
1 The Multiple Regression Model

� The multiple regression model with k explanatory
variables:

Yi = �+ �1X1i + �2X2i + ::+ �kXki + "i;

where i subscripts to denote individual observations and
i = 1; ::; N .

� This chapter discusses how statistical derivations for
simple regression extend to multiple regression.

� Also derives some results (e.g. about omitted vari-
ables bias and multicollinearity) that were intuitively
motivated in Chapter 2.



1.1 Basic Theoretical Results

In Chapter 3 derived theoretical results using simple re-
gression model with classical assumptions

Yi = �Xi + "i

1. E ("i) = 0 �mean zero errors.

2. var ("i) = E
�
"2i

�
= �2 �constant variance errors

(homoskedasticity).

3. E
�
"i"j

�
= 0 for i 6= j � "i and "j are independent

of one another.

4. "i is Normally distributed



5. Xi is �xed. It is not a random variable.

Statistical results using this model are basically the same
as for the simple regression model. For instance, OLS
is still unbiased and con�dence intervals and hypothesis
tests are derived in the same way. Gauss Markov theorem
still says that, under the classical assumptions, OLS is
BLUE.

Formulae do get messier (which is why, in more advanced
courses, matrix algebra is used with the multiple regres-
sion model).



� For instance, with an intercept and two explanatory
variables, we have

Yi = �+ �1X1i + �2X2i + "i:

� The OLS estimator is the one which minimizes the
sum of squared residuals and turns out to be:

b�1 = (
P
x1iyi)

�P
x22i

�
� (Px2iyi) (Px1ix2i)�P

x21i

� �P
x22i

�
� (Px1ix2i)2

b�2 = (
P
x2iyi)

�P
x21i

�
� (Px1iyi) (Px1ix2i)�P

x21i

� �P
x22i

�
� (Px1ix2i)2



b� = Y � b�1X1 � b�2X2:
where variables with bars over them are means (e.g. X2 =P
X2i
N )

� The previous formulae used small letters to indicate
deviations from means. That is,

yi = Yi � Y
x1i = X1i �X1
x2i = X2i �X2

:



� It can be shown that OLS is unbiased (e.g. E
�b�j� =

�j for j = 1; 2) and an unbiased estimator for �2

is:

s2 =

Pb"2i
N � k � 1

where

b"i = yi � b�� b�1X1i + b�2X2i
� An estimate of the variance of the OLS estimator
can also be calculated:

var
�b�1� = s2�

1� r2
�P

x21i



var
�b�2� = s2�

1� r2
�P

x22i

where r is the correlation between x1 and x2. (var (b�)
formula not provided here).

� Do not memorize these formulae. I provide them
here mostly to show you how messy things the for-
mulae get (and to motivate why we have been de-
riving key theoretical results in the simple regression
case).

� Interpretation:

"�j is the marginal e¤ect of the j
th explanatory variable

on y, holding all the other explanatory variables constant"



1.2 Measures of Fit

The most popular measure of model �t, R2, has the same
de�nition as before:

R2 = 1� SSR
TSS

= 1�
Pb"2iP�
Yi � Y

�2:

Interpretation: R2 is the proportion of the variability in
the dependent variable which can be explained by the
explanatory variables.

Note: When new explanatory variables are added to a
model, the R2 will always rise (even if new variables are
insigni�cant). Why? By adding a new variable,

Pb"2i will
always get at least a little bit smaller.

So R2 should not be used to decide whether to add a
new variable to a regression.



What you should do is a hypothesis test (test whether
new variable signi�cant and, if not, drop it).

Alternatively, use R2 which is similar to R2 but does not
always rise when new variables are added. If you add a
new variable and R2 increases, you can be con�dent this
new variable should be included.

If you have two regressions (with the same dependent
variable but di¤erent explanatory variables), then the one
with the higher R2 is the better one.

De�nition:

R
2
= 1� var (")

var (Y )
= 1� s2

1
N�1

P�
Yi � Y

�2

The only problem with R2 is that it CANNOT be inter-
preted simply as re�ecting the proportion of the variability



in the dependent variable which can be explained by the
explanatory variables.

Summary: R2 has a nice simple interpretation as a mea-
sure of �t, but should not be used for choosing between
models.

R
2 does not have a nice simple interpretation as a mea-

sure of �t, but can be used for choosing between models.



2 Hypothesis Testing in the Multi-

ple Regression Model

Yi = �+ �1X1i + �2X2i + ::+ �kXki + "i:

� We know how to do t-tests of H0 : �j = 0

� In Chapter 2 presented a test for whether R2 = 0

� This is equivalent to a test of the hypothesis:

H0 : �1 = :: = �k = 0:

� Remember: testing the hypothesis H0 : �1 = :: =

�k = 0 is not the same as testing the k individual
hypotheses H0 : �1 = 0 and H0 : �2 = 0 through
H0 : �k = 0



� But there are other hypotheses that you may want
to test. E.g.

H0 : �1 = �3 = 0:

or

H0 : �1 � �3 = 0, �2 = 5

etc. etc.

� F-tests, are suitable for testing hypotheses involving
any number of linear combinations of regression co-
e¢ cients.

� Likelihood ratio tests, can do the same, but can also
be used for nonlinear restrictions and can be used
with models other than the regression model.

� In this course, we only have time to do F-tests



2.1 F-tests

� We will not provide proofs relating to F-tests.

� Distinguish between unrestricted and restricted model

� Unrestricted model is the multiple regression model.

� Restricted model is the multiple regression model
with the restrictions in H0 imposed

� Examples using k = 3:

� The unrestricted model:

Yi = �+ �1X1i + �2X2i + �3X3i + "i



� Consider testing

H0 : �1 = �2 = 0:

� Then restricted model is:

Yi = �+ �3X3i + "i

� Now consider testing

H0 : �1 = 0; �2 + �3 = 0:

� Imposing this restriction yields a restricted model:



Yi = �+ �2 (X2i �X3i) + "i:

� This restricted model is just a regression with (X2 �X3)
being the explanatory variable.

� Now consider testing

H0 : �1 = 1; �2 = 0:

� Imposing this restriction yields a restricted model:

Yi �X1i = �+ �3X3i + "i:



� This restricted model is just a regression with (Yi �X1i)
as dependent variable and X3 being the explanatory
variable.

� In general: You can show that for any set of linear
restrictions on the unrestricted model you can write
out a new restricted model (which is still a linear re-
gression model but with dependent and explanatory
variables which may be di¤erent).

� For testing such hypotheses (involving more than one
linear restriction on the regression coe¢ cients), the
following test statistic is used:

F =
(SSRR � SSRUR) =q
SSRUR= (N � k � 1)

;

where SSR is the familiar sum of squared residuals and
the subscripts UR and R distinguish between the SSR
from the "unrestricted" and "restricted" regression mod-
els.



� Since SSRR > SSRUR (i.e. the model with fewer
restrictions can always achieve the lower SSR), it
can be seen that F is positive.

� The number of restrictions being tested is q (Note:
q = 2 in the examples above).

� Note: F is positive and large values of F indicate
the null hypothesis is incorrect.

� As with any hypothesis test, you calculate the test
statistic (here F ) and compare it to a critical value.
If F is greater than the critical value you reject H0
(else you accept H0).

� To get the critical value you need to specify a level
of signi�cance (usually .05) and, using this, obtain a
critical value from statistical tables.



� F is distributed as Fq;N�k�1 (in words, critical val-
ues should be obtained from the F-distribution with
q degrees of freedom in the numerator and N�k�1
degrees of freedom in the denominator).

� Statistical tables for the F-distribution are available
in most places (including the textbook).

� In practice, the more sophisticated econometrics pack-
age will provide you with a P-value for any test you
do.

� Remember: Useful (but not quite correct) intuition:
"P-value is the probability that H0 is true"

� A correct interpretation: "P-value equals the smallest
level of signi�cance at which you can reject H0"



2.2 Multicollinearity

A fairly common practical problem in empirical work. In-
tuition: If the explanatory variables are very highly corre-
lated with one another you run into problems.

Informally speaking, if two variables are highly correlated
they contain roughly the same information. The OLS
estimator has trouble estimating two separate marginal
e¤ects for two such highly correlated variables.

2.2.1 Perfect Multicollinearity

An exact linear relationship exists between the explana-
tory variables.

The correlation between two explanatory variables equals
1.



Example: A regression relating to the e¤ect of studying
on student performance.

y = student grade on test

X1 = family income

X2 = hours studies per day

X3 = hours studied per week.

But X3 = 7X2 � an exact linear relationship between
two explanatory variables (they are perfectly correlated).

This is a care of perfect multicollinearity.

OLS estimates cannot be calculated (i.e. Excel will not
be able to �nd a solution and will give an error message).

Intuition: �2 will measure the marginal e¤ect of hours
studied per day on student grade, holding all other ex-
planatory variables constant.



With perfect multicollinearity there is no way of "hold-
ing all other explanatory variables constant" �when X3
changes, then X4 will change as well (it cannot be held
constant).

2.2.2 Regular Multicollinearity

In practice you will never get perfect multicollinearity,
unless you do something that does not make sense (like
put in two explanatory variables which measure the exact
same thing).

And if you ever do try and estimate a model with perfect
multicollinearity you will �nd out quickly � Excel will not
run properly and will give you an error message.

But you may get very highly correlated explanatory vari-
ables.



Example: Macroeconomic regression involving the inter-
est rate.

X1 = interest rate set by Bank of England

X2 = interest rate charged by banks on mortgages.

X1 and X2 will not be exactly the same, but will be very
highly correlated (e.g. r = :99).

Multicollinearity of this form can cause problems too.

Basic idea of technical proofs is based on variances of
OLS estimators. Previously, we wrote:

var
�b�1� = s2�

1� r2
�P

x21i



var
�b�2� = s2�

1� r2
�P

x22i

If r is near 1 (or near �1), then
�
1� r2

�
will be near

zero. Variances of b�1 and b�2 become very large. This
feeds through into very wide con�dence intervals (i.e. in-
accurate estimates) and very small t-statistics (i.e. hy-
pothesis tests indicate �1 and �2 are insigni�cant).

Common symptom of multicollinearity problem:

Some or all explanatory variables appear insigni�cant,
even though the model is �tting well (has a high R2).

Common way to investigate if multicollinearity is a prob-
lem:

Calculate a correlation matrix for your explanatory vari-
ables. See if any correlations are very high.



Note: What does we mean by a correlation being "high"?
There is no hard and fast rule. As a rough guideline, if you
�nd correlations between your explanatory variables jrj >
:9 then you probably have a multicollinearity problem.

Solutions to multicollinearity problem:

1. Get more data (often not possible).

2. Drop out one of the highly correlated variables.

Example: Macroeconomic regression involving the inter-
est rate (continued)

If you include both X1 and X2 you will run into a mul-
ticollinearity problem. So include one or the other (not
both).



2.3 Omitted Variables Bias

� Discussed intuitively in Chapter 2.

� Assume true model is:

Yi = �+ �1X1i + �2X2i + "i;

and the classical assumptions hold.

� Correct OLS estimate is:

b�1 = (
P
x1iyi)

�P
x22i

�
� (Px2iyi) (Px1ix2i)�P

x21i

� �P
x22i

�
� (Px1ix2i)2



� What if you mistakenly omit X2:

Yi = �+ �1X1i + "i:

� A simple extension of the derivations of Chapter 3
show OLS estimator for �1 is:

e�1 =
P
x1iyiP
x21i

� Note: use notation e�1 to distinguish it from the cor-
rect OLS estimator

� e�1 is biased.



Proof that e�1 is biased
� Step 1

Y =

P
Yi
N

=

P
(�+ �1X1i + �2X2i + "i)

N
= �+ �1X1 + �2X2 + ":

� Step 2

yi = Yi � Y
= (�+ �1X1i + �2X2i + "i)��

�+ �1X1 + �2X2 + "
�

= �1x1i + �2x2i + "i � ":



� Step 3: replace yi in formula for e�1:
e�1 =

P
x1i (�1x1i + �2x2i + "i � ")P

x21i

=
�1
P
x21iP
x21i

+
�2
P
x1ix2iP
x21i

+

P
x1i ("i � ")P

x21i

= �1 +
�2
P
x1ix2iP
x21i

+

P
x1i ("i � ")P

x21i
:

� Step 4: take expected value of both sides of this
equation:

E
�e�1� = E

 
�1 +

�2
P
x1ix2iP
x21i

+

P
x1i ("i � ")P

x21i

!

= �1 +
�2
P
x1ix2iP
x21i

;



� Thus, E
�e�1� 6= �1 and if we omit an explanatory

variable in the regression which should be included,
we obtain a biased estimate of the coe¢ cient on the
included explanatory variable.

� This is omitted variables bias.

� Note that omitted variables bias does not exist if
�2 = 0

� But if �2 = 0 then X2 does not belong in the re-
gression so it is okay to omit it.

� Note that omitted variables bias does not exist ifP
x1ix2iP
x21i

= 0.

� Can show (see Chapter 1) that this implies correla-
tion between X1 and X2 is zero



2.4 Inclusion of Irrelevant Explanatory Vari-

ables

� Now reverse role of the two models discussed in omit-
ted variables bias section

� True model:

Yi = �+ �1X1i + "i

and classical assumptions hold

� Incorrect model adds an irrelevant variable:

Yi = �+ �1X1i + �2X2i + "i:

� Using incorrect model get OLS estimate:

e�1 = (
P
x1iyi)

�P
x22i

�
� (Px2iyi) (Px1ix2i)�P

x21i

� �P
x22i

�
� (Px1ix2i)2



� But correct OLS estimate is:

b�1 =
P
x1iyiP
x21i

:

� Gauss-Markov theorem tells us that b�1 is the best
linear unbiased estimator.

� Thus, b�1 has a smaller variance than any other un-
biased estimator.

� If we can show that e�1 is unbiased, then Gauss-
Markov theorem tell us var

�e�1� > var �b�1�

� This proves that including irrelevant explanatory vari-
ables will lead to less precise estimates.

� Proof that e�1 is unbiased is given in the textbook



Important Message for Empirical Practice

� Omitted variables bias says:

"you should always try to include all those explanatory
variables that could a¤ect the dependent variable"

� Inclusion of irrelevant explanatory variables section
says:

"you should always try not to include irrelevant variables,
since this will decrease the accuracy of the estimation of
all the coe¢ cients (even the ones that are not irrelevant)"

� How do you play o¤ these considerations?

� Begin with as many explanatory variables as possi-
ble, then use hypothesis testing procedures to dis-
card those that are irrelevant (and then re-run the
regression with the new set of explanatory variables).



2.5 Nonlinear Regression

The linear regression model is:

Yi = �+ �1X1i + ::+ �kXki + "i

Sometimes you may think the relationship between your
explanatory and dependent variables is nonlinear.

Yi = f (X1i; ::; Xki) + "i

where f () is some nonlinear function.

In some cases, nonlinear regressions is a bit more com-
plicated (using techniques beyond those covered in this
textbook). However, in many cases a nonlinear function



can be transformed into a linear one � and then linear
regression techniques can be used.

Example:

Yi = �0X
�1
1i X

�2
2i ::X

�k
ki

becomes:

ln (Yi) = �+ �1 ln (X1i) + ::+ �k ln (Xki)

where � = ln (�0). So you can run a regression of the
logged dependent variable on logs of the explanatory vari-
ables.

2.5.1 How to decide which nonlinear form?

It can be hard to decide which nonlinear form is appro-
priate. Here are a few pieces of advice.



� Sometimes economic theory suggests a particular func-
tional form. For instance, the previous example arises
when one is using a Cobb-Douglas production func-
tion.

� Experiment with di¤erent functional forms and use
hypothesis testing procedures or R2 to decide be-
tween them.

Example: Is there a quadratic pattern?

Run OLS regressions on two models:

Yi = �+ �1X1i + "i

and



Yi = �+ �1X1i + �2X
2
1i + "i

and choose the quadratic model if its R2 is higher than
the linear model.

Alternatively, run OLS on quadratic model and test whether
�2 = 0.

Warning: you can only use R2 to compare models in-
volving nonlinear transformations of the explanatory vari-
ables. You cannot use it to compare models which tran-
form the dependent variable in di¤erent ways. Remem-
ber,

R
2
= 1� var (")

var (Y )
:

In order to use it for choosing a model, all models must
have the same Y .



Example: Comparing two models:

Yi = �+ �1X1i + "i

and

ln (Yi) = �+ �1X1i + "i

You CANNOT use R2 to decide which of these models
to use.

Textbook describes a test for linear versus log-linear re-
gression.



2.5.2 Interpretation of Coe¢ cients when Variables
are Logged

� Consider log-linear regression

ln (Yi) = �+ �1 ln (X1i) + ::+ �k ln (Xki) + "i:

� Interpretation of coe¢ cients is as an elasticity: if Xj
increases by one percent, Y tends to increase by �j
percent (ceteris paribus)

� Now consider a regression where some variables are
not logged such as:

ln (Yi) = �+ �1 ln (X1i) + �2X2i + "i:

� �1 has elasticity interpretation, but �2 has inter-
pretation: if X2 increases by one unit, Y tends to
increase by �2 percent (ceteris paribus)



2.6 Chapter Summary

� Much of this chapter builds on Chapter 2 (Non-
technical introduction to regression) and Chapter 3
(on deriving statistical results for simple regression)

� Issues in Chapter 2 (i.e. omitted variables bias, the
impact of including irrelevant variables and multi-
collinearity) treated more formally in a statistical sense.

� Most derivations (e.g. of con�dence intervals, t-
tests, etc.) in Chapter 3 extend in conceptually straight-
forward manner to multiple regression

� This chapter introduced a new framework for hy-
pothesis testing: F-tests. These are useful for testing
multiple hypotheses about regression coe¢ cients.



� This chapter discussed selection of the appropriate
functional form of a regression.

� Many nonlinear relationships can be made linear through
an appropriate transformation (nothing is new, sim-
ply run a regression with transformed variables).

� Care must be taken with interpretation of coe¢ cients
in nonlinear regression.

� Care has to be taken when choosing between models
which have di¤erent nonlinear transformations of the
dependent variable.


