 1) have Y; = 47099 + 16024 =
$63,123.

. Houses with no driveway and no recreation room
(D1 = 0 and Dy = 0) have Y; = $47, 099.

Multiple regression with dummy variables may be
used to classify the houses into different groups and
to find average house prices for each group.



Multiple Regression with Dummy and non-Dummy

Explanatory Variables

E.g. one dummy variable (D) and one regular non-
dummy explanatory variable (X):

Y =a+ B1D; + B X; + ¢;.
Example: Explaining House Prices (continued)

Regress Y = house price on D = air conditioning
dummy and X = lot size.

Obtain @ = 32,693, 8; = 20175 and 3, = 5.638.

Get two different fitted regression lines



AN

Y; = &+ B1 + BrX; = 52868 + 5.638X;

if D; =1 (i.e. the ith house has an air conditioner) and

~

Y; = a+ BrX; = 32693 + 5.638X;

if D; = 0 (i.e. the house does not have an air condi-
tioner).

e Note that the two regression lines have the same
slope and only differ in their intercepts.



Interacting Dummy with non-Dummy Explanatory
Variables

e Consider the following regression model:

Y =a+ B1D; + 8>X; + B3Z; + ¢,

where D and X are dummy and non-dummy explanatory
variables and Z = DX.

e How do we interpret results from a regression of Y
on D, X and Z7?

e Note that Z; is either O (for observations with D; =
0) or X; (for observations with D; = 1).

e Fitted regression lines for individuals with D; = 0
and D; =1 are:



If D; =0 then Y; = & + 8,X
IszzltheniA/Z:(&+Bl)+<32—|—33>X

Two different regression lines corresponding to D =
0 and D = 1 exist and have different intercepts and

different slopes.

Marginal effect of X on Y is different for observa-
tions with D; = 0 than with D; = 1.



Example: Explaining House Prices (continued)

e Regress Y = house price on D = air conditioner
dummy, X =lotsizeand Z =D x X

e & = 35684, B; = 7613, B, = 5.02 and 33 = 2.25.

e Marginal effect of lot size on housing is 7.27 (i.e.
32 + 33) for houses with air conditioners and only
5.02 for houses without.



Working with Dummy Dependent Variables

Example: Dependent variable is a transport choice.

1 = “Yes | take my car to work”

0 = “No | do not take my car to work”

We will not discuss this case in this course.

Note only the following points:

There are some problems with OLS estimation. But
OLS estimation might be adequate in many cases.

Better estimation methods are “Logit” and “Probit”
available in many software packages.



Chapter Summary

This non-technical introduction to regression, you should
be able to get started in actually doing some empirical
work (at least with cross-sectional data).The major points
covered in this chapter include:

1. Simple regression quantifies effect of an explanatory
variable, X, on a dependent variable, Y, through a
regression line Y = a + BX.

2. Estimation of a and 3 involves choosing estimates
which produces the "best fitting" line through an XY
graph. These are called ordinary least squares (OLS)
estimates, are labelled o and B and are obtained by
minimizing the sum of squared residuals (SSR).

3. Regression coefficients should be interpreted as mar-
ginal effects (i.e. as measures of the effect on Y of
a small change in X).



4. R? is a measure of how well the regression line fits
the data.

5. The confidence interval provides an interval estimate
of any coefficient (e.g. an interval for 3 in which you
can be confident S lies).

6. A hypothesis test of whether 5 = 0 can be used
to find out whether the explanatory variable belongs
in the regression. A hypothesis test can either be
done by comparing a test statistic (i.e. the t-stat)
to a critical value taken from statistical tables or by
examining P-value. If the P-value for the hypothesis
test of whether 5 = 0 is less than 0.05 then you can
reject the hypothesis at the 5% level of significance.

7. The multiple regression model has more than one
explanatory variable. The basic intuition (e.g. OLS
estimates, confidence intervals, etc.) is the same
as for the simple regression model. However, with
multiple regression the interpretation of regression
coefficients is subject to ceteris paribus conditions.



10.

11.

If important explanatory variables are omitted from
the regression and are correlated with included ex-
planatory variables, omitted variables bias occurs.

If explanatory variables are highly correlated with one
another, coefficient estimates and statistical tests
may be misleading. This is referred to as the multi-
collinearity problem.

The statistical techniques associated with the use of
dummy explanatory variables are exactly the same as

with non-dummy explanatory variables.

A regression involving only dummy explanatory vari-
ables classifies the observations into various groups
(e.g. houses with air conditioners and houses with-
out). Interpretation of results is aided by careful
consideration of what the groups are.



12.

13.

A regression involving dummy and non-dummy ex-
planatory variables classifies the observations into
groups and says that each group will have a regres-
sion line with a different intercept. All these regres-
sion lines have the same slope.

Regression involving dummy, non-dummy and inter-
action (i.e. dummy times non-dummy variables) ex-
planatory variables classifies the observations into
groups and says that each group will have a different
regression line with different intercept and slope.



