
1 Univariate Time Series Analysis

� End goal: Regression model relating a dependent
variable to explanatory variables.

� Before doing this we must understand the property of
each variable. Thus, this chapter works with single
variable, Yt for t = 1; ::; T

� New issues with time series data:

1. One time series variable can in�uence another with
a time lag.

2. If the variables are nonstationary, a problem known
as spurious regression may arise.



� We will explain terms like nonstationary, stationary
and spurious regression later.

� In this chapter, we use autoregressive model (similar
to autocorrelated errors of Chapter 5, but applied to
Yt instead of "t)

� Using this model, discuss unit root.

� If Yt has a unit root then it is nonstationary.

� Dickey-Fuller test is test for unit root



1.1 Trends in Time Series Variables

� We have not de�nited stationary/nonstationary vari-
ables, but closely related to the concept of a trend.

� Figure 6.1 plots logarithm of personal income in the
U.S. from the �rst quarter of 1954 through to the
last quarter of 1994.

� Note that personal income seems to be increasing
over time at a roughly constant rate (although there
are �uctuations).

� Many macroeconomic and �nancial variables (e.g.
GDP, the price level, industrial production, consump-
tion, government spending, stock market indices,
etc.) exhibit trends of this sort.





Di¤erencing

� �Yt = Yt � Yt�1 is the �rst di¤erence of Yt.

� �Yt measures the change or growth in a variable
over time.

� If Yt is variable which has been logged, then 100�
�Yt measures the percentage change.

� �Yt is often called �delta Y �or �the change in Y �.

� Figure 7.2 plots �Yt for log personal income data





� With time series often have correlation across obser-
vations.

� Personal income today highly correlated with per-
sonal income last quarter (correlation is 0:999716)

� But change in personal income and change in per-
sonal income lagged once nearly uncorrelated (�0:00235)

� Many macroeconomic and �nancial time series ex-
hibit this behavior.

� Y tends to exhibit trend behavior and to be highly
correlated over time

� �Y exhibits no trend behavior and is not highly cor-
related over time.

� Relate to issue of nonstationarity.



1.2 The Autoregressive Model

� Autoregressive model can be used to formalize ideas
about trends, stationarity, etc.

� It is a regression model where the explanatory vari-
ables are lags of the dependent variable

� �autoregressive� is shortened to �AR�.

� Some aspects of AR model discussed in Chapter 6
(errors in a regression had an AR structure � see
chapter 6 for some relevant derivations)

� Here AR structure used for Y (not ").



1.2.1 The AR(1) Model

Yt = �+ �Yt�1 + "t

for t = 2; ::; T .

� Jargon: when Yt has an AR model, say it is an au-
toregressive process.

� Properties of Y depend on �

� Arti�cially simulate three di¤erent time series using
� = 0,� = 0:8 and � = 1.

� All three series have the same values for � (i.e.
�=0:01) and the same errors.







� Figure 7.3 (� = 0) exhibits random-type �uctuations
(like change in personal income)

� Figure 7.5 (� = 1) exhibits trend behavior (like per-
sonal income)

� Figure 7.4 (� = 0:8) exhibits behavior that is some-
where in-between.

� Figures illustrate the types of behavior that AR(1)
models can capture.



� De�nition: For the AR(1) model, Y is stationary if
j�j < 1

� Y is nonstationary if � = 1.

� Note: j�j > 1, is rarely considered in economics
(explosive behaviour).

� To give some math intuition, here is a result from
autocorrelated errors part of Chapter 5 (same proof,
but uses Y as variable of interest and assumes "
satis�es classical assumptions with var ("t) = �2):

var (Yt) = �
2
1X
i=0

�2i

� Note that, if j�j < 1 we can then write:

var (Yt) =
�2

1� �2
;



� But if � = 1, we cannot (variance is going to in�nity,
sum does not converge)

� We will not provide proofs/derivations here, but a
key aspect of them is: If � = 1 our basic derivations
no longer work (Y will not satisfy classical assump-
tions, key variances used in our derivations of con�-
dence intervals and hypothesis tests will be going to
in�nity, etc.).

� Formally, �nonstationary� means �anything that is
not stationary�.

� Economists focus on the one particular type: unit
root nonstationarity.

� Following are ways of thinking about whether, Y , is
stationary or has a unit root:



� In the AR(1) model , if � = 1, then Y has a unit
root. If j�j < 1 then Y is stationary

� If Y has a unit root then its autocorrelations will
be near one and will not drop much as lag length
increases.

� If Y has a unit root, then it will have a long memory.
Stationary time series do not have long memory.

� If Y has a unit root then the series will exhibit trend
behavior (especially if � is non-zero).

� If Y has a unit root, then �Y will be stationary. For
this reason, series with unit roots are often referred
to as di¤erence stationary series.



� A convenient way of writing the AR(1) model (sub-
tract o¤ Yt�1 from both sides)

Yt � Yt�1 = �+ �Yt�1 � Yt�1 + "t

which gives

�Yt = �+ �Yt�1 + "t

where � = �� 1.

� Note that, if � = 1, then � = 0 and �Yt �uctuates
randomly around �.

� Note we can test � = 0 to see if a series has a unit
root.



� Stationary if �1 < � < 1 which is equivalent to
�2 < � < 0. This is the stationarity condition.

� More jargon: if � = 1 (or, equivalently, � = 0) can
write:

Yt = �+ Yt�1 + "t:

� This is random walk model (more precisely, � is
called a drift and, thus, random walk with drift.

� Many �nancial and macroeconomic time series vari-
ables look like random walks with drifts.

� The AR(1) model is a regression model. Accordingly,
we can use OLS to regress the variable Y on an
intercept and lagged Y .

� For personal income, we �nd b� = 0:039 and b� =
0:996 (pretty close to random walk with drift)



1.2.2 Extensions of the AR(1) Model

� Autoregressive of order p, AR(p), model:

Yt = �+ �1Yt�1 + ::+ �pYt�p + "t

for t = p+ 1; ::; T .

� Properties similar to the AR(1) model but are more
general.

� When discussing unit root behavior, it is convenient
to write model in a di¤erent way.

� Subtract Yt�1 from both sides of the equation and
re-arrange:

�Yt = �+�Yt�1+1�Yt�1+::+p�1�Yt�p+1+"t;



� �; 1; ::; p�1 are functions of �1; ::; �p from the
original AR(p) model.

� For instance, � = �1 + ::+ �p � 1.

� This is identical to the original AR(p) model, but is
just written di¤erently.

� � = 0 implies that the AR(p) time series Y con-
tains a unit root; if �2 < � < 0, then the series is
stationary.

� Note: if � = 0 then Yt�1 will drop out of the equa-
tion and only terms involving �Y or its lags appear
in the regression

� if a unit root is present, then the series can be dif-
ferenced to induce stationarity.



� Adding a deterministic trend as an explanatory vari-
able is another way of extending model

� Consider a model where time is explanatory variable:

Yt = �+ �t+ "t;

� This regression model yields trend behavior.

� Jargon, �t is deterministic trend (unit root series
contain stochastic trend).

� Can add deterministic trend to AR(1) model:

Yt = �+ �Yt�1 + �t+ "t:



� Figure 7.6 which is a time series plot of arti�cial
data generated from the previous model with � = 0,
� = 0:2 and � = 0:01.

� Note it is stationary since j�j < 1.

� Figure 7.6 looks much like Figure 7.5 (or Figure 7.1).



� Stationary models with a deterministic trend can
yield time series plots that resemble those from unit
root.

� Thus, you should not rely on looking at graphs, we
need a statistical test for unit root.

� We can add deterministic trend to the AR(p) model
to get AR(p) with deterministic trend model

�Yt = �+�Yt�1+1�Yt�1+::+p�1�Yt�p+1+�t+"t:



1.2.3 AR models: A summary

� The nonstationary time series variables on which we
focus are those containing a unit root. These series
contain a stochastic trend. But if we di¤erence these
time series, the resulting time series will be station-
ary. For this reason, they are also called di¤erence
stationary.

� In the stationary time series on which we focus have
�2 < � < 0 in the AR(p) with deterministic trend
model. However, these series can exhibit trend be-
havior through the incorporation of a deterministic
trend. In this case, they are referred to as trend
stationary.

� Now we have to turn to estimation and testing. We
will discuss hypothesis testing shortly.

� Estimation of AR models (and extensions): OLS is
commonly used (although software packages allow
other possible estimation methods)



Example: U.S. Personal Income

Use�Yt as dependent variable. Note coe¢ cient on Yt�1
is the crucial one for unit root (it is � in previous equa-
tions).

Note: if � = 0 a unit root is present.

Table 7.3: AR(4) with Deterministic Trend Model
Variable OLS Estimate t-statistic P-value
Intercept 0:138 1:279 0:203
Yt�1 �0:018 �1:190 0:236
�Yt�1 �0:017 �0:217 0:829
�Yt�2 0:014 0:172 0:863
�Yt�3 0:130 1:627 0:106
t 0:0001 0:955 0:341



1.3 Testing in the AR(p) with Determin-

istic Trend Model

� To preview next chapter, with the exception of a case
called cointegration, we do not want to include unit
root variables in regression models.

� This motivates why we must know if any variable has
a unit root. We need a unit root test.

� In previous chapters talked about hypothesis testing
to decide whether an explanatory variable should be
included, lag length selected, etc.

� Same basic ideas hold.

� However, one important complication occurs in the
AR(p) model relating to unit roots.



� To understand it, divide coe¢ cients into two groups:
1) �; 1; ::; p�1; �, and 2) �.

� In other words, we consider hypothesis tests involving
� independently of those involving the other coe¢ -
cients.



1.3.1 Testing Involving �; 1; ::; p�1 and �

� Many methods exist to determine the appropriate
lag length in an AR(p) model (textbook discusses
the use of information criteria , but this course will
not cover them).

� But simply looking at t-statistics or F-statistics can
be quite informative.

� Such tests involving these coe¢ cients work in the
same way as in previous chapters.

� E.g. In Table 7.3 the P-value associated with the
coe¢ cients on the lagged�Y terms are insigni�cant
(so might want to drop these)

� In Table 7.3 the P-value associated with determin-
istic trend is insigni�cant (so might want to drop
this)



� Alternatively, a common strategy is to choose a
maximum lag length, pmax, and then sequentially
drop lags if the relevant coe¢ cients are insigni�cant.

A summary of this testing strategy is:

Step 1

Choose the maximum lag length, pmax, that seems rea-
sonable.

Step 2

Estimate using OLS the AR(pmax) with deterministic
trend model. If the P-value for testing pmax�1 = 0

is less than the signi�cance level you choose (e.g. 0:05)
then go to Step 5, using pmax as lag length. Otherwise
go on to the next step.

Step 3



Estimate the AR(pmax � 1) model. If the P-value for
testing pmax�2 = 0 is less than the signi�cance level
you choose then go to Step 5, using pmax � 1 as lag
length. Otherwise go on to the next step.

Step 4

Repeatedly estimate lower order AR models until you �nd
an AR(p) model where p�1 = 0 is statistically signi�-
cant (or you run out of lags).

Step 5

Now test for whether the deterministic trend should be
omitted; that is, if the P-value for testing � = 0 is greater
than the signi�cance level you choose then drop the de-
terministic trend variable.



Example: U.S. Personal Income (continued)

We did sequential testing beginning with pmax = 4, the
model reduces to:

�Yt = �+ �Yt�1 + "t:

Results:

Table 7.4: AR(1) Model
Variable OLS Estimate t-statistic P-value
Intercept 0:039 2:682 0:008
Yt�1 �0:004 �2:130 0:035



1.3.2 Testing Involving �: Unit Root Testing

� Remember if � = 0, then Y contains a unit root.

� So maybe you can just test � = 0 in the same man-
ner as you tested the signi�cance of the other coef-
�cients?

� E.g. Table 7.4, the t-statistic for the coe¢ cient �
is �2:13. If you get critical values from Student-t
statistical tables (or look at P-values), you reject the
hypothesis that � = 0.

� So � is not zero, and, therefore, that Y does not
have a unit root??

� THIS IS INCORRECT!

� In hypothesis testing, � is di¤erent from other coef-
�cients and we must treat it di¤erently.



� Derivations and proofs a bit hard and will not be
provided.

� Textbook provides some hints about why the deriva-
tions are di¤erent than before.

� Correct test is Dickey-Fuller test.

� Dickey-Fuller test uses the familiar t-statistic for test-
ing � = 0.

� However, critical values for this t-stat not Student-t,
but rather Dickey-Fuller distribution.

� Another complication: distribution di¤ers between
the cases where the AR model does or does not in-
clude a deterministic trend.



� Most econometric packages will provide critical val-
ues for you (but not Excel)

� Also, I provide some Dickey-Fuller critical values be-
low.

� Note: Some say �Dickey-Fuller test� is for testing
for � = 0 in the AR(1) model and use the term
�Augmented Dickey-Fuller test� for testing in the
AR(p) model.

� But these are basically the same test so I (and many
others) just say �Dickey-Fuller test� for both.



� How to do Dickey Fuller test in practice?

� First estimate the AR(p) model with deterministic
trend:

�Yt = �+�Yt�1+1�Yt�1+::+p�1�Yt�p+1+�t+"t

and use sequential testing procedures to select a lag length
and decide whether the deterministic trend should be in-
cluded.

� Then, record the t-stat corresponding to the coef-
�cient � and compare to appropriate Dickey-Fuller
critical value from Table 7.5.

� Dickey Fuller critical values depend on sample size
and whether model has deterministic trend or not.



� Remember � = 0 implies unit root and �2 < � <

0, then the series is stationary.

� So if stationary b� (and, thus, its t-statistic) should
be negative.

� Thus, unit root hypothesis is rejected if the t-statistic
is more negative than the critical value

Table 7.5: Critical Values for the Dickey-Fuller Test
T = 25 T = 50 T = 100 T =1

AR Model Does Not Have Deterministic Trend
1% Critical
Value

�3:75 �3:59 �3:50 �3:42

5% Critical
Value

�2:99 �2:93 �2:90 �2:80

AR Model Does Have Deterministic Trend
1% Critical
Value

�4:38 �4:15 �4:04 �3:96

5% Critical
Value

�3:60 �3:50 �3:45 �3:41



� Dickey-Fuller test is the most popular unit root test,
however there are many others and many economet-
rics software packages allow you to do them auto-
matically.

Example: U.S. Personal Income (continued)

� From Table 7.4, Dickey Fuller test statistic is�2:130

� For T = 163, Table 7.5 says 5% critical value is
between �2:90 and �2:80.

� Test statistic is not more negative than the critical
value.

� Hence, accept hypothesis that personal income does
contain a unit root at the 5% level of signi�cance.



� Note: a formal general de�nition of stationarity is
provided in textbook (but not covered in this course)

� Note: the textbook also have a discussion of volatil-
ity/ARCH and GARCH. These topics are not covered
in the course (but if you are interested in �nance you
might want to read them anyway)



1.4 Chapter Summary

1. Regressions with time series variables involve two
new issues. First, one variable can in�uence another
with a time lag. Second, if the variables are nonsta-
tionary, the spurious regression problem can result.
The latter issue will be dealt with in next chapter.

2. Many time series exhibit trend behavior, while their
di¤erences do not exhibit such behavior.

3. The autocorrelation function is a common tool for
summarizing the relationship between a variable and
lags of itself.

4. Autoregressive models are regression models used for
working with time series variables. Such models can
be written in two ways: one with Yt as the depen-
dent variable, the other with �Yt as the dependent
variable.



5. The distinction between stationary and non-stationary
models is a crucial one.

6. Unit root nonstationarity is key in economics.

7. If Yt has unit root then AR(p) model with �Yt as
the dependent variable can be estimated using OLS.
Standard statistical results hold for all coe¢ cients
except the coe¢ cient on Yt�1.

8. In the AR(p) model with deterministic trend, sequen-
tial hypothesis testing procedures can be used to se-
lect lag length and decide whether a deterministic
trend should be included.

9. The Dickey-Fuller test is a unit root test. It involves
testing whether the coe¢ cient on Yt�1 is equal to
zero using the t-statistic. The t-statistic does not
have a Student-t distribution and critical values must
be taken from the Dickey-Fuller statistical tables.


