
Chapter 11: Regression with Time 
Series Variables with Several Equations  
 

Financial research often involves regression-
type models with more than one equation.  

 
This chapter motivates why such models are 
used in finance and how they can be analyzed. 
 
Most of the models/ideas in this chapter are 
straightforward extensions of the ADL and 
ECM models of Chapter 10. 

 
Topics covered: 
 
1. Granger causality  

 
2. Vector Autoregressive (VAR) model.  
 
3. Vector Error Correction Model (VECM) 

 
4. Johansen Test for cointegration 
 
5. Forecasting 

 
6.  Informal introduction to variance 

decompositions 
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Granger Causality 
 
In Chapter 3, we said you should be cautious  
about interpreting correlation and regression 
results as reflecting causality.  
 
In regression, we label one variable the 
dependent variable and the others the 
explanatory variables.  
 
In many cases, because the latter “explained” 
the former it was reasonable to talk about X 
“causing” Y.  
 
In house price example, the price of the house 
was said to be “caused” by the characteristics of 
the house (e.g. number of bedrooms, number of 
bathrooms, etc.). 
 
But in many regressions it is not obvious which 
variable causes which.  
 
e.g. if you have Y = stock prices in country A on 
X = stock prices in Country B. which causes 
which? 
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Granger Causality (cont.) 
 

With time series data we can make slightly 
stronger statements about causality simply by 
exploiting the fact that time does not run 
backward.  
 
If event A happens before event B, then it is 
possible that A is causing B. However, it is not 
possible that B is causing A.  
 
 
These ideas can be investigated through 
regression models using the notion of Granger 
causality.  
 
X “Granger causes” Y if past values of X can 
help explain Y.  
 
If Granger causality holds this does not 
guarantee that X causes Y. But, it suggests that 
X might be causing Y. 
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Granger Causality (cont.) 
 
 

Granger causality is only relevant with time 
series variables.  
 
 
Work with Granger causality between two 
variables (X and Y) which are both stationary. 
Can be extended to many variables. 
 
Non-stationary case, where X and Y have unit 
roots but are cointegrated, will be mentioned 
later on. 
 
Of course, in practice you must do Dickey-
Fuller tests to see if your variables are 
stationary or not.  
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Granger Causality in a Simple ADL 

Model 
 

 
Since X and Y are assumed to be stationary, use 
the ADL model.  
 
Begin with simple ADL(1,1) model: 
 

.1111 tttt eXYY +++= −− βφα
 

 
 

 
β1 is a measure of the influence of Xt-1 on Yt.  
 
If β1=0 then X does not Granger cause Y.  
 
 
“if β1=0 then past values of X have no 
explanatory power for Y beyond that provided 
by past values of Y”.  
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Granger Causality in a Simple ADL 
Model (cont.) 

 
Granger causality test uses methods for ADL 
from Chapter 10. 
 
 
OLS estimation can be done and the P-value for 
the coefficient on Xt-1 examined for significance.  
 
If β1 is statistically significant (e.g. P-value < .05) 
then we conclude that X Granger causes Y.  
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Granger Causality in an ADL Model 

with p and q Lags 
 

  
 

....

...

11

11

tqtqt

ptptt

eXX

YYtY

++++

++++=

−−

−−

ββ

φφδα

 
 
X Granger causes Y if any or all of β1, ...,βq are 
statistically significant.  
 
 
Since we are assuming X and Y do not contain 
unit roots, OLS regression analysis can be used 
to estimate this model and standard hypothesis 
testing procedures work.  
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Granger Causality in an ADL Model 
with p and q Lags (cont.) 

 
The proper way to do Granger causality testing 
is to test the hypothesis that β1=β2=...=βq=0  
 
X Granger causes Y only if the hypothesis is 
rejected.  
 
Note that the joint test of β1=β2=...=βq=0 is not 
exactly the same as q individual tests of βi=0 for 
i=1,..,q. 
 
Appendix to Chapter 11 describes how joint test 
can be done using F-test 
 
You should already know F-tests from previous 
studies, but a quick reminder cannot hurt 
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Appendix A to Chapter 11: Hypothesis 
Tests Involving More than One 

Coefficient 
 

Let us briefly switch batch the standard 
regression model to remind you of basic theory.  
 
Chapters 5 and 6 introduced F-stat for testing  
H0: β1=...=βk=0 in: 
 

....2211 eXXXY kk +++++= βββα
 
t-stats can be used to test H0: βj=0 
 
What about other cases? 
 
e.g. in the case k=4,  H0: β1=β3=0 
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Unrestricted and Restricted models 

 
Most hypotheses you would want to test place 
restrictions on the model.  
 
E.g. unrestricted regression model is: 
 

eXXXXY +++++= 44332211 ββββα
 

 
and you wish to test the hypothesis H0: β2=β4=0, 
then restricted regression model is: 
 

.3311 eXXY +++= ββα  
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Remember: strategy of hypothesis testing is that 
a test statistic is first calculated and then 
compared to a critical value.  
 
If test statistic is greater than critical value then 
reject the hypothesis; otherwise, accept it.  
 
Here the test statistic is F-statistic: 
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UR  is R2 from unrestricted regression model 

 
2
RR  is R2’s from restricted regression model 

 
J is the number of restrictions  
 
(e.g. J=2 in example since β2=0 and β4=0 are two 
restrictions).  
 
T is the number of observations  
 
k is number of explanatory variables in the 
unrestricted regression (including the intercept) 
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Most relevant computer packages will calculate 
the F-statistic automatically if you specify the 
hypothesis being tested.  
 
Or F-statistic can be obtained by running the 
unrestricted and restricted regressions and 
evaluating its formula 
 
Obtaining critical value with which to compare 
the F-statistic is more problematic (although 
some software packages will provide a P-value 
automatically).  
 
Formally, the critical value depends on T-k and 
J.  
 
Most econometrics or statistics textbooks will 
contain statistical tables for the F-distribution 
which will provide the relevant critical values.  
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Granger Causality in an ADL Model 
with p and q Lags (cont.) 

 
Remember: 
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So Granger causality involves test of H0: 
β1=...=βq=0 in this ADL 
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Sometimes researchers check for Granger 
causality simply (albeit imperfectly) using only 
t-tests. 
 
The P-values for the t-states on individual 
coefficients can be used to determine whether 
Granger causality is present.  
 
Using the 5% level of significance, then if any of 
the P-values for the coefficients β1,...,βq were less 
than .05, you would conclude that Granger 
causality is present.  
 
If none of the P-values is less than .05 then you 
would conclude that Granger causality is not 
present. 
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Granger Causality in an ADL Model 
with p and q Lags (cont.) 

 
Warning if you use t-tests: 
 
If any or all of the coefficients β1,...,βq are 

significant using t-tests, you may safely conclude 
that X Granger causes Y.  

 
If none of these coefficients is significant, it 

is probably the case that X does not Granger 
cause Y. However, you are more likely to be 
wrong if you conclude the latter than if you had 
used the correct joint test of Granger non-
causality.  
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Example: Do Stock Price Movements in 
Country B Granger Cause Stock Price 

Movements in Country A? 
 
 

We have monthly data on logged stock prices 
for Countries A and B. 
 
Dickey-Fuller and Engle-Granger tests indicate 
that stock prices in both countries appear to 
have unit roots, but are not cointegrated. 
 
However, differences of these series are 
stationary and can be interpreted as stock 
market returns (exclusive of dividends).  
 
Use differenced variables to investigate whether 
stock returns in Country A Granger cause those 
in Country B.  
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Example: Do Stock Price Movements in 
Country B Granger Cause Stock Price 
Movements in Country A? (continued) 

 
ADL Model using Stock Returns in Country A 
as the Dependent Variable 
 
 Coeff t Stat P-value Lower 

 95% 
Upper
95% 

Intercept -.751 -1.058 .292 -2.156 .654 
ΔYt-1 .822 4.850 3.81E-6 .486 1.158 
ΔYt-2 -.041 -.222 .825 -.409 .326 
ΔYt-3 .142 .762 .448 -.227 .511 
ΔYt-4 -.181 -1.035 .303 -.526 .165 
ΔXt-1 -.016 -.114 .909 -.299 .267 
ΔXt-2 -.118 -.823 .412 -.402 .166 
ΔXt-3 -.042 -.292 .771 -.324 .241 
ΔXt-4 .038 .266 .791 -.244 .319 
Time .030 2.669 .009 .0077 .052 
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Example: Do Stock Price Movements in 
Country B Granger Cause Stock Price 
Movements in Country A? (continued) 
 
P-values indicate that only the deterministic 
trend and last period’s stock returns in Country 
A have explanatory power for present stock 
returns in Country A. 
 
 
All of the coefficients on the lags of stock returns 
in Country B are insignificant.  
 
Stock returns in Country B do not seem to 
Granger cause stock returns in Country A. 
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Example: Do Stock Returns in Country 
B Granger Cause Stock Returns in 

Country BA? (continued) 
 

Se found that stock returns in Country B did not 
Granger cause stock returns in Country A using 
t-tests.  
 
Here, we will investigate whether these 
conclusions still hold by carrying out the correct 
F-tests for Granger causality. 
 
Y = stock returns in Country A 
 
X = stock returns in Country B 
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Do stock returns in Country B Granger cause 
stock returns in Country A? 
 
Run following regression: 

 

....... 44114411 tttttt eXXYYtY ++++++++= −−−− ββφφδα
 
 

We have T=128 and k=10 (i.e. p=q=4 plus 
deterministic trend).  
 

OLS estimation of this model yields  .616.2 =UR
 
 
The hypothesis that Granger causality does not 
occur is H0: β1=...=β4=0 which involves 4 
restrictions; hence J=4.  
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The restricted regression model is: 
 

.... 4411 tttt eYYtY +++++= −− φφδα
 
 

OLS estimation of this model yields  .613.2 =RR
 
 
 
Result: F-statistic is .145.  
 
Since T-k=118 and is large, we can compare .145 
to a critical value of 2.37.  
 
Since .145<2.37 we cannot reject the hypothesis 
at the 5% level of significance.  
 
Accordingly, we accept the hypothesis that stock 
returns in Country B do not Granger cause stock 
returns in Country A. 
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Causality in Both Directions 
 
 

In many cases, it is not obvious which way 
causality should run.  
 
Should stock markets in Country A affect 
markets in Country B or should the reverse 
hold?  
 
Can check this by running two regressions: 
 
one with Y being the dependent variable and 
one with X being the dependent variable.  
 
If you have k variables, then run k regressions. 
 
This is an example of how multiple equation 
models can arise.  
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Example: Do Stock Price Movements in 
Country A Granger Cause Stock Price 
Movements in Country B? (continued) 

 
 Before we ran a regression to see whether 
stock returns in Country B Granger caused 
stock returns in Country A.  
 
To test whether the causality runs in the 
opposite direction run the ADL regression with 
ΔX = stock returns in Country B  being 
dependent variable. 
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ADL Model using Stock Returns in 

Country B as the Dependent Variable 
 
 Coeff t Stat P-value Lower 

 95% 
Upper
95% 

Intercept -.609 -.730 .467 -2.262 1.044 
ΔXt-1 .053 .312 .755 -.280 .386 
ΔXt-2 -.040 -.235 .814 -.374 .294 
ΔXt-3 -.058 -.348 .728 -.391 .274 
ΔXt-4 .036 .215 .830 -.295 .367 
ΔYt-1 .854 4.280 3.83E-5 .459 1.249 
ΔYt-2 -.217 -.993 .323 -.649 .215 
ΔYt-3 .234 1.067 .288 -.200 .668 
ΔYt-4 -.272 -1.323 .188 -.678 .135 
Time .046 3.514 .001 .020 .072 
 
Here we do find evidence that stock returns in 
Country A Granger cause stock returns in 
Country B.  
 
In particular, the coefficient on ΔYt-1 is highly 
significant, indicating that last month’s stock 
returns in Country A has strong explanatory 
power for stock returns in Country B. 
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Do stock returns in Country A Granger cause 

stock returns in Country B? 
 

Now test for Granger causality using the F-test 
 
Repeat steps for F-test as above except now 
dependent variable refers to Country B and the 
explanatory variable refers to Country A.  
 

We obtain 605.2 =UR   and   .532.2 =RR
 
The F-statistic is 33.412, which is much larger 
than either the 1% or 5% critical values.  
 
Reject the hypothesis that β1=...=β4=0 and 
conclude that stock returns in Country A do 
Granger cause stock returns in Country B. 
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Granger Causality with Cointegrated 

Variables 
 

Testing for Granger causality among 
cointegrated variables is very similar to the 
method outlined above.  
 
Remember that, if variables are found to be 
cointegrate, the an error correction model 
(ECM) can be used: 
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Granger Causality with Cointegrated 

Variables (continued) 
 
 

Remember: this is almost an ADL model except 
for the presence of the term λet-1.  
 
Remember: et-1=Yt-1 - α - βXt-1, an estimate of 
which can be obtained by running a regression 
of Y on X and saving the residuals.  
 
Remember: Many computer packages will 
estimate ECMs for you or you can estimate 
them with the 2-step approach described in 
Chapter 10 
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Granger Causality with Cointegrated 
Variables (continued) 

 

X Granger causes Y if past values of X have 
explanatory power for current values of Y. 
 
In ECM, past values of X appear in the terms 
ΔXt-1,...,ΔXt-q and et-1.  
 
X does not Granger cause Y if ω1=...=ωq=λ=0.  
 
Many computer packages will test this 
hypothesis for you (and provide a p-value) 
 
Or, if you are using 2-step estimation method, t-
statistics and P-values can be used to test for 
Granger causality in the same way as the 
stationary case.  
 
F-tests described in Appendix can be used to 
carry out a formal test of H0: ω1=...=ωq=λ=0. 
 
Testing whether Y Granger causes X is achieved 
by reversing roles that X and Y play in ECM.  
 
There is a theorem that implies if X and Y are 
cointegrated then some form of Granger 
causality must occur: either X must Granger 
cause Y or Y must Granger cause X (or both).  
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Vector Autoregressions 
 
Granger causality often tested using Vector 
Autoregressions or VARs.  
 
First we will define VARs assuming that all 
variables are stationary.  
 
With 2 variables, a VAR involves 2 equations: 
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VARs (continued) 
 

Before, we use first of these equations to test 
whether X Granger causes Y 
 
The second, whether Y Granger causes X.  
 
Note that now the coefficients have subscripts 
indicating which equation they are in.  
 
 
These two equations comprise a VAR.  
 
A VAR is the extension of the autoregressive 
(AR) model to the case in which there is more 
than one variable under study.  
 
In general, a k-variable VAR has k equations 
(one use each variable as the dependent 
variable) 
 
Each equation uses as its explanatory variables 
lags of all the variables under study (and possibly 
a deterministic trend). 
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VARs (continued) 
  
Note that lag lengths, p and q, can be selected 
using the sequential testing methods discussed in 
Chapters 8 through 10.  
 
 
However, common to set p=q and use the same 
lag length for every variable in every equation. 
 
Result is VAR(p) model.  
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VARs (continued) 
 

Example: the following VAR(p) has three 
variables,  Y, X and Z: 
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VARs (continued) 
 

Most relevant computer packages allow you to 
estimate, test and forecast using VARs 
automatically.  
 
Alternatively, estimation and testing can be 
done using OLS methods on one equation at a 
time. 
 
Remember: we have assumed that all the 
variables in the VAR(p) are stationary. 
 
Thus, you can obtain estimates of coefficients in 
each equation using OLS. P-values or t-statistics 
will then allow you to ascertain whether 
individual coefficients are significant.  
 
You can also use the material covered in 
Appendix to carry out  F-tests.  
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Why Use VARs? 
 
Granger causality testing (see above) 
 
Forecasting (see below) 
 
Financial researchers also use VARs in many 
other contexts.  
 
Examples of financial work which uses VARs: 
 
• Models with present value relationships 

often work with VARs using the (log) 
dividend-price ratio and dividend growth. 

 
•  Term structure of interest rates (using 

interest rates of various maturities, interest 
rate spreads, etc.) 

 
• Intertemporal asset allocation (using 

returns on various risky assets)  
 
• The rational valuation formula (using the 

dividend-price ratio and returns) 
 
• The interaction of bond and equity markets 

(using stock and bond return data) 
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Example: What Moves the Stock and 
Bond Markets? 

  
 “What moves the stock and bond markets? A 
variance decomposition for long-term asset 
returns” by Campbell and Ammer (Journal of 
Finance, 1991) 
 
 
Paper investigates the factors which influenced 
the stock and bond markets in the long run. 
 
Theoretical model has properties:  
 

1. unexpected movements in excess stock 
returns depend on changes in expectations 
(i.e. news) about future dividend flows, 
future excess stock returns and future real 
interest rates. 

  
2. unexpected movements in excess bond 

returns depend on changes in expectations 
(i.e. news) about future inflation, future 
interest rates and future excess bond 
returns.  
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Example: What Moves the Stock and 
Bond Markets? (continued) 

 
 

Which of these various factors is most important 
in driving the stock and bond markets?  
 
The authors conclude that news about future 
excess stock returns is most important factor in 
driving the stock market and news about future 
inflation is the most important factor in driving 
the bond market.  
 
 
Key part of this model (and many similar 
models) is that the researcher has to distinguish 
between “expected” and “unexpected” values of 
variables.  
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Example: What Moves the Stock and 
Bond Markets? (continued) 

 
 ert = excess return on stock market at time t.  
 
Consider the investor at time t-1 trying to make 
investment decisions.  
 
At time t-1, she will not know exactly what ert 
will be, but will have some expectation about 
what it might be.  
 
Expectation at time t-1 of what the excess stock 
return at time t will be is Et-1(ert).  
 
 
Unexpected movements in stock and bond 
markets are crucial to the underlying financial 
theory.  
 
These are ert - Et-1(ert)  
 
 
General point: expectations such Et-1(ert) appear 
in financial models.  
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Example: What Moves the Stock and 
Bond Markets? (continued) 

 
 
VARs are frequently used to model 
expectations.  
 
Note: the right-hand side of an equation in a 
VAR only contains variables dated t-1 or 
earlier, it can be thought of as reflecting 
information available to the investor at time t-1. 
 
This reasoning suggests: 
 
 Use fitted value from equation where ert is the 
dependent variable as an estimate of Et-1(ert).  
 
Any relevant computer package will allow for 
calculation of fitted values. 
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Example: What Moves the Stock and 
Bond Markets? (continued) 

 
Campbell and Ammer use a VAR involving the 
following six variables: 

 
• er is the excess stock return. 
 
• r is the real interest rate. 
 
• dy is the change in the return on a short-term 

bond. 
 
• s is the yield spread (difference in yields 

between a 10 year and a two month bond). 
 
• dp is the log of the dividend-price ratio. 
 
• rb is the relative bill rate (a return on a short 

term bond relative to the average returns over 
the last year) 
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Example: What Moves the Stock and 
Bond Markets? (continued) 

 
Monthly data from December 1947 through 
February 1987 
 
Note: Campbell and Ammer did extensive 
testing to confirm that all of these variables are 
stationary.  
 
Remember: before carrying out an analysis 
using time series data, you must conduct unit 
root tests.  
 
Remember: if unit roots are present but 
cointegration does not occur, then the spurious 
regression problem exists. In this case, you 
should work with differenced data.   
 
Remember: if unit roots exist and cointegration 
does occur, then you will have important 
information that the series are trending 
together.  
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Example: What Moves the Stock and 
Bond Markets? (continued) 

 
Following table presents results from estimation 
of a VAR(1). There are six variables in our VAR 
(i.e. er, r, dy, s, dp and rb), so are six equations 
to estimate. 
 
Each column of table contains results for one 
equation and lists OLS estimates (P-values in 
parentheses) 

 
 Dependent Variable 
 ert rt dyt st dpt rbt

Interc. -1.593 
(0.053) 

.678 
(.354)

.116 
(.362)

.066 
(.562)

-.007 
(.635) 

.082 
(.516)

ert-1 -.018 
(.696) 

-.099
(.041)

.013 
(.064)

-.004
(.573)

-.043 
(.000) 

.014 
(.042)

rt-1 .033 
(.466) 

.473 
(.000)

-.012
(.089)

.007 
(.237)

-.0004 
(.608) 

-.011 
(.104)

dyt-1 -.640 
(.056) 

.416 
(.161)

.067 
(.196)

-.045
(.326)

.003 
(.585) 

.096 
(.062)

st-1 .318 
(.173) 

.215 
(.299)

.075 
(.037)

.862 
(.000)

.004 
(.407) 

.100 
(.006)

dpt-1 .425 
(.012) 

-.087
(.561)

-.048
(.066)

.026 
(.261)

1.005 
(.000) 

-.049 
(.061)

rbt-1 -.357 
(.174) 

.064 
(.783)

-.011
(.778)

-.017
(.643)

1.56 
(.119) 

.888 
(.000)
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Example: What Moves the Stock and 
Bond Markets? (continued) 

 
Most variables are insignificant (it is often hard 
to predict financial variables) 
 
Look at significant coefficients (i.e. those with P-
value less than .05). 
 
Last month’s dividend-price ratio does have 
significant explanatory power for excess stock 
returns this month.  
 
Last month’s yield spread does have 
explanatory for the change in short term bond 
returns. 
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 Example: What Moves the Stock and 
Bond Markets? (continued) 

 
Could report the results from the VAR as 
shedding light on the inter-relationships 
between key financial variables.  
 
However, could use results from VAR as first 
step in an analysis of what moves stock and 
bond markets (e.g. fitted values for constructing 
expected/unexpected values of variables).  
 
For instance: “variance decomposition” 
 
Informal discussion of variance decompositions 
given in Appendix B. 
 
Campbell and Ammer paper,  using variance 
decompositions to   
“attribute only 15% of the variance of stock 
returns to the variance of news about future 
dividends, and 70% to news about future excess 
returns” 
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Lag Length Selection in VARs 

 
 

How to select p in the VAR(p)? 
 
As with ADL’s can use t-stats and F-stats 
 
Can also use an information criterion. 
 
We will not provide exact formulae. Most 
relevant computer packages will calculate 
several information criteria for VARs 
 
Popular ones are: 
 
Akaike’s information criterion (AIC) 
 
Schwarz-Bayes information criterion (SBIC)  
 
Hannan-Quinn information criterion (HQIC).  
 
How to use an information criteria? 
 
Calculate it for VAR(p) for p=1,..,pmax 
pmax= maximum possible lag length 
 
Select the lag length which yields the smallest 
value for your information criterion. 
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Example: What Moves the Stock and 
Bond Markets? (continued) 

 
Information Criteria for VAR(p) 

Lag 
Length 

AIC SBIC HQIC 

p=1 8.121 8.267 8.492 
p=2 7.084 7.355 7.774 
p=3 7.026 7.424 8.037 
p=4 6.934 7.458 8.266 

 
SBIC and HQIC select VAR(2)’s 
 
AIC selects a VAR(4).  
 
This is the kind of conflict which often occurs in 
empirical practice: one criterion (or hypothesis 
test) indicates one thing whereas another similar 
criterion indicates something else.  
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Forecasting with VARs 

 

The field of forecasting is enormous, so we will 
do little more than introduce it here. 
 
Most computer packages have forecasting 
facilities that are simple to use.  
 
Once you have estimated a model (e.g. a VAR or 
an AR), you can forecast simply by adding an 
appropriate option to an estimation command. 
 
Rather than deriving theoretical results, we will 
just provide some intuition and show how it 
works in practice.  
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Forecasting with VARs (cont.) 

 

Use data for periods t=1,..,T to forecast periods 
T+1, T+2, etc.  
 
 
Consider VAR(1) with two variables, Y and X: 

 
,111111111 tttt eXYtY ++++= −− βφδα

 
 
and  

 

.212112122 tttt eXYtX ++++= −− βφδα  
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Forecasting with VARs (cont.) 
 
Suppose you want to forecast YT+1  
 
Using VAR and setting t=T+1: 
 

 
.)1( 111111111 ++ +++++= TTTT eXYTY βφδα  

 
If we ignore the error term (which cannot be 
forecast since it is unpredictable) and replace 
the coefficients by their estimates we obtain a 

forecast which we denote as : 1
ˆ
+TY

 
 

. TTT XYTY 1111111
ˆˆ)1(ˆˆˆ βφδα ++++=+

 

A similar strategy can be used to obtain .  1
ˆ

+TX
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Forecasting with VARs (cont.) 
 

 How to forecast YT+2? 
 

Before used XT and YT to create   1
ˆ
+TY

 
But  dependz on Y2

ˆ
+TY T+1 and XT+1.  

 
But since our data only runs until period T, we 
do not know what YT+1 and XT+1 are. 
 

Solution: replace YT+1 and XT+1 by  and 1
ˆ
+TY 1

ˆ
+TX . 

 
 

 .ˆˆˆˆ)2(ˆˆˆ
111111112 +++ ++++= TTT XYTY βφδα

 

Can use same strategy to produce 2
ˆ
+TX  and same 

idea to produce   and  for any h. hTY+
ˆ

hTX+
ˆ

 49



 
Forecasting with VARs (cont.) 

 
 

Note:   and  are point estimates. hTY+
ˆ

hTX+
ˆ

 
Confidence intervals can also be calculated. 
 
For instance, the Bank of England: “Our 
forecast of inflation next year is 1.8%. We are 
95% confident that it will be between 1.45% and 
2.15%”.  
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Vector Autoregressions with 
Cointegrated Variables 

 
 
So far in the VAR discussion, we assumed that 
all variables are stationary.  
 
If some of the original variables have unit roots 
and are not cointegrated, then the ones with unit 
roots should be differenced and the resulting 
stationary variables should be used in the VAR. 
 
This covers every case except the one where the 
variables have unit roots and are cointegrated. 
 
In this case, you should use a vector error 
correction model (VECM).  
 
Like the VAR, the VECM will have one 
equation for each variable in the model, but 
each equation will be an error correction model. 
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VECMs 
  
In the case of two variables, Y and X, which 
have unit roots and are cointegrated, the VECM 
is: 

 

tqtqtptp

ttt

XXY
YetY

111111

1111111

...
...

εωωγ
γλδϕ

+Δ++Δ+Δ+
+Δ+++=Δ

−−−

−−

 
 
and 

 

....
...

221212

1211222

tqtqtptp

ttt

XXY
YetX

εωωγ
γλδϕ

+Δ++Δ+Δ+
+Δ+++=Δ

−−−

−−

 
 

where et-1=Yt-1 - α - βXt-1.  
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VECMS 
 
Computer packages allow you to estimate/test 
and forecast VECMs automatically. 
 
Alternatively: 
VECM is same as a VAR with differenced 
variables, except for the term et-1.  
 
Estimate of et-1 obtained by running an OLS 
regression of Y on X and saving the residuals.  
 
Plugging in this estimate, can use OLS to 
estimate ECMs, and P-values and confidence 
intervals can be obtained.  
 
Forecasting is like with VAR, with added 
complication that forecasts of the error 
correction term, et, must be calculated. 
 
However, this is simple using OLS estimates of 
α and β and replacing et by residuals.  
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Johansen Test for Cointegration 
  
Chapter 10 introduced Engle-Granger test for 
cointegration. 
 
Now that we have introduced VECMs we can 
discuss (more popular) Johansen test 
 
To explain this test would require a discussion 
of concepts beyond the scope of this book. 
 
Many software packages do the Johansen test, 
so you may want to do it in practice.  
 
Accordingly, we offer a brief intuitive 
description of this test.  
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Johansen Test (cont.) 
 

 
More than one cointegrating relationship can 
exist with several unit root variables  
 
With M variables, can have up to M-1 
cointegrating relationships (and, thus, up to M-1 
cointegrating residuals included in the VECM).  
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Example (from Chapter 10) 
 
Lettau and Ludvigson paper "Consumption, 
aggregate wealth and expected stock returns" 
 
Uses cay variables (consumption, assets and 
income)  
 
Dickey-Fuller tests say c, a and y all have unit 
roots 
 
Financial theory suggests they are cointegrated. 
 
One cointegrating relationship: 
 
ct - α - β1at - β2yt is stationary.  
 
Could have two cointegrating relationships. 
 
e.g. if ct – yt and at – yt were both stationary 
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Back to Johansen Test 
 
Johansen test can be used to test for the number 
of cointegrating relationships using VECMs. 
 
 “number of cointegrating relationships” is 
referred to as the “cointegrating rank”.  
 
Johansen test statistic is complicated.  
 
However, like any hypothesis test, you can 
compare the test statistic to a critical value and, 
if the test statistic is greater than the critical 
value, you reject the hypothesis being tested. 
 
Many software packages will calculate all these 
numbers for you.  
 
We will see how this works in an example 
shortly. 

 57



Johansen Test (continued) 
 
 

With VECMs (which are used in Johansen test) 
you have to specify the lag length and the 
deterministic trend term.  
 
Lag length can be selected using information 
criteria as described above.  
 
With VECMs can put an intercept and/or 
deterministic trend in the model (as we have 
done in the equations above – see the terms with 
coefficients ϕ and δ on them). 
 
However, can put an intercept and/or 
deterministic trend in the cointegrating residual  
 
E.g. if ct - α - β1at - β2yt is the cointegrating 
residual it has an intercept (but no deterministic 
trend) 
 
Johansen test critical values depend on 
deterministic terms you use, so you will be asked 
to specify these before doing the Johansen test. 
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Example: Consumption, Aggregate 
Wealth and Expected Stock Returns 

 
"Consumption, aggregate wealth and expected 
stock returns", Lettau and Ludvigson (Journal 
of Finance, 2001) 
 
Financial theory says cay variables should be 
cointegrated and the cointegrating residual 
should be able to predict excess stock returns. 
 
They then present empirical evidence in favor of 
their theory.  
 
In “Understanding trend and cycle in asset 
values: Reevaluating the wealth effect on 
consumption" (American Economic Review, 
2004), using the cay data, they build on this 
argument using VECMs and present variance 
decompositions which shed light on their theory. 
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 Example: Consumption, Aggregate 
Wealth and Expected Stock Returns 

(continued) 
 

 
Lettau and Ludvigson’s work uses all the tools 
of this chapter: testing for cointegration, 
estimation of a VECM and variance 
decompositions.  
 
We will investigate cointegration issues using 
U.S. data from 1951Q4 through 2003Q1 on cay 
variables 
  
Unit root tests say cay variables have unit roots.  
 
Do the Johansen test using a lag length of one 
and restricting the deterministic term to allow 
for intercepts only  
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Example: Consumption, Aggregate 
Wealth and Expected Stock Returns 

(continued) 
 

Stata produces following table (other packages 
similar) 
 

Rank Trace Statistic 5% Critical 
value 

0 37.27 29.68 
1 6.93 15.41 
2 .95 3.76 

 
How should you interpret this table?  

 
“Trace Statistic” is the Johansen test statistic 
 
 Rank = number of cointegrating relationships  
 
Rank=0 implies cointegration is not present.  
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Example: Consumption, Aggregate 
Wealth and Expected Stock Returns 

(continued) 
 
With Johansen test, hypothesis being tested is a 
certain cointegrating rank with the alternative 
hypothesis being that cointegrating rank is 
greater than hypothesis being tested.  
 
 

 
For Rank = 0: Trace Statistic greater than 
critical value.  
 

Reject the hypotheses that Rank=0 at the 5% 
level of significance (in favor of the hypothesis 
that Rank≥1) 
 
 

For Rank =1: Trace statistic is less than the 
critical value.  
 
Accept the hypothesis that Rank =1 (we are not 
finding evidence in favor of Rank≥2).  
 
Overall: Johansen test finds one cointegrating 
relationship (same as Lettau and Ludvigson) 
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Appendix B: Variance Decompositions 
 

 To fully understand these would require 
difficult tools (e.g. matrix algebra).  
 
However, some statistical software packages 
allow you to calculate variance decompositions 
in a straightforward manner.  
 
Accordingly, with good software, some intuition 
and understanding of the financial problem, can 
do variance decompositions in practice. 
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Example “What moves the stock and 
bond markets?” 

 
See body of chapter for reminder of this 
example.  
 
Key idea in paper: 
 
unexpected movements in excess stock returns 
should depend on changes in expectations about 
future dividend flows and future excess stock 
returns (among other things).  
 
Key question: 
 
 which of these factors is most important in 
driving the stock markets? 
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Example “What moves the stock and 
bond markets?” 

 
Campbell and Ammer’s model is much more 
sophisticated, but a simplified version has: 
 

newsernewsduer +=  
 
uer  reflects unexpected movements in expected 
returns 
 
newsd reflects future news about dividends  
 
newser reflects future news about expected 
returns.  
 
Do not worry where these components come 
from other than to note that they can be 
calculated using the data and the VAR 
coefficients.  
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Example “What moves the stock and 
bond markets?” 

 
What are relative roles played by newsd and 
newser in explaining uer? 
 
To answer this calculate the proportion of the 
variability of uer that can be explained by newsd 
(or newser) 
 
 
This is a simple example of a variance 
decomposition. 
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Example “What moves the stock and 
bond markets?” 

 
 

Remember: variance is a measure of variability. 
 
 If variables independent can write: 
 

( ) ( ) ( .varvarvar newsernewsduer )+=
 

Divide this equation by var(uer): 
 

( )
( )

( )
( )uer

newser
uer

newsd
var

var
var

var1 +=
. 

 
 

Terms on the right-hand side are variance 
decompositions.  
 
E.g.: “Proportion of variability in unexpected 
excess returns that can be explained by news 

about future dividends is 
( )
( )uer

newsd
var

var
”  

 
These can be calculated with VARs.  
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"Consumption, aggregate wealth and 
expected stock returns" 

 
Paper by Lettau and Ludvigson (Journal of 
Finance, 2001) 

 
Lettau and Ludgvigson example using cay data 
shows another sort of variance decomposition.  
 
Why have huge swings in stock markets not had 
larger effects on consumption? 
 
They estimate a VECM and calculate a variance 
decomposition. 
 
Their story: many fluctuations in the stock 
market were treated by households as being 
transitory and these did not have large effects 
on their consumption.  
 
Only permanent changes in wealth affected 
consumption.  
 
Use “permanent-transitory decomposition”.  
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Permanent-Transitory Decomposition 
  
 
Remember (see Chapter 9) that unit root 
variables are nonstationary.   
 
Cointegrating error is stationary.  
 
Nonstationary: errors have permanent effect 
 
Statistionary: error have transitory effect 
 
VECM can be used to obtain these permanent 
and transitory components 
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Permanent-Transitory Decomposition 
(cont.) 

 
A simplified version of Lettau-Ludvigson: 
 

,transitorypermanenta +=
 

 a = assets 
 
permanent and transitory are the permanent and 
transitory components 
 
Similar derivation as for Campbell-Ammer: 
 

( )
( )

( )
( )a

transitory
a

permanent
var

var
var

var1 += , 
 
 

( )
( )a

permanent
var

var
 is variance decomposition 

 
“what proportion of the fluctuations in assets 
can be explained by permanent shocks”  
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Chapter Summary 
 
1. X Granger causes Y if past values of X have 

explanatory power for Y. 
 
2. If X and Y are stationary, standard statistical 

methods based on an ADL model can be used 
to test for Granger causality. 

 
3. If X and Y have unit roots and are 

cointegrated, an ECM can be used to test for 
Granger causality. 

 
4. Vector autoregressions, or VARs, have one 

equation for each variable being studied. Each 
equation chooses one variable as the 
dependent variable. The explanatory variables 
are lags of all the variables under study. 

 
5. VARs are useful for forecasting, testing for 

Granger causality or, more generally, 
understanding the relationships between 
several series. 
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6. If all the variables in the VAR are stationary, 

OLS can be used to estimate each equation 
and standard statistical methods can be 
employed (e.g. P-values and t-statistics can be 
used to test for significance of variables). 

 
7. If the variables under study have unit roots 

and are cointegrated, a variant on the VAR 
called the Vector error correction model, or 
VECM, should be used.  

 
8. The Johansen test is a popular test for 

cointegration included in many software 
packages.  
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	Chapter Summary



Chapter 11: Regression with Time Series Variables with Several Equations 


Financial research often involves regression-type models with more than one equation. 

This chapter motivates why such models are used in finance and how they can be analyzed.


Most of the models/ideas in this chapter are straightforward extensions of the ADL and ECM models of Chapter 10.


Topics covered:


1. Granger causality 


2. Vector Autoregressive (VAR) model. 

3. Vector Error Correction Model (VECM)

4. Johansen Test for cointegration


5. Forecasting


6.  Informal introduction to variance decompositions


Granger Causality


In Chapter 3, we said you should be cautious  about interpreting correlation and regression results as reflecting causality. 

In regression, we label one variable the dependent variable and the others the explanatory variables. 


In many cases, because the latter “explained” the former it was reasonable to talk about X “causing” Y. 

In house price example, the price of the house was said to be “caused” by the characteristics of the house (e.g. number of bedrooms, number of bathrooms, etc.).


But in many regressions it is not obvious which variable causes which. 

e.g. if you have Y = stock prices in country A on X = stock prices in Country B. which causes which?


Granger Causality (cont.)

With time series data we can make slightly stronger statements about causality simply by exploiting the fact that time does not run backward. 

If event A happens before event B, then it is possible that A is causing B. However, it is not possible that B is causing A. 

These ideas can be investigated through regression models using the notion of Granger causality. 

X “Granger causes” Y if past values of X can help explain Y. 

If Granger causality holds this does not guarantee that X causes Y. But, it suggests that X might be causing Y.

Granger Causality (cont.)

Granger causality is only relevant with time series variables. 

Work with Granger causality between two variables (X and Y) which are both stationary. Can be extended to many variables.

Non-stationary case, where X and Y have unit roots but are cointegrated, will be mentioned later on.

Of course, in practice you must do Dickey-Fuller tests to see if your variables are stationary or not. 


Granger Causality in a Simple ADL Model

Since X and Y are assumed to be stationary, use the ADL model. 


Begin with simple ADL(1,1) model:
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(1 is a measure of the influence of Xt-1 on Yt. 

If (1=0 then X does not Granger cause Y. 

“if (1=0 then past values of X have no explanatory power for Y beyond that provided by past values of Y”. 

Granger Causality in a Simple ADL Model (cont.)


Granger causality test uses methods for ADL from Chapter 10.


OLS estimation can be done and the P-value for the coefficient on Xt-1 examined for significance. 

If (1 is statistically significant (e.g. P-value < .05) then we conclude that X Granger causes Y. 

Granger Causality in an ADL Model with p and q Lags
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X Granger causes Y if any or all of (1, ...,(q are statistically significant. 

Since we are assuming X and Y do not contain unit roots, OLS regression analysis can be used to estimate this model and standard hypothesis testing procedures work. 


Granger Causality in an ADL Model with p and q Lags (cont.)

The proper way to do Granger causality testing is to test the hypothesis that (1=(2=...=(q=0 

X Granger causes Y only if the hypothesis is rejected. 

Note that the joint test of (1=(2=...=(q=0 is not exactly the same as q individual tests of (i=0 for i=1,..,q.

Appendix to Chapter 11 describes how joint test can be done using F-test

You should already know F-tests from previous studies, but a quick reminder cannot hurt

Appendix A to Chapter 11: Hypothesis Tests Involving More than One Coefficient

Let us briefly switch batch the standard regression model to remind you of basic theory. 


Chapters 5 and 6 introduced F-stat for testing  H0: (1=...=(k=0 in:
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t-stats can be used to test H0: βj=0


What about other cases?


e.g. in the case k=4,  H0: (1=(3=0


Unrestricted and Restricted models


Most hypotheses you would want to test place restrictions on the model. 

E.g. unrestricted regression model is:
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and you wish to test the hypothesis H0: (2=(4=0, then restricted regression model is:
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Remember: strategy of hypothesis testing is that a test statistic is first calculated and then compared to a critical value. 

If test statistic is greater than critical value then reject the hypothesis; otherwise, accept it. 

Here the test statistic is F-statistic:
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 is R2 from unrestricted regression model
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 is R2’s from restricted regression model


J is the number of restrictions 

(e.g. J=2 in example since (2=0 and (4=0 are two restrictions). 

T is the number of observations 


k is number of explanatory variables in the unrestricted regression (including the intercept)


Most relevant computer packages will calculate the F-statistic automatically if you specify the hypothesis being tested. 

Or F-statistic can be obtained by running the unrestricted and restricted regressions and evaluating its formula


Obtaining critical value with which to compare the F-statistic is more problematic (although some software packages will provide a P-value automatically). 

Formally, the critical value depends on T-k and J. 

Most econometrics or statistics textbooks will contain statistical tables for the F-distribution which will provide the relevant critical values. 

Granger Causality in an ADL Model with p and q Lags (cont.)

Remember:
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So Granger causality involves test of H0: (1=...=(q=0 in this ADL

Sometimes researchers check for Granger causality simply (albeit imperfectly) using only t-tests.


The P-values for the t-states on individual coefficients can be used to determine whether Granger causality is present. 

Using the 5% level of significance, then if any of the P-values for the coefficients (1,...,(q were less than .05, you would conclude that Granger causality is present. 

If none of the P-values is less than .05 then you would conclude that Granger causality is not present.


Granger Causality in an ADL Model with p and q Lags (cont.)

Warning if you use t-tests:


If any or all of the coefficients (1,...,(q are significant using t-tests, you may safely conclude that X Granger causes Y. 

If none of these coefficients is significant, it is probably the case that X does not Granger cause Y. However, you are more likely to be wrong if you conclude the latter than if you had used the correct joint test of Granger non-causality. 


Example: Do Stock Price Movements in Country B Granger Cause Stock Price Movements in Country A?

We have monthly data on logged stock prices for Countries A and B.


Dickey-Fuller and Engle-Granger tests indicate that stock prices in both countries appear to have unit roots, but are not cointegrated.

However, differences of these series are stationary and can be interpreted as stock market returns (exclusive of dividends). 

Use differenced variables to investigate whether stock returns in Country A Granger cause those in Country B. 

Example: Do Stock Price Movements in Country B Granger Cause Stock Price Movements in Country A? (continued)


ADL Model using Stock Returns in Country A as the Dependent Variable


		

		Coeff

		t Stat

		P-value

		Lower


 95%

		Upper


95%



		Intercept

		-.751

		-1.058

		.292

		-2.156

		.654



		(Yt-1

		.822

		4.850

		3.81E-6

		.486

		1.158



		(Yt-2

		-.041

		-.222

		.825

		-.409

		.326



		(Yt-3

		.142

		.762

		.448

		-.227

		.511



		(Yt-4

		-.181

		-1.035

		.303

		-.526

		.165



		(Xt-1

		-.016

		-.114

		.909

		-.299

		.267



		(Xt-2

		-.118

		-.823

		.412

		-.402

		.166



		(Xt-3

		-.042

		-.292

		.771

		-.324

		.241



		(Xt-4

		.038

		.266

		.791

		-.244

		.319



		Time

		.030

		2.669

		.009

		.0077

		.052





Example: Do Stock Price Movements in Country B Granger Cause Stock Price Movements in Country A? (continued)

P-values indicate that only the deterministic trend and last period’s stock returns in Country A have explanatory power for present stock returns in Country A.

All of the coefficients on the lags of stock returns in Country B are insignificant. 

Stock returns in Country B do not seem to Granger cause stock returns in Country A.

Example: Do Stock Returns in Country B Granger Cause Stock Returns in Country BA? (continued)

Se found that stock returns in Country B did not Granger cause stock returns in Country A using t-tests. 


Here, we will investigate whether these conclusions still hold by carrying out the correct F-tests for Granger causality.

Y = stock returns in Country A


X = stock returns in Country B


Do stock returns in Country B Granger cause stock returns in Country A?


Run following regression:
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We have T=128 and k=10 (i.e. p=q=4 plus deterministic trend). 

OLS estimation of this model yields 
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The hypothesis that Granger causality does not occur is H0: (1=...=(4=0 which involves 4 restrictions; hence J=4. 

The restricted regression model is:




[image: image12.wmf].


...


4


4


1


1


t


t


t


t


e


Y


Y


t


Y


+


+


+


+


+


=


-


-


f


f


d


a




OLS estimation of this model yields 
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Result: F-statistic is .145. 

Since T-k=118 and is large, we can compare .145 to a critical value of 2.37. 

Since .145<2.37 we cannot reject the hypothesis at the 5% level of significance. 

Accordingly, we accept the hypothesis that stock returns in Country B do not Granger cause stock returns in Country A.

Causality in Both Directions

In many cases, it is not obvious which way causality should run. 

Should stock markets in Country A affect markets in Country B or should the reverse hold? 

Can check this by running two regressions:


one with Y being the dependent variable and one with X being the dependent variable. 

If you have k variables, then run k regressions.


This is an example of how multiple equation models can arise. 

Example: Do Stock Price Movements in Country A Granger Cause Stock Price Movements in Country B? (continued)


Before we ran a regression to see whether stock returns in Country B Granger caused stock returns in Country A. 

To test whether the causality runs in the opposite direction run the ADL regression with (X = stock returns in Country B  being dependent variable.

ADL Model using Stock Returns in Country B as the Dependent Variable


		

		Coeff

		t Stat

		P-value

		Lower


 95%

		Upper


95%



		Intercept

		-.609

		-.730

		.467

		-2.262

		1.044



		(Xt-1

		.053

		.312

		.755

		-.280

		.386



		(Xt-2

		-.040

		-.235

		.814

		-.374

		.294



		(Xt-3

		-.058

		-.348

		.728

		-.391

		.274



		(Xt-4

		.036

		.215

		.830

		-.295

		.367



		(Yt-1

		.854

		4.280

		3.83E-5

		.459

		1.249



		(Yt-2

		-.217

		-.993

		.323

		-.649

		.215



		(Yt-3

		.234

		1.067

		.288

		-.200

		.668



		(Yt-4

		-.272

		-1.323

		.188

		-.678

		.135



		Time

		.046

		3.514

		.001

		.020

		.072





Here we do find evidence that stock returns in Country A Granger cause stock returns in Country B. 

In particular, the coefficient on (Yt-1 is highly significant, indicating that last month’s stock returns in Country A has strong explanatory power for stock returns in Country B.

Do stock returns in Country A Granger cause stock returns in Country B?


Now test for Granger causality using the F-test


Repeat steps for F-test as above except now dependent variable refers to Country B and the explanatory variable refers to Country A. 

We obtain 
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The F-statistic is 33.412, which is much larger than either the 1% or 5% critical values. 

Reject the hypothesis that (1=...=(4=0 and conclude that stock returns in Country A do Granger cause stock returns in Country B.

Granger Causality with Cointegrated Variables

Testing for Granger causality among cointegrated variables is very similar to the method outlined above. 

Remember that, if variables are found to be cointegrate, the an error correction model (ECM) can be used:
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Granger Causality with Cointegrated Variables (continued)


Remember: this is almost an ADL model except for the presence of the term (et-1. 

Remember: et-1=Yt-1 - ( - (Xt-1, an estimate of which can be obtained by running a regression of Y on X and saving the residuals. 

Remember: Many computer packages will estimate ECMs for you or you can estimate them with the 2-step approach described in Chapter 10


Granger Causality with Cointegrated Variables (continued)


X Granger causes Y if past values of X have explanatory power for current values of Y.

In ECM, past values of X appear in the terms (Xt-1,...,(Xt-q and et-1. 

X does not Granger cause Y if (1=...=(q=(=0. 

Many computer packages will test this hypothesis for you (and provide a p-value)


Or, if you are using 2-step estimation method, t-statistics and P-values can be used to test for Granger causality in the same way as the stationary case. 

F-tests described in Appendix can be used to carry out a formal test of H0: (1=...=(q=(=0.

Testing whether Y Granger causes X is achieved by reversing roles that X and Y play in ECM. 

There is a theorem that implies if X and Y are cointegrated then some form of Granger causality must occur: either X must Granger cause Y or Y must Granger cause X (or both). 


Vector Autoregressions


Granger causality often tested using Vector Autoregressions or VARs. 

First we will define VARs assuming that all variables are stationary. 

With 2 variables, a VAR involves 2 equations:
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and 
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VARs (continued)

Before, we use first of these equations to test whether X Granger causes Y


The second, whether Y Granger causes X. 

Note that now the coefficients have subscripts indicating which equation they are in. 

These two equations comprise a VAR. 

A VAR is the extension of the autoregressive (AR) model to the case in which there is more than one variable under study. 

In general, a k-variable VAR has k equations (one use each variable as the dependent variable)


Each equation uses as its explanatory variables lags of all the variables under study (and possibly a deterministic trend).

VARs (continued)

Note that lag lengths, p and q, can be selected using the sequential testing methods discussed in Chapters 8 through 10. 

However, common to set p=q and use the same lag length for every variable in every equation.

Result is VAR(p) model. 

VARs (continued)

Example: the following VAR(p) has three variables,  Y, X and Z:
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VARs (continued)

Most relevant computer packages allow you to estimate, test and forecast using VARs automatically. 

Alternatively, estimation and testing can be done using OLS methods on one equation at a time.

Remember: we have assumed that all the variables in the VAR(p) are stationary.


Thus, you can obtain estimates of coefficients in each equation using OLS. P-values or t-statistics will then allow you to ascertain whether individual coefficients are significant. 

You can also use the material covered in Appendix to carry out  F-tests. 

Why Use VARs?


Granger causality testing (see above)


Forecasting (see below)


Financial researchers also use VARs in many other contexts. 

Examples of financial work which uses VARs:


· Models with present value relationships often work with VARs using the (log) dividend-price ratio and dividend growth.

·  Term structure of interest rates (using interest rates of various maturities, interest rate spreads, etc.)


· Intertemporal asset allocation (using returns on various risky assets) 

· The rational valuation formula (using the dividend-price ratio and returns)


· The interaction of bond and equity markets (using stock and bond return data)


Example: What Moves the Stock and Bond Markets?


 “What moves the stock and bond markets? A variance decomposition for long-term asset returns” by Campbell and Ammer (Journal of Finance, 1991)


Paper investigates the factors which influenced the stock and bond markets in the long run.

Theoretical model has properties: 


1. unexpected movements in excess stock returns depend on changes in expectations (i.e. news) about future dividend flows, future excess stock returns and future real interest rates.

2. unexpected movements in excess bond returns depend on changes in expectations (i.e. news) about future inflation, future interest rates and future excess bond returns. 

Example: What Moves the Stock and Bond Markets? (continued)

Which of these various factors is most important in driving the stock and bond markets? 

The authors conclude that news about future excess stock returns is most important factor in driving the stock market and news about future inflation is the most important factor in driving the bond market. 

Key part of this model (and many similar models) is that the researcher has to distinguish between “expected” and “unexpected” values of variables. 

Example: What Moves the Stock and Bond Markets? (continued)

 ert = excess return on stock market at time t. 

Consider the investor at time t-1 trying to make investment decisions. 

At time t-1, she will not know exactly what ert will be, but will have some expectation about what it might be. 

Expectation at time t-1 of what the excess stock return at time t will be is Et-1(ert). 

Unexpected movements in stock and bond markets are crucial to the underlying financial theory. 

These are ert - Et-1(ert) 

General point: expectations such Et-1(ert) appear in financial models. 

Example: What Moves the Stock and Bond Markets? (continued)

VARs are frequently used to model expectations. 

Note: the right-hand side of an equation in a VAR only contains variables dated t-1 or earlier, it can be thought of as reflecting information available to the investor at time t-1.

This reasoning suggests:


 Use fitted value from equation where ert is the dependent variable as an estimate of Et-1(ert). 

Any relevant computer package will allow for calculation of fitted values.


Example: What Moves the Stock and Bond Markets? (continued)


Campbell and Ammer use a VAR involving the following six variables:


· er is the excess stock return.

· r is the real interest rate.

· dy is the change in the return on a short-term bond.

· s is the yield spread (difference in yields between a 10 year and a two month bond).

· dp is the log of the dividend-price ratio.

· rb is the relative bill rate (a return on a short term bond relative to the average returns over the last year)

Example: What Moves the Stock and Bond Markets? (continued)

Monthly data from December 1947 through February 1987

Note: Campbell and Ammer did extensive testing to confirm that all of these variables are stationary. 

Remember: before carrying out an analysis using time series data, you must conduct unit root tests. 

Remember: if unit roots are present but cointegration does not occur, then the spurious regression problem exists. In this case, you should work with differenced data.  


Remember: if unit roots exist and cointegration does occur, then you will have important information that the series are trending together. 

Example: What Moves the Stock and Bond Markets? (continued)


Following table presents results from estimation of a VAR(1). There are six variables in our VAR (i.e. er, r, dy, s, dp and rb), so are six equations to estimate.

Each column of table contains results for one equation and lists OLS estimates (P-values in parentheses)

		

		Dependent Variable



		

		ert

		rt

		dyt

		st

		dpt

		rbt



		Interc.

		-1.593


(0.053)

		.678


(.354)

		.116


(.362)

		.066


(.562)

		-.007


(.635)

		.082


(.516)



		ert-1

		-.018


(.696)

		-.099


(.041)

		.013


(.064)

		-.004


(.573)

		-.043


(.000)

		.014


(.042)



		rt-1

		.033


(.466)

		.473


(.000)

		-.012


(.089)

		.007


(.237)

		-.0004


(.608)

		-.011


(.104)



		dyt-1

		-.640


(.056)

		.416


(.161)

		.067


(.196)

		-.045


(.326)

		.003


(.585)

		.096


(.062)



		st-1

		.318


(.173)

		.215


(.299)

		.075


(.037)

		.862


(.000)

		.004


(.407)

		.100


(.006)



		dpt-1

		.425


(.012)

		-.087


(.561)

		-.048


(.066)

		.026


(.261)

		1.005


(.000)

		-.049


(.061)



		rbt-1

		-.357


(.174)

		.064


(.783)

		-.011


(.778)

		-.017


(.643)

		1.56


(.119)

		.888


(.000)





Example: What Moves the Stock and Bond Markets? (continued)


Most variables are insignificant (it is often hard to predict financial variables)

Look at significant coefficients (i.e. those with P-value less than .05).


Last month’s dividend-price ratio does have significant explanatory power for excess stock returns this month. 

Last month’s yield spread does have explanatory for the change in short term bond returns.

 Example: What Moves the Stock and Bond Markets? (continued)


Could report the results from the VAR as shedding light on the inter-relationships between key financial variables. 

However, could use results from VAR as first step in an analysis of what moves stock and bond markets (e.g. fitted values for constructing expected/unexpected values of variables). 

For instance: “variance decomposition”


Informal discussion of variance decompositions given in Appendix B.


Campbell and Ammer paper,  using variance decompositions to  


“attribute only 15% of the variance of stock returns to the variance of news about future dividends, and 70% to news about future excess returns”

Lag Length Selection in VARs

How to select p in the VAR(p)?


As with ADL’s can use t-stats and F-stats


Can also use an information criterion.


We will not provide exact formulae. Most relevant computer packages will calculate several information criteria for VARs


Popular ones are:


Akaike’s information criterion (AIC)

Schwarz-Bayes information criterion (SBIC) 

Hannan-Quinn information criterion (HQIC). 

How to use an information criteria?


Calculate it for VAR(p) for p=1,..,pmax


pmax= maximum possible lag length


Select the lag length which yields the smallest value for your information criterion.


Example: What Moves the Stock and Bond Markets? (continued)


Information Criteria for VAR(p)

		Lag Length

		AIC

		SBIC

		HQIC



		p=1

		8.121

		8.267

		8.492



		p=2

		7.084

		7.355

		7.774



		p=3

		7.026

		7.424

		8.037



		p=4

		6.934

		7.458

		8.266





SBIC and HQIC select VAR(2)’s

AIC selects a VAR(4). 

This is the kind of conflict which often occurs in empirical practice: one criterion (or hypothesis test) indicates one thing whereas another similar criterion indicates something else. 

Forecasting with VARs

The field of forecasting is enormous, so we will do little more than introduce it here.

Most computer packages have forecasting facilities that are simple to use. 

Once you have estimated a model (e.g. a VAR or an AR), you can forecast simply by adding an appropriate option to an estimation command.

Rather than deriving theoretical results, we will just provide some intuition and show how it works in practice. 

Forecasting with VARs (cont.)


Use data for periods t=1,..,T to forecast periods T+1, T+2, etc. 

Consider VAR(1) with two variables, Y and X:
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Forecasting with VARs (cont.)


Suppose you want to forecast YT+1 

Using VAR and setting t=T+1:
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If we ignore the error term (which cannot be forecast since it is unpredictable) and replace the coefficients by their estimates we obtain a forecast which we denote as 
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A similar strategy can be used to obtain 
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Forecasting with VARs (cont.)


How to forecast YT+2?


Before used XT and YT to create 
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But 
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 dependz on YT+1 and XT+1. 

But since our data only runs until period T, we do not know what YT+1 and XT+1 are.

Solution: replace YT+1 and XT+1 by 
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Can use same strategy to produce 
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Forecasting with VARs (cont.)

Note:  
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 are point estimates.


Confidence intervals can also be calculated.


For instance, the Bank of England: “Our forecast of inflation next year is 1.8%. We are 95% confident that it will be between 1.45% and 2.15%”. 

Vector Autoregressions with Cointegrated Variables


So far in the VAR discussion, we assumed that all variables are stationary. 

If some of the original variables have unit roots and are not cointegrated, then the ones with unit roots should be differenced and the resulting stationary variables should be used in the VAR.

This covers every case except the one where the variables have unit roots and are cointegrated.

In this case, you should use a vector error correction model (VECM). 

Like the VAR, the VECM will have one equation for each variable in the model, but each equation will be an error correction model.


VECMs


In the case of two variables, Y and X, which have unit roots and are cointegrated, the VECM is:
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and
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where et-1=Yt-1 - ( - (Xt-1. 

VECMS

Computer packages allow you to estimate/test and forecast VECMs automatically.


Alternatively:


VECM is same as a VAR with differenced variables, except for the term et-1. 

Estimate of et-1 obtained by running an OLS regression of Y on X and saving the residuals. 

Plugging in this estimate, can use OLS to estimate ECMs, and P-values and confidence intervals can be obtained. 

Forecasting is like with VAR, with added complication that forecasts of the error correction term, et, must be calculated.

However, this is simple using OLS estimates of ( and ( and replacing et by residuals. 


Johansen Test for Cointegration

Chapter 10 introduced Engle-Granger test for cointegration.


Now that we have introduced VECMs we can discuss (more popular) Johansen test


To explain this test would require a discussion of concepts beyond the scope of this book.

Many software packages do the Johansen test, so you may want to do it in practice. 

Accordingly, we offer a brief intuitive description of this test. 

Johansen Test (cont.)


More than one cointegrating relationship can exist with several unit root variables 

With M variables, can have up to M-1 cointegrating relationships (and, thus, up to M-1 cointegrating residuals included in the VECM). 

Example (from Chapter 10)

Lettau and Ludvigson paper "Consumption, aggregate wealth and expected stock returns"

Uses cay variables (consumption, assets and income) 

Dickey-Fuller tests say c, a and y all have unit roots


Financial theory suggests they are cointegrated.

One cointegrating relationship:

ct - ( - (1at - (2yt is stationary. 

Could have two cointegrating relationships.


e.g. if ct – yt and at – yt were both stationary


Back to Johansen Test

Johansen test can be used to test for the number of cointegrating relationships using VECMs.

 “number of cointegrating relationships” is referred to as the “cointegrating rank”. 

Johansen test statistic is complicated. 

However, like any hypothesis test, you can compare the test statistic to a critical value and, if the test statistic is greater than the critical value, you reject the hypothesis being tested.

Many software packages will calculate all these numbers for you. 

We will see how this works in an example shortly.


Johansen Test (continued)

With VECMs (which are used in Johansen test) you have to specify the lag length and the deterministic trend term. 

Lag length can be selected using information criteria as described above. 

With VECMs can put an intercept and/or deterministic trend in the model (as we have done in the equations above – see the terms with coefficients ( and ( on them).

However, can put an intercept and/or deterministic trend in the cointegrating residual 

E.g. if ct - ( - (1at - (2yt is the cointegrating residual it has an intercept (but no deterministic trend)


Johansen test critical values depend on deterministic terms you use, so you will be asked to specify these before doing the Johansen test.


Example: Consumption, Aggregate Wealth and Expected Stock Returns

"Consumption, aggregate wealth and expected stock returns", Lettau and Ludvigson (Journal of Finance, 2001)


Financial theory says cay variables should be cointegrated and the cointegrating residual should be able to predict excess stock returns.

They then present empirical evidence in favor of their theory. 

In “Understanding trend and cycle in asset values: Reevaluating the wealth effect on consumption" (American Economic Review, 2004), using the cay data, they build on this argument using VECMs and present variance decompositions which shed light on their theory.


 Example: Consumption, Aggregate Wealth and Expected Stock Returns (continued)

Lettau and Ludvigson’s work uses all the tools of this chapter: testing for cointegration, estimation of a VECM and variance decompositions. 

We will investigate cointegration issues using U.S. data from 1951Q4 through 2003Q1 on cay variables


Unit root tests say cay variables have unit roots. 

Do the Johansen test using a lag length of one and restricting the deterministic term to allow for intercepts only 

Example: Consumption, Aggregate Wealth and Expected Stock Returns (continued)


Stata produces following table (other packages similar)

		Rank

		Trace Statistic

		5% Critical value



		0

		37.27

		29.68



		1

		6.93

		15.41



		2

		.95

		3.76





How should you interpret this table? 

“Trace Statistic” is the Johansen test statistic


 Rank = number of cointegrating relationships 

Rank=0 implies cointegration is not present. 

Example: Consumption, Aggregate Wealth and Expected Stock Returns (continued)


With Johansen test, hypothesis being tested is a certain cointegrating rank with the alternative hypothesis being that cointegrating rank is greater than hypothesis being tested. 

For Rank = 0: Trace Statistic greater than critical value. 


Reject the hypotheses that Rank=0 at the 5% level of significance (in favor of the hypothesis that Rank(1)

For Rank =1: Trace statistic is less than the critical value. 

Accept the hypothesis that Rank =1 (we are not finding evidence in favor of Rank(2). 

Overall: Johansen test finds one cointegrating relationship (same as Lettau and Ludvigson)


Appendix B: Variance Decompositions

 To fully understand these would require difficult tools (e.g. matrix algebra). 

However, some statistical software packages allow you to calculate variance decompositions in a straightforward manner. 

Accordingly, with good software, some intuition and understanding of the financial problem, can do variance decompositions in practice.


Example “What moves the stock and bond markets?”

See body of chapter for reminder of this example. 


Key idea in paper:


unexpected movements in excess stock returns should depend on changes in expectations about future dividend flows and future excess stock returns (among other things). 

Key question:


 which of these factors is most important in driving the stock markets?


Example “What moves the stock and bond markets?”

Campbell and Ammer’s model is much more sophisticated, but a simplified version has:
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uer  reflects unexpected movements in expected returns


newsd reflects future news about dividends 

newser reflects future news about expected returns. 

Do not worry where these components come from other than to note that they can be calculated using the data and the VAR coefficients. 

Example “What moves the stock and bond markets?”

What are relative roles played by newsd and newser in explaining uer?


To answer this calculate the proportion of the variability of uer that can be explained by newsd (or newser)

This is a simple example of a variance decomposition.

Example “What moves the stock and bond markets?”

Remember: variance is a measure of variability.


 If variables independent can write:



[image: image41.wmf](


)


(


)


(


)


.


var


var


var


newser


newsd


uer


+


=




Divide this equation by var(uer):
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Terms on the right-hand side are variance decompositions. 

E.g.: “Proportion of variability in unexpected excess returns that can be explained by news about future dividends is 
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These can be calculated with VARs. 

"Consumption, aggregate wealth and expected stock returns"

Paper by Lettau and Ludvigson (Journal of Finance, 2001)


Lettau and Ludgvigson example using cay data shows another sort of variance decomposition. 

Why have huge swings in stock markets not had larger effects on consumption?


They estimate a VECM and calculate a variance decomposition.


Their story: many fluctuations in the stock market were treated by households as being transitory and these did not have large effects on their consumption. 

Only permanent changes in wealth affected consumption. 

Use “permanent-transitory decomposition”. 

Permanent-Transitory Decomposition

Remember (see Chapter 9) that unit root variables are nonstationary.  

Cointegrating error is stationary. 

Nonstationary: errors have permanent effect


Statistionary: error have transitory effect


VECM can be used to obtain these permanent and transitory components

Permanent-Transitory Decomposition (cont.)

A simplified version of Lettau-Ludvigson:
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 a = assets


permanent and transitory are the permanent and transitory components


Similar derivation as for Campbell-Ammer:
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“what proportion of the fluctuations in assets can be explained by permanent shocks” 


Chapter Summary


1. X Granger causes Y if past values of X have explanatory power for Y.

2. If X and Y are stationary, standard statistical methods based on an ADL model can be used to test for Granger causality.

3. If X and Y have unit roots and are cointegrated, an ECM can be used to test for Granger causality.

4. Vector autoregressions, or VARs, have one equation for each variable being studied. Each equation chooses one variable as the dependent variable. The explanatory variables are lags of all the variables under study.

5. VARs are useful for forecasting, testing for Granger causality or, more generally, understanding the relationships between several series.

6. If all the variables in the VAR are stationary, OLS can be used to estimate each equation and standard statistical methods can be employed (e.g. P-values and t-statistics can be used to test for significance of variables).

7. If the variables under study have unit roots and are cointegrated, a variant on the VAR called the Vector error correction model, or VECM, should be used. 

8. The Johansen test is a popular test for cointegration included in many software packages. 
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