
Regression with Time Series Variables 
 
Motivation: 
 
Financial researchers often interested in 
measuring the effect of an explanatory variable 
or variables on a dependent variable.  
 
Regression modelling goal is complicated when 
the researcher uses time series data since an 
explanatory variable may influence a dependent 
variable with a time lag.  
 
This often necessitates the inclusion of lags of 
the explanatory variable in the regression 
(Chapter 8).  
 
Chapter 9 gives reasons why lags of the 
dependent variable should also be included in 
the regression.  

 1



Many theories in finance imply a regression 
model with lags of dependent and explanatory 
variables. 
 
 
Here we do not derive financial theories to 
motivate our regression models. However, it is 
worth to mention a few classic articles in finance 
and the time series data sets they use.  
 
Example 1: 
 
Campbell and Ahmer "What moves the stock 
and bond markets? A variance decomposition 
for long-term asset returns" 
 
 American data on excess stock returns, various 
interest rates, the yield spread (difference 
between long- and short-term interest rates) and 
the dividend-price ratio.  
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Example 2:  
 
Lettau and Ludvigson called "Consumption, 
aggregate wealth and expected stock returns"  
 
Data: excess stock returns, asset wealth, labor 
income and consumption.  
 
Example 3: 
 
Campbell and Shiller, “Stock prices, earnings 
and expected dividends” 
 
In Chapter 8 did example involving the 
prediction of long-run stock returns using the 
dividend-price ratio.  
 
Such regressions grew out papers such as this 
one. 
 
 
All of these examples (and many more) work 
with regressions with lags of dependent and 
explanatory variables  
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Autoregressive Distributed Lag (ADL) 
Model 

 
• Focus on 2 time series variables: Yt and Xt. 
 
 
• Can easily extend to many explanatory 

variables. 
 
 
• Augment AR(p) with lags of explanatory 

variables produces ADL model 
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• p lags of Y, q lags of X ⇒ ADL(p,q). 
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The ADL Model 
 

 
• Estimation and interpretation of the ADL(p,q) 

model depends on whether Y and X are 
stationary or have unit roots. 

 
• Before you estimate an ADL model you should 

test both Y and X for unit roots using the 
Dickey-Fuller test. 
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Time Series Regression when X and Y 
are Stationary 

 
 
• Minimal changes (e.g. OLS fine, testing done 

in standard way, etc.), except for the 
interpretation of results. 

 
• Lag lengths, p and q can be selected using 

sequential tests as in Chapters 8 and 9.  
 
• It is convenient to rewrite ADL model as: 
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• This “ADL variant” is equivalent to original 

one (only written differently). 
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The Long Run (Total) Multiplier 
 
 
• Effect of a slight change in X on Y in the long 

run. 
 
 
To understand the long run multiplier: 
 
• Suppose X and Y are in an equilibrium or 

steady state. 
 
• All of a sudden, X changes slightly. 
 
• This affects Y, which will change and, in the 

long run, move to a new equilibrium value. 
 
• The difference between the old and new 

equilibrium values for Y = the long run 
multiplier effect of X on Y. 

 
 
• Can show that the long-run multiplier is  -θ/φ. 
 
• For system to be stable (a concept we will not 

formally define), we need φ<0. 
 

 7



Example: The Effect of Financial 
Liberalization on Economic Growth 

 
Time series data for 98 quarters for a country 
 
• Y = the percentage change in GDP 
 
 
• X = the percentage change in total stock 

market capitalization 
 
• Assume Y and X are stationary 
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Example: The Effect of Financial 
Liberalization on Economic Growth 

(cont.) 
 
 
• ADL(2,2) with Deterministic Trend Model 
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 Coeff. Stand.

Error 
t-Stat P-val Lower 

 95% 
Upper 
95% 

Inter. -.028  .041 -.685  .495  -.110  .054 
Yt-1 -.120  .013 -9.46 4.E-15  -.145 -.095 
ΔYt-1  .794  .031 25.628 7.E-43  .733  .856 
Xt  .125  .048 2.605  .011  .030  .221 
ΔXt  .838  .044 19.111 3.E-33  .750  .925 
ΔXt-1  .002  .022 .103  .918 -.041  .046 
time  .001  .001 .984  .328 -.001  .002 
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Example: The Effect of Financial 
Liberalization on Economic Growth 

(cont.) 
 
• Estimate of long run multiplier: 
 
 

( ) .042.1120.
125. =−−  

 
 
Remember that the dependent and explanatory 
variables are % changes: 

  
• The long run multiplier effect of financial 

liberalization on GDP growth is 1.042 percent. 
 
 
• If X permanently increases by one percent, 

the equilibrium value of Y will increase by 
1.042 percent. 
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Time Series Regression when Y and X 
Have Unit Roots: Spurious Regression 

 
• Now assume that Y and X have unit roots.  
 
 
• Consider the standard regression of Y on X: 
 

.ttt eXY ++= βα
 

 
 

• OLS estimation of this regression can yield 
results which are completely wrong.  

 
 
• These problems carry over to the ADL model. 
 
 
 
 

 11



The Spurious Regression Problem 
 
 

• Even if the true value of β is 0, OLS can yield 
an estimate, , which is very different from 
zero.  

β̂

 
• Statistical tests (using the t-stat or P-value) 

may indicate that β is not zero.  
 
• If β=0, then the R2 should be zero. In the 

present case, the R2 will often be quite large. 
 
 

This is called the spurious regression problem.  
 

 
Practical Implication: 
 
With the one exception that we note below, you 
should never run a regression of Y on X if the 
variables have unit roots. 
 
The exception occurs if Y and X are cointegrated. 
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Cointegration 
 
 
 
• Errors are a linear combination of two unit 

root series (Y and X). 
 

e=Y-α-βX 
 
 
 
• If Y and X have unit roots, this usually means 

e has a unit root. This is the cause of the 
spurious regression problem. 

 
 
• However, in some cases the unit roots in Y 

and X “cancel each other out” and e does not 
have a unit root and the spurious regression 
problem vanishes. This is referred to as 
cointegration.  
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Intuition about Cointegration 
 
Note: If cointegration does not occur then e will 
have a trend in it. 
 
• If X and Y have unit roots then they have 

stochastic trends. However, if they are 
cointegrated, the error does not have such a 
trend. The error will not get too large and Y 
and X will not diverge from one another. 

 
 
•  Y and X will trend together. Jargon: common 

trends or co-trending. 
 
 
• If we are talking about a financial theory 

involving an equilibrium concept, e is the 
equilibrium error. If Y and X are cointegrated 
then the equilibrium error stays small.  

 
 
• If Y and X are cointegrated then there is an 

equilibrium relationship between them. If 
they are not, then no equilibrium relationship 
exists.  
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Intuition about Cointegration (cont.) 
 
• It is unlikely that a financial system will ever 

be in precise equilibrium since there are 
always shocks and unexpected changes which 
occur. However, departures from equilibrium 
should not be too large. Hence, if a financial 
theory which implies an equilibrium 
relationship between Y and X is correct, then 
we should observe Y and X being 
cointegrated. 

 
 
Summary: if cointegration is present, then not 
only do we avoid the spurious regression 
problem, but we also have important economic 
information (e.g. that an equilibrium 
relationship exists or that two series are 
trending together). 
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Example: Cointegration Between the 
Spot and Forward Rates 

 
In futures markets, theories involving investors 
having rational expectations often imply 
cointegrating relationships.  
 
 
Spot rate definition 
In foreign exchange markets you can buy any 
major currency (e.g. the $ or the £) in a regular 
way (e.g.  For instance, at the time I am writing 
this I could purchase $1.97 for £1). This is spot 
rate.  
 
Forward rate definition
 
Can also agree an exchange rate now, but carry 
out the actual trade at some future date (e.g. a 
deal might have the form “I will guarantee that 
one year from now, I will give you $2.00 for 
your £1”). This is the forward rate.  
 
Similar contracts (and much more complicated 
ones) can be written in stock markets and, 
indeed, such financial derivatives play a huge 
role in modern financial markets.  

 16



Many financial theories, involving market 
efficiency and rational expectations of investors, 
imply that forward rates should be good 
predictors of future spot rates.  
 
Empirically, it seems that prices of assets (and 
an exchange rate is a price of an asset) often 
have unit roots in them (with returns being 
stationary).  
 
If we combine the financial theory with this 
empirical regularity, it turns out that they imply 
that spot and forward rates should be 
cointegrated. 
 
See Figure 10.1 
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Figure 10.1: Spot and Forward Rates
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Other examples of financial theories which 
imply cointegration:
 
• Purchasing power parity. 
 
• Long term and short term interest rates. 
 
• Permanent income hypothesis. 
 
• Theories of money demand. 
 
• Uncovered interest parity 
 
• World business cycles. 
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Estimation and Testing with 

Cointegrated Variables 
 
 
• OLS estimation of regression of Y on X is fine 

if cointegration occurs. 
 
 
• Y = α + βX + e 
is called the cointegrating regression.  
 
 
• β is the long-run multiplier. 
 
 
However, before you run this regression you must 
make sure the variables are cointegrated, if not 
you run into the spurious regressions problem. 
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Testing for Cointegration 
 
 
• Many tests available. Here is a simple one 

called the Engle-Granger test that can be done 
using regression methods (a better test called 
the Johansen test described in next chapter) 

 
 
• Intuition: Cointegration occurs if e does not 

have a unit root.  
 
 
• This suggests we test whether OLS residuals 

for regression of Y on X have a unit root using 
Dickey-Fuller test. 

 
 
• This is called the Engle-Granger test 
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The Engle-Granger Test 
 
 
 
1) Run the regression of Y on X and save the 

residuals. 
 
 
2)  Carry out a unit root test on the residuals. If 

the unit root hypothesis is rejected then 
conclude that Y and X are cointegrated. 
However, if the unit root is accepted then 
conclude cointegration does not occur. 

 
 
Note: When you do Dickey-Fuller test on 
residuals, do not include a deterministic trend. 
Inclusion of deterministic trend ⇒ errors 
exhibit trend behaviour. 
 
 
Don’t forget: Before you do this test, you must test 
for unit roots in Y and X individually. Only if you 
fail to reject the unit root hypothesis for both X 
and Y should you even consider thinking about 
cointegration. 
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Example: Cointegration Between Spot 
and Forward  

 
 

• Y = spot rate 
 
• X = forward rate  
 
 
• Cointegrating regression: 
 

.996.774.0ˆ
tt XY +=

 
 
 
• Save residuals, u. 
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Example: Cointegration Between Spot 
and Forward Rates (cont.) 

 
 
• The Dickey-Fuller strategy suggests we should 

regress Δut on ut-1.  
 
 
 Coeff. St. 

Error 
t-Stat P-val. Lower 

 95% 
Upper 
95% 

Inter. .024 .292 .083 .934 -.552 .600 
ut-1 -1.085 .075 -14.5 6.E-32 -1.233 -.938 
 
• Compare t-stat for the coefficient on ut-1 to a 

critical value of –2.89.  
 
• Since –14.5 is more negative –2.89 we reject 

the unit root hypothesis and conclude that 
the residuals do not have a unit root. Hence, 
Y and X are cointegrated.  

 
 
Note: Dickey-Fuller test here is based on an 
AR(1) model for the residuals. Should have 
worked with AR(p) and used sequential testing 
strategy to choose p. 
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Example: Cointegration Between Spot 
and Forward Rates (cont.) 

 
 
• Since X and Y are cointegrated we do not 

need to worry about the spurious regression 
problem.  

 
 
• The coefficient on the forward rate is .996 

which is very close to the value of 1 
predicted by financial theory 

 
 
• The long run multiplier is .996.  
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The Error Correction Model (ECM) 
 
 
Previous material allows us to: 
 
 
• Test whether Y and X are cointegrated. 
 
 
• Obtain an estimate of long run multiplier. 
 
 
• What if you are interested in short run 

properties (e.g. adjustment to equilibrium)? 
 
 
 
Granger Representation Theorem
  
 If Y and X are cointegrated, then the 
relationship between the two can be expressed as 
an ECM. 
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Simple Example of an ECM 

 
 
 

,
01 tttt

XeY εωλϕ +Δ++=Δ
−

 
 
 
 

where et-1=Yt-1-α-βXt-1
 
 
 
Assume λ<0 (a stability condition we will 
motivate later). 
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ECM Intuition 
 
 
Dependent variable: ΔY 
 
Explanatory variables: 
 
1.  ΔX ⇒ Y changes if X changes. 
 
 
2.  et-1 ⇒ Y changes if equilibrium error was 

made last period. 
 
 
Note: et-1 is called the error correction term. 
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How Does “Error Correction” Happen? 
 
 
Assume ΔX = 0 to focus on error correction 
term. 
 
• If et-1>0 then Yt-1 is above equilibrium.  
 
• ECM says that this will cause ΔYt to be 

negative (since λ<0 and, hence, λet-1 < 0).  
 
• Y starts falling towards equilibrium. 
 
• If et-1<0 opposite occurs and Y starts rising 

towards equilibrium. 
 
• Including et-1 as explanatory variable allows 

equilibrium error to be “corrected”. 
 
 
 

Note: This reasoning requires λ < 0. If λ > 0, 
equilibrium errors are magnified.
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Estimation of ECMs 
 

 
Many computer packages allow for 

automatic estimation of ECMs using (slightly) 
better methods than that described here. 

 
 
Step 1: Run a regression of Y on X and save 

the residuals. 
 
 
Step 2: Run a regression of ΔY on ΔX and 

the residuals from Step 1 lagged one period. 
 

 
Remember: before carrying out this two-step 
estimation procedure for the ECM, you must 
verify that Y and X have unit roots and are 
cointegrated. 
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General form of an ECM  
 
• Just as in ADL model, may need extra lags of 

dependent and explanatory variables. 
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• Do not put in extra lags of e. 
 
 
• Use 2 step estimation method described on 

previous overhead. 
 
 
• Number of lags can be selected using the 

sequential testing strategy we used for ADL 
model. 
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Example: Cointegration Between Spot 
and Forward Rates (continued) 

 
• Before we ran regression of Y on X and saved 

the residuals, ut.  
 
 
 

• Use residuals to estimate the ECM: 
 
 

.
01 tttt

XuY εωλϕ +Δ++=Δ
−

 
 

 
 

 Coeff. St. 
Error 

t-Stat P-val. Lower 
 95% 

Upper 
95% 

Inter. -.023 .342 -.068 .946 -.700 .654 
ut-1 -1.085 .075 -14.46 9.E-32 -1.233 -.937 
ΔXt 1.044 .182 5.737 4.E-08   .685 1.403 
 
 
• λ and ω0 summarise short run properties.  
 
• 085.1ˆ −=λ  ⇒ positive errors tend to cause ΔY 

to be negative and hence Y to fall. In 
particular, an equilibrium error of 1 unit 
tends to cause the spot rate to fall by 1.085 
unit in the next period, ceteris paribus.  
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Time Series Regression when Y and X 
Have Unit Roots but are NOT 

Cointegrated  
 

• Do not run a regression of Y on X (spurious 
regression problem).  

 
• The presence of such characteristics suggests 

that you should rethink your basic model and 
include other explanatory variables.  

 
• Instead of working with Y and X themselves, 

for example, you could difference them. 
(Remember that if Y and X have one unit 
root, then ΔY and ΔX should be stationary).  

 
• In this case, you could work with ΔY and ΔX 

and estimate the ADL model using the 
techniques described at the beginning of this 
chapter.  
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Time Series Regression when Y and X 
Have Unit Roots but are NOT 

Cointegrated (cont.) 
 
 
 

• Use an ADL using changes of the variables: 
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• OLS estimation and testing can be done as for 

the ADL model.  
 
 
• Be careful in how you interpret results. 
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Interpretation 
 
 
Example 

 
 

• Suppose Y = exchange rates and X = interest 
rates. 

 
 
• If Y and X are cointegrated, or if both are 

stationary, we obtain an estimate of the long 
run effect of a small change in interest rates 
on exchange rates.  

 
 

• If Y and X are neither stationary nor 
cointegrated, we obtain an estimate of the long 
run effect of a small change in the change of 
interest rates on the change in exchange rates.  
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Chapter Summary 
 
1. If all variables are stationary, then an 

ADL(p,q) model can be estimated using OLS. 
Statistical techniques are all standard. 

  
2. A variant on the ADL model is often used to 

avoid potential multicollinearity problems and 
provide a straightforward estimate of the long 
run multiplier. 

 
 
3. If all variables are nonstationary, great care 

must be taken in the analysis due to the 
spurious regression problem. 

 
4. If all variables are nonstationary but the 

regression error is stationary, then 
cointegration occurs. 

 
 
5. If cointegration is present, the spurious 

regression problem does not occur. 
 
6. Cointegration is an attractive concept for 

financial researchers since it implies that an 
equilibrium relationship exists. 
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7. Cointegration can be tested using the Engle-

Granger test. This test is a Dickey-Fuller test 
on the residuals from the cointegrating 
regression. 

 
8. If the variables are cointegrated then an error 

correction model can be used. This model 
captures short run behavior in a way that the 
cointegrating regression cannot. 

 
9. If the variables have unit roots but are not 

cointegrated, you should not work with them 
directly. Rather you should difference them 
and estimate an ADL model using the 
differenced variables.  
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Regression with Time Series Variables


Motivation:

Financial researchers often interested in measuring the effect of an explanatory variable or variables on a dependent variable. 

Regression modelling goal is complicated when the researcher uses time series data since an explanatory variable may influence a dependent variable with a time lag. 

This often necessitates the inclusion of lags of the explanatory variable in the regression (Chapter 8). 

Chapter 9 gives reasons why lags of the dependent variable should also be included in the regression. 

Many theories in finance imply a regression model with lags of dependent and explanatory variables.


Here we do not derive financial theories to motivate our regression models. However, it is worth to mention a few classic articles in finance and the time series data sets they use. 

Example 1:


Campbell and Ahmer "What moves the stock and bond markets? A variance decomposition for long-term asset returns"

 American data on excess stock returns, various interest rates, the yield spread (difference between long- and short-term interest rates) and the dividend-price ratio. 

Example 2: 


Lettau and Ludvigson called "Consumption, aggregate wealth and expected stock returns" 

Data: excess stock returns, asset wealth, labor income and consumption. 

Example 3:

Campbell and Shiller, “Stock prices, earnings and expected dividends”


In Chapter 8 did example involving the prediction of long-run stock returns using the dividend-price ratio. 

Such regressions grew out papers such as this one.


All of these examples (and many more) work with regressions with lags of dependent and explanatory variables 


Autoregressive Distributed Lag (ADL) Model

· Focus on 2 time series variables: Yt and Xt.


· Can easily extend to many explanatory variables.


· Augment AR(p) with lags of explanatory variables produces ADL model



[image: image14.emf]Figure 10.1: Spot and Forward Rates
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· p lags of Y, q lags of X ( ADL(p,q).


The ADL Model


· Estimation and interpretation of the ADL(p,q) model depends on whether Y and X are stationary or have unit roots.


· Before you estimate an ADL model you should test both Y and X for unit roots using the Dickey-Fuller test.

Time Series Regression when X and Y are Stationary


· Minimal changes (e.g. OLS fine, testing done in standard way, etc.), except for the interpretation of results.


· Lag lengths, p and q can be selected using sequential tests as in Chapters 8 and 9. 


· It is convenient to rewrite ADL model as:
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· This “ADL variant” is equivalent to original one (only written differently).


The Long Run (Total) Multiplier


· Effect of a slight change in X on Y in the long run.


To understand the long run multiplier:


· Suppose X and Y are in an equilibrium or steady state.


· All of a sudden, X changes slightly.


· This affects Y, which will change and, in the long run, move to a new equilibrium value.


· The difference between the old and new equilibrium values for Y = the long run multiplier effect of X on Y.


· Can show that the long-run multiplier is  -(/(.


· For system to be stable (a concept we will not formally define), we need (<0.


Example: The Effect of Financial Liberalization on Economic Growth

Time series data for 98 quarters for a country

· Y = the percentage change in GDP

· X = the percentage change in total stock market capitalization

· Assume Y and X are stationary


Example: The Effect of Financial Liberalization on Economic Growth (cont.)

· ADL(2,2) with Deterministic Trend Model
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Example: The Effect of Financial Liberalization on Economic Growth (cont.)

· Estimate of long run multiplier:
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Remember that the dependent and explanatory variables are % changes:


· The long run multiplier effect of financial liberalization on GDP growth is 1.042 percent.


· If X permanently increases by one percent, the equilibrium value of Y will increase by 1.042 percent.


Time Series Regression when Y and X Have Unit Roots: Spurious Regression


· Now assume that Y and X have unit roots. 


· Consider the standard regression of Y on X:
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· OLS estimation of this regression can yield results which are completely wrong. 


· These problems carry over to the ADL model.


The Spurious Regression Problem


· Even if the true value of ( is 0, OLS can yield an estimate, 
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, which is very different from zero. 


· Statistical tests (using the t-stat or P-value) may indicate that ( is not zero. 


· If (=0, then the R2 should be zero. In the present case, the R2 will often be quite large.


This is called the spurious regression problem. 


Practical Implication:


With the one exception that we note below, you should never run a regression of Y on X if the variables have unit roots.


The exception occurs if Y and X are cointegrated.


Cointegration


· Errors are a linear combination of two unit root series (Y and X).


e=Y-(-(X


· If Y and X have unit roots, this usually means e has a unit root. This is the cause of the spurious regression problem.


· However, in some cases the unit roots in Y and X “cancel each other out” and e does not have a unit root and the spurious regression problem vanishes. This is referred to as cointegration. 


Intuition about Cointegration


Note: If cointegration does not occur then e will have a trend in it.


· If X and Y have unit roots then they have stochastic trends. However, if they are cointegrated, the error does not have such a trend. The error will not get too large and Y and X will not diverge from one another.


·  Y and X will trend together. Jargon: common trends or co-trending.


· If we are talking about a financial theory involving an equilibrium concept, e is the equilibrium error. If Y and X are cointegrated then the equilibrium error stays small. 


· If Y and X are cointegrated then there is an equilibrium relationship between them. If they are not, then no equilibrium relationship exists. 


Intuition about Cointegration (cont.)


· It is unlikely that a financial system will ever be in precise equilibrium since there are always shocks and unexpected changes which occur. However, departures from equilibrium should not be too large. Hence, if a financial theory which implies an equilibrium relationship between Y and X is correct, then we should observe Y and X being cointegrated.


Summary: if cointegration is present, then not only do we avoid the spurious regression problem, but we also have important economic information (e.g. that an equilibrium relationship exists or that two series are trending together).


Example: Cointegration Between the Spot and Forward Rates

In futures markets, theories involving investors having rational expectations often imply cointegrating relationships. 

Spot rate definition


In foreign exchange markets you can buy any major currency (e.g. the $ or the £) in a regular way (e.g.  For instance, at the time I am writing this I could purchase $1.97 for £1). This is spot rate. 

Forward rate definition

Can also agree an exchange rate now, but carry out the actual trade at some future date (e.g. a deal might have the form “I will guarantee that one year from now, I will give you $2.00 for your £1”). This is the forward rate. 

Similar contracts (and much more complicated ones) can be written in stock markets and, indeed, such financial derivatives play a huge role in modern financial markets. 

Many financial theories, involving market efficiency and rational expectations of investors, imply that forward rates should be good predictors of future spot rates. 

Empirically, it seems that prices of assets (and an exchange rate is a price of an asset) often have unit roots in them (with returns being stationary). 

If we combine the financial theory with this empirical regularity, it turns out that they imply that spot and forward rates should be cointegrated.

See Figure 10.1
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Other examples of financial theories which imply cointegration:

· Purchasing power parity.


· Long term and short term interest rates.


· Permanent income hypothesis.


· Theories of money demand.


· Uncovered interest parity


· World business cycles.


Estimation and Testing with Cointegrated Variables


· OLS estimation of regression of Y on X is fine if cointegration occurs.


· Y = ( + (X + e


is called the cointegrating regression. 


· ( is the long-run multiplier.


However, before you run this regression you must make sure the variables are cointegrated, if not you run into the spurious regressions problem.


Testing for Cointegration


· Many tests available. Here is a simple one called the Engle-Granger test that can be done using regression methods (a better test called the Johansen test described in next chapter)

· Intuition: Cointegration occurs if e does not have a unit root. 


· This suggests we test whether OLS residuals for regression of Y on X have a unit root using Dickey-Fuller test.


· This is called the Engle-Granger test


The Engle-Granger Test


1) Run the regression of Y on X and save the residuals.


2)  Carry out a unit root test on the residuals. If the unit root hypothesis is rejected then conclude that Y and X are cointegrated. However, if the unit root is accepted then conclude cointegration does not occur.


Note: When you do Dickey-Fuller test on residuals, do not include a deterministic trend. Inclusion of deterministic trend ( errors exhibit trend behaviour.


Don’t forget: Before you do this test, you must test for unit roots in Y and X individually. Only if you fail to reject the unit root hypothesis for both X and Y should you even consider thinking about cointegration.

Example: Cointegration Between Spot and Forward 

· Y = spot rate

· X = forward rate 


· Cointegrating regression:
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· Save residuals, u.


Example: Cointegration Between Spot and Forward Rates (cont.)


· The Dickey-Fuller strategy suggests we should regress (ut on ut-1. 


		

		Coeff.

		St.


Error

		t-Stat

		P-val.

		Lower


 95%

		Upper


95%



		Inter.

		.024

		.292

		.083

		.934

		-.552

		.600



		ut-1

		-1.085

		.075

		-14.5

		6.E-32

		-1.233

		-.938





· Compare t-stat for the coefficient on ut-1 to a critical value of –2.89. 


· Since –14.5 is more negative –2.89 we reject the unit root hypothesis and conclude that the residuals do not have a unit root. Hence, Y and X are cointegrated. 


Note: Dickey-Fuller test here is based on an AR(1) model for the residuals. Should have worked with AR(p) and used sequential testing strategy to choose p.


Example: Cointegration Between Spot and Forward Rates (cont.)


· Since X and Y are cointegrated we do not need to worry about the spurious regression problem. 


· The coefficient on the forward rate is .996 which is very close to the value of 1 predicted by financial theory

· The long run multiplier is .996. 


The Error Correction Model (ECM)


Previous material allows us to:


· Test whether Y and X are cointegrated.


· Obtain an estimate of long run multiplier.


· What if you are interested in short run properties (e.g. adjustment to equilibrium)?


Granger Representation Theorem


If Y and X are cointegrated, then the relationship between the two can be expressed as an ECM.

Simple Example of an ECM
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where et-1=Yt-1-(-(Xt-1

Assume (<0 (a stability condition we will motivate later).


ECM Intuition


Dependent variable: (Y


Explanatory variables:


1.  (X ( Y changes if X changes.


2.  et-1 ( Y changes if equilibrium error was made last period.


Note: et-1 is called the error correction term.


How Does “Error Correction” Happen?


Assume (X = 0 to focus on error correction term.


· If et-1>0 then Yt-1 is above equilibrium. 


· ECM says that this will cause (Yt to be negative (since (<0 and, hence, (et-1 < 0). 


· Y starts falling towards equilibrium.


· If et-1<0 opposite occurs and Y starts rising towards equilibrium.


· Including et-1 as explanatory variable allows equilibrium error to be “corrected”.


Note: This reasoning requires ( < 0. If ( > 0, equilibrium errors are magnified.


Estimation of ECMs

Many computer packages allow for automatic estimation of ECMs using (slightly) better methods than that described here.

Step 1: Run a regression of Y on X and save the residuals.


Step 2: Run a regression of (Y on (X and the residuals from Step 1 lagged one period.


Remember: before carrying out this two-step estimation procedure for the ECM, you must verify that Y and X have unit roots and are cointegrated.


General form of an ECM 


· Just as in ADL model, may need extra lags of dependent and explanatory variables.
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· Do not put in extra lags of e.

· Use 2 step estimation method described on previous overhead.

· Number of lags can be selected using the sequential testing strategy we used for ADL model.

Example: Cointegration Between Spot and Forward Rates (continued)


· Before we ran regression of Y on X and saved the residuals, ut. 


· Use residuals to estimate the ECM:
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		Coeff.

		St.


Error

		t-Stat

		P-val.

		Lower


 95%

		Upper


95%



		Inter.

		-.023

		.342

		-.068

		.946

		-.700

		.654



		ut-1

		-1.085

		.075

		-14.46

		9.E-32

		-1.233

		-.937



		(Xt

		1.044

		.182

		5.737

		4.E-08

		  .685

		1.403





· ( and (0 summarise short run properties. 


· 
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 ( positive errors tend to cause (Y to be negative and hence Y to fall. In particular, an equilibrium error of 1 unit tends to cause the spot rate to fall by 1.085 unit in the next period, ceteris paribus. 


Time Series Regression when Y and X Have Unit Roots but are NOT Cointegrated 


· Do not run a regression of Y on X (spurious regression problem). 


· The presence of such characteristics suggests that you should rethink your basic model and include other explanatory variables. 


· Instead of working with Y and X themselves, for example, you could difference them. (Remember that if Y and X have one unit root, then (Y and (X should be stationary). 


· In this case, you could work with (Y and (X and estimate the ADL model using the techniques described at the beginning of this chapter. 


Time Series Regression when Y and X Have Unit Roots but are NOT Cointegrated (cont.)


· Use an ADL using changes of the variables:
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· OLS estimation and testing can be done as for the ADL model. 


· Be careful in how you interpret results.


Interpretation


Example


· Suppose Y = exchange rates and X = interest rates.


· If Y and X are cointegrated, or if both are stationary, we obtain an estimate of the long run effect of a small change in interest rates on exchange rates. 


· If Y and X are neither stationary nor cointegrated, we obtain an estimate of the long run effect of a small change in the change of interest rates on the change in exchange rates. 


Chapter Summary


1. If all variables are stationary, then an ADL(p,q) model can be estimated using OLS. Statistical techniques are all standard.

2. A variant on the ADL model is often used to avoid potential multicollinearity problems and provide a straightforward estimate of the long run multiplier.

3. If all variables are nonstationary, great care must be taken in the analysis due to the spurious regression problem.

4. If all variables are nonstationary but the regression error is stationary, then cointegration occurs.

5. If cointegration is present, the spurious regression problem does not occur.

6. Cointegration is an attractive concept for financial researchers since it implies that an equilibrium relationship exists.

7. Cointegration can be tested using the Engle-Granger test. This test is a Dickey-Fuller test on the residuals from the cointegrating regression.

8. If the variables are cointegrated then an error correction model can be used. This model captures short run behavior in a way that the cointegrating regression cannot.

9. If the variables have unit roots but are not cointegrated, you should not work with them directly. Rather you should difference them and estimate an ADL model using the differenced variables. 
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