
1 The Multiple Regression Model:

Freeing Up the Classical Assump-

tions

� Some or all of classical assumptions were crucial for
many of the derivations of the previous chapters.

� Derivation of the OLS estimator itself only required
the assumption of a linear relationship between Y
and X

� But to show that OLS estimator had desirable prop-
erties did require assumptions

� Proof of the Gauss-Markov theorem required all clas-
sical assumptions except for the assumption of Nor-
mal errors



� Derivation of con�dence intervals and hypothesis test-
ing procedures required all classical assumptions.

� But what if some or all of the classical assumptions
are false?

� Chapter begins with discussing some general theory,
before considering some special cases.

� Two general categories: problems which call for use
of Generalized Least Squares (or GLS) Estimator

� Heteroskedasticity and autocorrelated errors will be
discussed in this category.

� Second category relates to the use of the so-called
Instrumental Variables (IV) Estimator.



1.1 Basic Theoretical Results

In previous lectures derived theoretical results using mul-
tiple regression model with classical assumptions

Yi = �+ �1X1i + ::+ �kXki + "i:

1. E ("i) = 0 �mean zero errors.

2. var ("i) = E
�
"2i

�
= �2 �constant variance errors

(homoskedasticity).

3. cov
�
"i"j

�
= 0 for i 6= j (errors uncorrelated with

one another)

4. "i is Normally distributed



5. Xi is �xed. It is not a random variable.

Remember: Assumption 1 is innocuous (if the error had
a non-zero mean we could include it as part of the in-
tercept � it would have no e¤ect on estimation of slope
coe¢ cients in the model).

Assumption 4 can be relaxed (approximately) by using
asymptotic theory (not discussed in this course, but see
Appendix to Chapter 3 if you are interested)

Assumption 5 we will still maintain (we will discuss this
more later on in the context of "instrumental variables"
estimation).

For now Assumptions 2 and 3.

Heteroskedasticity relates to Assumption 2.

Autocorrelation (also called serial correlation) relates to
Assumption 3.

Basic ideas:



� Under classical assumptions, Gauss Markov theorem
says "OLS is BLUE". But if Assumptions 2 and 3
are violated OLS this no longer holds (OLS is still
unbiased, but is no longer "best". i.e. no longer
minimum variance).

� Concepts/proofs/derivations often use following strat-
egy. The model can be transformed to create a new
model which does satisfy classical assumptions. We
know OLS (on the transformed model) will be BLUE.
(And all the theory we worked out for the OLS esti-
mator will hold � except it will hold for the trans-
formed model).

� The OLS estimator using such a transformed model
is called the Generalized Least Squares (GLS) esti-
mator.



1.2 Heteroskedasticity

Heteroskedasticity occurs when the error variance di¤ers
across observations.

Assumption 2 replaced by var ("i) = �2!2i for i =
1; ::; N .

1.2.1 Some theoretical results assuming !2i is known

What are the properties of the OLS estimator if het-
eroskedasticity is present? To make derivations eas-
ier, let us go back to the simple regression model:

Yi = �Xi + "i



where all the classical assumptions hold, except for As-
sumption 2. We now have heteroskedasticity.

Remember that OLS estimator can be written in various
ways:

b� =
X
XiYiX
X2i

= � +

X
Xi"iX
X2i

Before, under classical assumptions, we proved:

b� is N
0@�; �2X

X2i

1A ;
which we used to derive con�dence intervals and hypoth-
esis testing procedures.

Under heteroskedasticity, most of our previous derivations
still work. The error variance did not appear in our proofs
for unbiasedness of OLS nor showing it was Normal.



Hence, we will not repeat the derivations here but simply
state the following results:

� Under the present assumptions (i.e. allowing for het-
eroskedasticity), OLS is still unbiased (i.e. E

�b�� =
�) and it is Normally distribution.

New result:

Under the present assumptions,

var
�b�� = �2

P
X2i !

2
i�P

X2i

�2 :

Proof (using various properties of variance operator)



var
�b�� = var

0@� +
X
Xi"iX
X2i

1A
= var

0@XXi"iX
X2i

1A
=

1�X
X2i

�2var �XXi"i
�

=
1�X
X2i

�2XX2i var ("i)

=
�2�X
X2i

�2XX2i !
2
i

Key Theoretical Point: If heteroskedasticity is present,
the variance of the OLS estimator is di¤erent than what
it was under the classical assumptions.



Key Point for Empirical Practice:

� If heteroskedasticity is present and you ignore it, sim-
ply using the OLS estimator in a software package,
the software package will use the incorrect formula
for var

�b��.
� Software package will use the formula which obtains
under the classical assumptions, where it should be

using var
�b�� = �2

P
X2i !

2
i

(
P
X2i )

2 .

� Since var
�b�� enters the formula for con�dence in-

tervals and test statistics, THESE WILL BE INCOR-
RECT.



� In summary: OLS is still unbiased if heteroskedas-
ticity is present (so as an estimate it may be okay),
but everything else (con�dence intervals, hypothe-
sis tests, etc.) will be incorrect (unless you make
sure the computer is using the correct var

�b�� =
�2
P
X2i !

2
i

(
P
X2i )

2 formula).

� The only case where using OLS is acceptable is if
you make sure the computer is using the correct

var
�b�� = �2

P
X2i !

2
i

(
P
X2i )

2 formula. This is a point we

will return to later in our discussion of something
called a heteroskedasticity consistent estimator (to
be de�ned later).



1.2.2 The Generalized Least Squares Estimator un-
der Heteroskedasticity

Idea: Transform the model to create a new model which
does obey classical assumptions.

The original regression model is:

Yi = �Xi + "i (1)

Consider a transformed model where we divide both sides
by !i:

Yi
!i
= �

Xi
!i
+
"i
!i

or (to make the notation compact):



Y �i = �X
�
i + "

�
i (2)

Transformed model given in (2) satis�es the classical as-
sumptions.Key thing to verify:

var ("�i ) = var

 
"i
!i

!

=
1

!2i
var ("i)

=
�2!2i
!2i

= �2:

So error variances in (2) are constant.

Important point: The transformed model in (2) satis�es
classical assumptions. Hence, all our OLS results (using
transformed model) can be used to say OLS (on trans-
formed model) is BLUE, OLS con�dence intervals (using
transformed data) are correct, etc. etc.



The Generalized Least Squares Estimator The pre-
vious reasoning suggests OLS using tranformed data pro-
vides a good estimator:

b�GLS =
X
X�i Y

�
iX

X�2i

In terms of the original data this is:

b�GLS =
X XiYi

!2iX X2i
!2i

This is called the Generalized Least Squares (GLS) esti-
mator (and I have written "GLS" as a subscript on it to
make explicit it is not the sames as OLS).



Intuition: This is sometimes called the "weighted least
squares" estimator. Each observation is "weighted" with
weights inversely proportional to its error variance.

Note: I am still working with the simple regression model,
but the extension to multiple regression is immediate.
Simply divide every explanatory variable (and the depen-
dent variable) by !i and then do OLS on the transformed
model.



Properties of the GLS estimator (under heteroskedas-
ticity) Since GLS is equivalent to OLS on transformed
model, we can use all our OLS results from Chapter 3
(and apply them to the transformed model).

That is, plug in X�i and Y
�
i instead of Xi and Yi in all

our old formulae.

So, since the transformed model satis�es the classical
assumptions, we can immediately draw on our old results
to say:

b�GLS is N
0@�; �2X

X�2i

1A :

Thus, (under the current assumptions) GLS is unbiased
with



var
�b�GLS� =

�2X
X�2i

=
�2X�
X2i
!2i

�

Note: This is not the same as the OLS formula.

Important point:

Gauss-Markov theorem tells us that, under the classical
assumptions, OLS is BLUE.

Here b�GLS is equivalent to OLS estimation of a trans-
formed model which does satisfy the classical assump-
tions. Hence, under heteroskedasticity, it follows imme-
diately that b�GLS is BLUE.
An implication of this is that:



var
�b�GLS� � var �b�OLS�

where b�OLS is OLS using the original (not transformed)
data.

Thus, it follows that GLS is a better estimator than OLS.
Both are unbiased, but GLS has a smaller variance (it is
more e¢ cient).

The fact that

b�GLS is N
0@�; �2X

X�2i

1A :
can be used to derive con�dence intervals and hypothesis
tests exactly as before. We will not repeat this material
(formulae are same as before except with X�i and y

�
i

instead of Xi and yi).



1.2.3 Heteroskedasticity: Estimation if Error vari-
ances are unknown

The derivations above assumed that !2i is known. In
practice, it will usually be the case that !2i is unknown.

How to proceed? Either �gure out what !2i or replace
!2i by an estimate (it can be show that, if the estimate
is consistent, then GLS is a consistent estimator).

Alternatively, a heteroskedasticity consistent estimator (HCE)
can be used.

Digression: consistency is an asymptotic concept (asymp-
totic derivations not done in this course)

Intuition 1: Consistency has some similarities to unbiased-
ness.

Intuition 2: A consistent estimator is one which, as sample
size goes to in�nity, go to true value.



Fixing up a Heteroskedasticity Problem by Logging

� In some cases, log linear regressions will be homoskedas-
tic even if linear regression is heteroskedastic

� Note: if variables have values which are zero or neg-
ative you cannot log them.

� But even if you log some of your variables (or even
only log the dependent variable) it is sometimes enough
to �x up a heteroskedasticity problem

� Remember: be careful with interpretation of coe¢ -
cients when you log variables (see Chapter 4)

� Heteroskedasticity tests (see below) can be used to
see whether logging �xes us a heteroskedasticity prob-
lem



� Note: solving a heteroskedasticity problem by logging
is not called GLS



Doing GLS by Transforming the Model In many
cases, the heteroskedasticity can be related to an explana-
tory variable. Hence it is common to use the multiple
regression model:

Yi = �+ �1X1i + ::+ �kXki + "i;

under the classical assumptions except that

var ("i) = �
2!i = �

2Z2i

where Zi is an explanatory variable (usually Zi will be
one of X2i; ::; Xki).

This captures the idea "the error variances vary directly
with an explanatory variable".

If you suspect "the error variances vary inversely with an
explanatory variable" you could use:



var ("i) = �
2 1

Z2i

Note: variances must be positive which is why I have
used Z2i . An alternative choice is to use the exponential
function (e.g. var ("i) = �2 exp (Zi)).

Remember: under heteroskedasticity, GLS says we should
tranform our data as:

Yi
!i
= �

Xi
!i
+
"i
!i
:

and then use OLS on transformed model. But here we
have !i = Zi. So can divide all your variables by Zi and
then do OLS.

Empirical tip: Experiment with di¤erent choices for Z
(usually, it will be one of X1; ::; Xk)



Note: cannot divide by zero and, hence, you cannot use
this transformation for a variable which has Zi = 0 for
any observation

Cannot use of this transformation with dummy variables.

If the heteroskedasticity is characterized by f (Zi) =
exp (Zi) then zero values of Zi are acceptable.

Above has "error variances vary directly with Z"

If error variances vary inversely with Z (e.g. f (Zi) =
1
Z2i
), transformed model becomes:

YiZi = �Zi + �1X1iZi + ::+ �kXkiZi + "iZi

GLS estimator obtained by multiplying all your variables
by Zi and then doing OLS with these new variables.



What if heteroskedasticity is present, but you can-
not relate it to a single variable, Z? It is desirable
to do GLS (as describe above if you can). If you cannot,
remember that OLS is still unbiased so is an adequate
second best estimator. But the variance formula we de-
rived under the classical assumptions not longer holds.
The correct formula is:

var
�b�� = �2

P
X2i !

2
i�P

X2i

�2 :

So one thing you can do is use OLS with this correct
formula to calculate the variance.

Problem: we do not know �2!2i .

Solution: Replace it with an estimate.

Since



var ("i) = E
�
"2i

�
= �2!2i

this suggests that we can use the OLS residuals:

b"2i
as estimates of �2!2i .

Thus, an estimate of var
�b�� is

d
var

�b�� = P
X2i b"2i�P
X2i

�2:

It can be shown that this estimate is consistent.

Summary: Use OLS to estimate b�, then use d
var

�b�� in
formulae for con�dence intervals, etc.



This is an example of a heteroskedasticity consistent esti-
mator (HCE). There are others and they can be automat-
ically calculated in more sophisticated computer packages
such as Stata or PC Give (but not in Excel).

Advantages: HCEs are easy to calculate and you do not
need to know the form that the heteroskedasticity takes.

Disadvantages: HCEs are not as e¢ cient as the GLS es-
timator (i.e. they will have larger variance).



1.2.4 Testing for Heteroskedasticity

If heteroskedasticity is NOT present, then OLS is �ne (it
is BLUE). But if it is present, you should use GLS (or a
HCE). Thus, it is important to know if heteroskedasticity
is present. There are many tests, here I will describe some
of the most common ones.

Goldfeld Quandt test This is good for the case where
you suspect heteroskedasticity depends on an explanatory
variable, Z (which will often be one of X2i; ::; Xki).

Basic idea: if you divide up your data into high Z and
low Z parts, and run two separate regressions then they
should have di¤erent error variances (if heteroskedasticity
is present).

Details:



1. Order the data by the magnitude of Z.

2. Omit the middle d observations (no hard and fast
rule to choose d, common choice d = :2N)

3. Run two separate regressions, one using the obser-
vations with low values for Z, the other using obser-
vations with high Z.

4. Calculate the sum of squares residuals (SSR) for
each of the two regressions (call them SSRLOW and
SSRHIGH).

5. Calculate the Goldfeld-Quandt test statistic which is:

GQ =
SSRHIGH
SSRLOW

.



Under the hypothesis of homoskedasticity, GQ has an
F:5(N�d�4);:5(N�d�4) distribution (and can use F sta-
tistical tables to get critical value). Reject homoskedas-
ticity (and, thus, conclude heteroskedasticity is present)
if GQ is greater than the critical value.

Note: Test above assumes error variances vary directly
with Z. If you suspect that the error variances vary in-
versely with Z, then reverse the ordering of the data in
Step 1

Empirical tip: Try various choices for Z



The White Test for Heteroskedasticity Goldfeld-Quandt
test is good if a logical choice of a single Z suggests itself
(or if heteroskedasticity is related to a single variable and
you are patient enough experiment with di¤erent choices
for Z). White test is good if there are several possi-
ble explanatory variables which might in�uence the error
variance.

That is:

var ("i) = �
2f
�
0 + 1Z1i + ::+ pZpi

�
;

Where f () is a positive function.

Loosely speaking, this captures the idea: error variance
might depend on any or all of the variables Z1; ::; Zp
(which may be the same as the explanatory variables in
the regression itself).

White test involves the following steps:



� Run OLS on the original regression (ignoring het-
eroskedasticity) and obtain the residuals, b"i.

� Run a second regression of the equation:

b"2i = 0 + 1Z1i + ::+ pZpi + vi
and obtain the R2 from this regression.

� Calculate the White test statistic:

W = NR2

� This test statistic has a �2 (p) distribution which can
be used to get a critical value from.



� An advantage of the White test is that it need only
be done once.

� Just need to choose Z1; ::; Zp (usually the explana-
tory variables in the original regression).

� A disadvantage is that, if the test indicates that
heteroskedasticity is present, it does not o¤er much
guidance on how you should try and transform the
model to do GLS.

� All you know is that heteroskedasticity is present
and is related to one (or several) of the variables
Z1; ::; Zp.

� Note these advantages/disadvantages are the exact
opposite of the Goldfeld-Quandt test.



� Goldfeld-Quandt test requires selection of a single Z
(or doing many tests with many choices of Z). But
if you can �nd one Z which is related to the het-
eroskedasticity, this suggests how to transform model
to do GLS.



1.2.5 Recommendations for Empirical Practice

� If you think you might have a heteroskedasticity prob-
lem, begin by doing White heteroskedasticity test.

� If your tests indicate heteroskedasticity is present,
then do some Goldfeld-Quandt tests to see if you
can associate the heteroskedasticity with a particular
explanatory variable.

� Sometimes simple things (e.g. logging some or all
of your variables) will be enough to �x the problem.
(Although the resulting estimator is NOT called a
GLS estimator)

� Sometimes multiply/dividing all your explanatory vari-
ables by some variable (Z) is enough to �x the prob-
lem.



� Note: Every time you try such a transformation you
must do heteroskedasticity test (White test will be
simplest) to check if it has �xed the problem.

� If you cannot �nd a transformation which �xes the
heteroskedasticity problem, then use a HCE. (But
you cannot easily do this in Excel).

� Remember: if heteroskedasticity is present, then hy-
pothesis tests involving ��s will be incorrect. So wait
until after you have corrected the problem (or are us-
ing an HCE) before doing hypothesis testing (e.g. to
�nd out which of your explanatory variables are in-
signi�cant).

� Textbook contains two examples (one of which forms
basis for Computer Problem Sheet 2)



1.3 Autocorrelation

We will continue our discussion of problems which call
for the use of the Generalized Least Squares Estimator
by considering an important topic called autocorrelation.

This is used with time series data, so we will use t =
1; ::; T to denote observations (rather than i = 1; ::; N)

1.4 Reminder of Basic Theoretical Results

In previous lectures derived theoretical results using mul-
tiple regression model with classical assumptions

Yt = �+ �1X1t + ::+ �kXkt + "t



1. E ("t) = 0 �mean zero errors.

2. var ("t) = E
�
"2t

�
= �2 �constant variance errors

(homoskedasticity).

3. E ("t"s) = 0 for t 6= s � "t and "s are uncorrelated
with one another.

4. "t is Normally distributed

5. X2t; ::; Xkt are �xed. They are not a random vari-
able.

Remember: Assumption 1 is innocuous (if the error had
a non-zero mean we could include it as part of the in-
tercept � it would have no e¤ect on estimation of slope
coe¢ cients in the model).



Assumption 4 can be relaxed (approximately) by using
asymptotic theory.

Assumption 5 we will still maintain.

Autocorrelation (also called serial correlation) relates to
Assumption 3.

Basic ideas:

� Under classical assumptions, Gauss Markov theorem
says "OLS is BLUE". But if Assumptions 2 and 3
are violated OLS this no longer holds (OLS is still
unbiased, but is no longer "best". i.e. no longer
minimum variance).

� Concepts/proofs/derivations use following strategy.
The model can be transformed to create a new model
which does satisfy classical assumptions. We know
OLS (on the transformed model) will be BLUE. (And



all the theory we worked out for the OLS estimator
will hold � except it will hold for the transformed
model).

� The OLS estimator using such a transformed model
is called the Generalized Least Squares (GLS) esti-
mator.



1.5 Autocorrelated Errors

� We will work with the multiple regression model un-
der the classical assumptions, with the exception
that the errors follow and autoregressive process of
order 1 (AR(1)):

"t = �"t�1 + ut

where it is ut which satis�es classical assumptions. So
E (ut) = 0, var (ut) = �2 and cov (ut; us) = 0 (for
t 6= s).

� We also assume �1 < � < 1. To preview later ma-
terial, this restriction ensure stationarity and means
you do not have to worry about problems relating
to unit roots and cointegration (de�nitions will be
provided to you later on).



� We will focus on the AR(1) cases, but note that the
AR(p) errors case is a simple extension:

"t = �1"t�1 + �2"t�2 + ::+ �p"t�p + ut



1.5.1 Variances and Covariances of "t

� The assumptions above speci�ed properties of ut,
but we need to know properties of "t.

� Notation:

�2" = var ("t) = E
�
"2t
�

where last equal sign follows since errors have mean zero.

� Derivation of variance of regression errors (textbook
does derivation in di¤erent way):



�2" = var (�"t�1 + ut)

= �2var ("t�1) + var (ut)

= �2�2" + �
2

=
�2

1� �2

� In the previous derivations we have used properties of
variance operator, the fact that "t�1 and ut are inde-
pendent of one another and that "t is homoskedastic.

� The derivation of covariance between di¤erent re-
gression errors is done in Problem Sheet 3:

cov ("t; "t�1) = ��
2
"

� For errors more than one period apart, we can show:



cov ("t; "t�s) = �s�2"

� Thus, we have established that the regression model
with autocorrelated errors violates assumption 3. That
is, the regression errors are NOT uncorrelated with
one another.

� Hence, we need to work with a GLS estimator.



1.5.2 The GLS Estimator for the Autocorrelated
Errors Case

� Remember: GLS can be interpreted as OLS on a suit-
ably transformed model.

� In this case, the appropriate transformation is refered
to as "quasi-di¤erencing".

� To explain what this is, consider the regression model:

Yt = �+ �1X1t + ::+ �kXkt + "t

� This model will hold for every time period so we can
take it at period t�1 and multiply both sides of the
equation by �:



�Yt�1 = ��+ ��1X1t�1 + ::+ ��kXkt�1 + �"t�1

� Subtract this equation from the original regression
equation:

Yt � �Yt�1 = �� ��+ �1 (X1t � �X1t�1)
+::+ �k

�
Xkt � �Xkt�1

�
+ "t � �"t�1

or

Y �t = �
� + �1X

�
1t + ::+ �kX

�
kt + ut

� But ut satis�es the classical assumptions so OLS on
this transformed model will be GLS (which will be
BLUE).



� Note that the transformed variables are "quasi-di¤erenced"

Y �t = Yt � �Yt�1
X�1t = (X1t � �X1t�1)
etc.

The case with � = 1 (which we do not consider) is
called "di¤erenced" � this is not quite the same so we
say "quasi" di¤erenced.

� One (relatively minor) issue: if our original data is
from t = 1; ::; T then Y �1 = Y1 � �Y0 will involve
Y0 (and same issue for explanatory variables). But
we do not observe such "initial conditions". There
are many ways of treating initial conditions.

� What we do (simplest, most common thing) is work
with data from t = 2; ::; T (and use t = 1 values
for variables as initial conditions).



� Summary: If we knew �, then we could quasi-di¤erence
the data and do OLS using the transformed data
(which is equivalent to GLS).

� In practice, we rarely (if ever) know �. Hence, we re-
place � by an estimate: b�. There are several ways of
getting a b�, we now turn to one, called the Cochrane-
Orcutt procedure.



1.5.3 The Cochrane-Orcutt Procedure

� Remember: with autocorrelated errors, GLS is BLUE.
However, OLS (on original data) is still unbiased.

� Cochrane-Orcutt procedure begins with OLS and then
uses OLS residuals to estimate �.

� Cochrane-Orcutt procedure goes through following
steps:

1. Do OLS regression of Yt on intercept, X1t; ::; Xkt
and produce the OLS residuals, b"t.

2. Do OLS regression of b"t on b"t�1 which will provide
a b�.



3. Quasi-di¤erence all variables to produce

Y �t = Yt � b�Yt�1
X�1t = (X1t � b�X1t�1)
etc.

4. Do OLS regression of Y �t on intercept, X
�
1t; ::; X

�
kt,

thus producing GLS estimates of the coe¢ cients.



1.5.4 Autocorrelation Consistent Estimators

� Remember: with heteroskedasticity we discussed het-
eroskedasticity consistent estimator (HCE).

� Less e¢ cient than GLS, but is a correct second-best
solution when GLS di¢ cult to implement.

� Similar issues hold autocorrelated errors.

� There exist autocorrelation consistent estimators which
allow for the correct use of OLS methods when you
have autocorrelated errors.

� We will not explain these, but many popular econo-
metrics software packages include them. The most
popular is the Newey-West estimator.



1.5.5 Testing for Autocorrelated Errors

� If � = 0 then doing OLS on the original data is
�ne (OLS is BLUE). However, if � 6= 0, then a GLS
estimator such as the Cochrane-Orcutt estimator is
better.

� This motivates testing H0 : � = 0 against H1 : � 6=
0.

� There are several such tests, here we describe some
of the most popular.



Breusch-Godfrey Test AR(p) errors:

"t = �1"t�1 + �2"t�2 + ::+ �p"t�p + ut:

H0 : �1 = 0; �2 = 0; ::; �p = 0

Breusch-Godfrey test involves the following steps:

1. Run a regression of Yt on an intercept, X1; ::; Xk
using OLS and produce the residuals, b"t.

2. Run second regression of b"t on intercept,X1; ::; Xk; b"t�1; ::;b"t�p using OLS and produce the R2.
3. Calculate the test statistic:



LM = TR2:

If H0 is true, then LM has an (approximate) �2 (p)
distribution.

Thus, critical value taken from statistical tables for the
Chi-square distribution.



1.5.6 The Box-Pierce and Ljung Tests

� These test H0 : �1 = 0; �2 = 0; ::; �p = 0

� Both based on idea that, if the errors are not au-
tocorrelated, then the correlations between di¤erent
errors should be zero.

� Replace errors by residuals.

� b"t are residuals from OLS regression of Y on an
intercept, X1; ::; Xk,

� Correlations between b"t and b"t�s are:

rs =

PT
t=s+1 b"tb"t�sPT
t=s+1 b"2t :



� Box-Pierce test statistic (sometimes called the Q test
statistic) is:

Q = T
pX
j=1

r2j ;

� The p means that AR(p) errors are being tested for.

� The Ljung test statistic is:

Q� = T (T + 2)
pX
j=1

r2j

T � j
.

� Critical values for both taken from �2 (p) tables.

� Many econometrics software packages present these
test statitics



� Warning: in some cases, one of the explanatory vari-
ables will be the dependent variable from a previous
period ("lagged dependent variable"). For instance:

Yt = �+ �Yt�1 + �Xt + "t:

� The Box-Pierce and Ljung tests are not appropriate
in this case. The Breusch-Godfrey test, however, is
still appropriate.

� The textbook discusses two other approaches: the
Durbin-Watson statistic and Durbin�s h-test.



1.6 Instrumental Variable Methods

� Overview: Under the classical assumptions, OLS is
BLUE.

� When we relax some of the assumptions (e.g. to al-
low for heteroskedasticity or autocorrelated errors),
then OLS is no longer BLUE but it is still unbiased
and (if a consistent estimator is used to give a good
estimate for var

�b��) then OLS will be correct (al-
though it will be less e¢ cient than GLS).

� However, in the case we are about to consider, OLS
will be biased and an entirely di¤erent estimator will
be called for � the instrumental variables (IV) esti-
mator.

� This set of notes will consider relaxing the assump-
tion that the explanatory variables are not random
variables.



� For simplicity, we will work with the simple regression
model, but results generalize to the case of multiple
regression.



2 Theory Motivating the IV Esti-

mator

In previous lectures derived theoretical results using re-
gression model with classical assumptions

Yi = �Xi + "i

1. E ("i) = 0 �mean zero errors.

2. var ("i) = E
�
"2i

�
= �2 �constant variance errors

(homoskedasticity).

3. E
�
"i"j

�
= 0 for i 6= j � "i and "j are uncorrelated

with each another.



4. "i is Normally distributed

5. Xi is �xed. It is not a random variable.

Remember: Assumption 1 is innocuous.

Assumption 4 can be relaxed (approximately) by using
asymptotic theory.

Assumptions 2 and 3 were discussed in lectures on het-
eroskedasticity and autocorrelated errors.

Now we will focus on relaxing Assumption 5.

Note: When explanatory variables are be random, many
derivations we did before with expected value and vari-
ance operators become much more di¢ cult/impossible.
For this reason, most relevant results are asymptotic.



But asymptotic methods not covered in course (see ap-
pendix to Chapter 5 if you are interested)

This section provides some intuition, hints at derivations
and discussion of things relevant for empirical practice.



2.1 Case 1: Explanatory Variable is Ran-

dom But is Uncorrelated with Error

� If Xi is now a random variable, we have to make
some assumptions about its distribution.

� Assume Xi are i.i.d. (independent and identically
distributed) random variables with:

E (Xi) = �X

var (Xi) = �
2
X

� In Case 1 we will assume explanatory variable and
errors are uncorrelated with one another:

cov (Xi; "i) = E (Xi"i) = 0



� Remember, under classical assumptions:

b� is N
0@�; �2X

X2i

1A :

� This result can still be shown to hold approximately
in this case (we will not provide details, some given
in textbook)

� Bottom line: If we relax the assumptions of Normal-
ity and �xed explanatory variables we get exactly the
same results as for OLS under the classical assump-
tions (but here they hold approximately), provided
explanatory variables are uncorrelated with the error
term.



2.2 Case 2: Explanatory Variable is Cor-

related with the Error Term

� We will work with the simple regression model under
classical assumptions except for Assumption 5.

� Assume Xi are i.i.d. (independent and identically
distributed) random variables with:

E (Xi) = �X

var (Xi) = �
2
X

� In Case 2 we will assume explanatory variable and
errors are correlated with one another:

cov (Xi; "i) = E (Xi"i) 6= 0



� It turns out that, in this case, OLS is biased and a
new estimator is called for. That estimator is the
instrumental variables (IV) estimator.

� Why is this? We will not provide proof, but o¤er a
hint.

� The proof that OLS is biased begins in the same
manner as the proof of Chapter 3. We can get up
to the following stage in the proof:

E
�b�� = � + E

0@XXi"iX
X2i

1A

� But at this stage we can go no farther other than to

note that there is no reason to think thatE

0@XXi"iX
X2i

1A =
0 and, in fact, it is not.



� Intuition: (ignore
X
X2i in the denominator), we

could write the numerator asE
�X

Xi"i
�
=
P
E (Xi"i) =P

cov (Xi"i) 6= 0 .

� Important point: if the error and explanatory variable
are correlated, then OLS is biased and should be
avoided.

� Soon will o¤er some explanation for why this might
occur, but �rst introduce new estimator to handle
this case.



2.3 The Instrumental Variables Estimator

� An instrumental variable, Zi, is a random variable
which is uncorrelated with the error but is correlated
with the explanatory variable.

� Formally, an instrumental variable is assumed to sat-
isfy the following assumptions:

E (Zi) = �Z

var (Zi) = �
2
Z

cov (Zi; "i) = E (Zi"i) = 0



cov (Xi; Zi) = E (XiZi)� �Z�X = �XZ 6= 0

� Assuming an instrumental variable exists (something
we will return to later), we can introduce the instru-
mental variables estimator:

b�IV =
NX
i=1

ZiYi

NX
i=1

XiZi

� The asymptotic derivations in the appendix (not cov-
ered in this course) imply (approximately):

b�IV is N
0@�;

�
�2Z + �

2
Z

�
�2

N (�XZ + �X�Z)
2

1A :



� This formula can be used to calculate con�dence in-
tervals, hypothesis tests, etc. (comparable to Chap-
ter 3 derivations)

� In practice, the unknown means and variances can
be replaced by their sample counterparts. Thus, �X
can be replaced by X, �2Z by the sample variance of
(Zi�Z)

2

N�1 , etc.

� No additional details of how this is done, but note
that econometrics software packages do IV estima-
tion.



2.3.1 Using the IV Estimator in Practice

� what if you have a multiple regression model involv-
ing more than one explanatory variable?

� Answer: you need at least one instrumental variable
for each explanatory variable that is correlated with
the error.

� what if you have more instrumental variables than
you need?

� Use the generalized instrumental variables estimator
(GIVE).

� Explanation of GIVE given in textbook (I will not
cover this in course).



� Most econometrics software packages will calculate
GIVEs for you

� Testing is discussed in textbook. Hausman test and
Sargan test (not responsible for in this course)



2.4 Why Might the Explanatory Variable

Be Correlated with Error?

� There are many di¤erent reasons why the explana-
tory variables might be correlated with the errors.

� "Errors in Variables" problem (discussed below).

� Simultaneous equations model covered in textbook
(but will not cover in this course)

� There are also other models which imply X and "
correlated



2.4.1 Errors in Variables

� What if you want to run the regression:

Yi = �Xi + "i:

This regression satis�es the classical assumptions, but you
do not observe xi, but instead observe:

X�i = Xi + vi;

where vi is i.i.d. with mean zero, variance �2� and is
independent of "i.

� In other words, X is observed with error.

� Replacing Xi in the original regression yields a new
regression:



Yi = � (X�i � vi) + "i
= �X�i + "

�
i

where "�i = "i � �vi

� What is the covariance between the explanatory vari-
able, X�i , and the error, "

�
i , in this new regression?

cov (X�i ; "
�
i ) = E [(Xi + vi) ("i � �vi)]

= ���2� 6= 0

� Hence measurement error in explanatory variables
(but not dependent variable), causes them to be cor-
related with the regression error.



2.4.2 An example where the explanatory variable
could be correlated with the error

� Suppose we are interested in estimating the returns
to schooling and have data from a survey of many
individuals on:

The dependent variable: Y = income

The explanatory variable: X = years of schooling

And other explanatory variables like experience, age, oc-
cupation, etc.. which we will ignore here to simplify the
exposition.

� My contention is that, in such a regression it prob-
ably is the case that X is correlated with the error
and, thus, OLS will be inconsistent.



� To understand why, �rst think of how errors are in-
terpreted in this regression.

� An individual with a positive error is earning an un-
usually high level of income. That is, his/her income
is more than his/her education would suggest.

� An individual with a negative error is earning an un-
usually low level of income. That is, his/her income
is less than his/her education would suggest.

� What might be correlated with this error? Perhaps
each individual has some underlying quality (e.g. in-
telligence, ambition, drive, talent, luck � or even
family encouragement). This quality would like be
associated with the error (e.g. individuals with more
drive tend to achieve unusually high incomes).



� But this quality would also e¤ect the schooling choice
of the individual. For instance, ambitious students
would be more likely to go to university.

� Summary: Ambitious, intelligent, driven individuals
would both tend to have more schooling and more
income (i.e. positive errors).

� So both the error and the explanatory variable would
be in�uenced by this quality. Error and explanatory
variable probably would be correlated with one an-
other.



2.4.3 How do you choose instrumental variables?

� There is a lot of discussion in the literature how to
do this. But this is too extensive and complicated
for this course, so we o¤er a few practical thoughts.

� An instrumental variable should be correlated with
explanatory variable, but not with error.

� Sometimes economic theory (or common sense) sug-
gests variables with this property.

� In our example, we want a variable which is corre-
lated with the schooling decision, but is unrelated to
error (i.e. factors which might explain why individu-
als have unusually high/low incomes)

� An alternative way of saying this: we want to �nd a
variable which a¤ects schooling choice, but has no
direct e¤ect on income.



� Characteristics of parents or older siblings have been
used as instruments.

� Justi�cation: if either of your parents had a univer-
sity degree, then you probably come from a family
where education is valued (increase the chances you
go to university). However, your employer will not
care that your parents went to university (so no di-
rect e¤ect on your income).

� Other researchers have used geographical location
variables as instruments.

� Justi�cation: if you live in a community where a uni-
versity/college is you are more likely to go to univer-
sity. However, your employer will not care where you
lived so location variable will have no direct e¤ect on
your income.



3 Chapter Summary

Chapter discusses violations of classical assumptions and
breaks into a "GLS" part and an "IV" part.

1. If errors either have di¤erent variances (heteroskedas-
ticity) or are correlated with one another, then OLS
is unbiased, but is no longer the best estimator. The
best estimator is GLS.

2. If heteroskedasticity is present, then the GLS estima-
tor can be calculated using OLS on a transformed
model. If suitable transformation cannot be found,
then heteroskedasticity consistent estimator should
be used.

3. There are many tests for heteroskedasticity, including
the Goldfeld-Quandt test and the White test.



4. If errors are autocorrelated, GLS estimator is OLS
on a transformed model. The required transforma-
tion involves quasi-di¤erencing each variable. The
Cochrane-Orcutt procedure is a popular way of im-
plementing the GLS estimator.

5. There are many tests for autocorrelated errors, in-
cluding the Breusch-Godfrey test, the Box-Pierce test
and the Ljung test.

6. In many applications, it is implausible to treat the ex-
planatory variables and �xed. Hence, it is important
to allow for them to be random variables.

7. If explanatory variables are random and all of them
are uncorrelated with the regression error, then stan-
dard methods associated with OLS (as developed in
Chapters 2 and 3) still work.



8. If explanatory variables are random and some of them
are correlated with the regression error, then OLS is
biased. The instrumental variables estimator is not.

9. In multiple regression, at least one instrument is re-
quired for every explanatory variable which is corre-
lated with the error.

10. If you have valid instruments, then the Hausman test
can be used to test if the explanatory variables are
correlated with the error.

11. In general, cannot test whether an instrumental vari-
able is a valid one. However, if you have more in-
struments than the minimum required, the Sargan
test can be used.

12. Explanatory variables can be correlated with error
they are measured with error.


