
Chapter 12: Financial Volatility 
 
 
Chapters 8-11 developed several different 
regression models for time series variables.  
 
For instance: explaining stock or bond returns, 
exchange rates and yield spreads.  
 
In finance, often interested in the volatility (i.e. 
variability/variance) of asset prices.  
 
Volatility relates to risk and is important in 
portfolio management , Capital Asset Pricing 
Model (CAPM), financial derivatives (e.g. 
Black-Scholes option price formula), etc etc. 

 
In this chapter, we discuss models and methods 
for estimating the volatility of a series. 

 
Autoregressive conditional heteroskedasticity 
(ARCH) 
 
Generalized autoregressive conditional 
heteroskedasticity (GARCH) 
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Volatility in Asset Prices: Introduction 
 
Recall the random walk model: 
 

.1 ttt eYY += −  
 
or  
 

.tt eY =Δ  
 

Random walk with drift 
 

.tt eY +=Δ α  
 
Stock prices, on average, increase by α per 
period, but are otherwise unpredictable.  
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Volatility in Asset Prices: Introduction 
(continued) 

 
For now, assume random walk model for an 
asset price is the correct one.  
 
That is, either: 
 

1. asset price follows a random walk  
 
or  
 

2.  it follows a random walk with drift, and 
that we have taken deviations from the 
mean (i.e. deviations from mean get rid of 
the drift, see Chapter 4).  

 
 
Δyt = variable with deviations from means 
taken:  
 

,YYy tt Δ−Δ=Δ  
 
where 
 

T
YY t∑Δ

=Δ  
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Volatility in Asset Prices: Introduction 
(continued) 

 
Thus, even if the asset price is drifting upwards 
over time, following is sensible: 
 

Δyt=et. 
 

Note: the ARCH model provides a better 
definition for volatility. 
 
But to provide some intuition note that it is 
possible to simply use Δyt

2 as an estimate of 
volatility at time t.  
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Using Squared Stock Returns as 
Measure of Volatility 

 
Why is Δyt

2 an estimate of volatility at time t? 
 
  
High volatility is associated with big changes, 
either in a positive or in a negative direction. 
 
Large rises or large falls in the price of an asset 
will imply Δyt

2 is positive and large.  
 
In stable times the asset price will not be 
changing much and Δyt

2 will be small.  
 
Hence, Δyt

2 will be small in stable times and 
large in chaotic times. 
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Using Squared Stock Returns as 
Measure of Volatility 

 
Also, remember variance is like volatility. 
 
From Chapter 2, variance of ΔY is: 
 

( )
1

2

−
Δ−Δ∑

N
YYt

 
But this is no good for our purposes since this 
calculates one single variance estimate for all 
time periods. We want different variance 
estimate in each time period.  
 
But for one period, this estimate of the variance 
basically becomes  

 Δyt
2  

 
 
This is informal motivation for why Δyt

2 is an 
estimate of the volatility at time t. 
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Building a Model with this Measure of 
Volatility 

 
We can use  Δyt

2 as a dependent variable in any 
regression. But which one? 
 
 
Autoregressive models are commonly used to 
model “clustering in volatility”, which is often 
present in financial time series data.  
 
AR(1) model using volatility as dependent 
variable: 
 

.tetyty +−Δ+=Δ 212 φα  
 
Volatility at t depends on volatility at t-1 
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Building a Model with this Measure of 
Volatility (continued) 

 
 
If φ>0  
 
If volatility was unusually high last period, it 
will also tend to be unusually high this period.  
 
If volatility was unusually low last period then 
this period’s volatility will also tend to be low.  
 
Clustering in volatility 
 

Can be extended to the AR(p) model.  
 
All of the intuition of AR(1) model (see Chapter) 
9 is relevant here. But interpretation relates to 
the volatility of the series rather than to the 
series itself.  
 
Provided   Δyt

2 is stationary, then OLS estimates 
and P-values can be interpreted in the standard 
way.  
 
Testing for a unit root in volatility can be 
conducted using a Dickey-Fuller test.  
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Example: Volatility in Stock Prices 
  
Y = the stock price of a company collected each 
week for four years (i.e. T=208).  
 
The data has been logged.  
 
Figure 12.1 provides a time series plot of this 
data.  
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Figure 12.1: Log of Stock Price
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Example: Volatility in Stock Prices 

(continued) 
 
Figure 12.2 plots ΔY, the percentage change in 
Y.  
 
Note: 100×[ln(Yt)-ln(Yt-1)] is the percentage 
change in the stock price. 
 
Remember, this is the stock return (exclusive of 
dividends) 
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Figure 12.2: Percentage Change in Stock Price
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Example: Volatility in Stock Prices 
(continued) 

 
 
To investigate volatility calculate Δyt

2

 
 
That is 
 
i) calculate the average change in stock price, 

.099% 
ii) subtract this number from every stock 

price change 
iii) square the result.  

 
 
Figure 12.3 plots the resulting series which is 
our measure of volatility. 

 
Can see that volatility varies over time 
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Figure 12.3: Volatility of Stock Price 
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Example: Volatility in Stock Prices 
(continued) 

 
Formal evidence on volatility can be found by 
building an AR(p) model for Δyt

2

 
 
 
Sequential testing procedure (see Chapter 9) 
yields the following AR(1) model.  
 
AR(1) Model using Δyt

2 as Dependent Variable 
 
 Coeff t Stat P-value Lower 

 95% 
Upper 
95% 

Inter.   .024   1.624  .106 -.005  .053 
Δyt-1

2   .737  15.552  1.7E-36  .643  .830 
 
Last week’s volatility has strong explanatory 
power for this week’s volatility, since its 
coefficient is strongly statistically significant. 
 
R2=.54, so 54% of the variation in volatility can 
be explained by last period’s volatility.  
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Autoregressive Conditional 
Heteroskedasticity (ARCH) 

 
ARCH (including extensions) are the most 
popular ways of modelling financial volatility.  
 
To explain what ARCH is, begin with the 
multiple regression model: 
 

....2211 tktkttt eXXXY +++++= βββα  
 
 
This general model contains many of the other 
models we have been working with: 
 
If Xjt=Yt-j then this is an AR model.  
 
If there are no explanatory variables at all (i.e. 
α=β1=…=βk=0) and YYy tt Δ−Δ=Δ , then have 
model of financial volatility analogous to that 
used in the first half of this chapter.  
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ARCH (continued) 
 

ARCH model relates to the variance (or 
volatility) of et.  
 
To adopt a very common notation in financial 
econometrics) let: 
 

( ).var2
tt e=σ  

 

  is our notation for volatility (crucial in 
many financial applications) 

2
tσ

 
ARCH model with p lags (ARCH(p)): 
 

22
110

2 .. ptptt ee −− +++= γγγσ  
 
where γ1, ..,γp are coefficients that can be 
estimated in many statistical software packages. 
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ARCH (continued) 
 
Note: If no explanatory variables and the 
dependent variable is Δyt, we have  
 

22
110

2 .. ptptt yy −− Δ++Δ+= γγγσ , 
 
and ARCH volatility depends on recent values 
of Δyt

2 – just like in first half of chapter.  
 
 
Closely related to the autoregressive model 
(which accounts for the “AR” part of the name 
ARCH)   
 
ARCH models have similar properties to AR 
models – except that these properties relate to 
the volatility of the series.  
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Example: Volatility in Stock Prices 

(continued) 
 
 

Note: with ARCH models, don’t worry about 
subtracting the mean off of stock returns as in 
the first half of the chapter (by including an 
intercept in regression we are allowing for a 
random walk with drift).  
 
Take our logged stock price data and take the 

first difference to create tYΔ .  
 
 
Estimate ARCH(1) model with tYΔ  as the 
dependent variable and an intercept in the 
regression equation. 
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Example: Volatility in Stock Prices 
(continued) 

  
Computer software packages produce tables 
similar to following. 
 
ARCH(1) Model using Stock Returns Data 
 Coeff. P-value Lower 

95% 
Upper 
95% 

tYΔ      
Intercept .105 .000 .081 .129 
ARCH     
Lag 1 .660 .000 .302 1.018 
Intercept .024 .000 .016 .032 
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Example: Volatility in Stock Prices 
(continued) 

  
 
How to interpret this table? 
 
Upper part of this table refers to the coefficients 
in the regression equation.  
 
In this case, we have only included an intercept 
(labeled α in the regression equation).  
 
The lower part of the table refers to the ARCH 
equation.  
 
Since we are working with an ARCH(1) model, 
the equation includes an intercept (labeled γ0 in 
the ARCH equation) and one lag of the errors 
squares (labeled γ1 in the ARCH equation and 
“Lag 1” in the table).   
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Example: Volatility in Stock Prices 
(continued) 

 
Numbers can be read in the same manner as in 
the tables in earlier regression chapters.  
 
Numbers in the column labeled “Coeff” are 
estimates of the coefficients  
 
Note: not OLS estimates, but rather 
sophisticated estimates for ARCH models 
 
Numbers in the columns labeled “P-value” are 
P-values for testing the hypothesis that the 
corresponding coefficient equals zero.  
 
Since the P-values are all less than .05, we can 
conclude all the variables are statistically 
significant at the 5% level.  
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Example: Volatility in Stock Prices 
(continued) 

 
Final two columns are lower and upper bounds 
for a 95% confidence interval.  
 
Estimate of γ1 is .66: 
 
volatility this month depends strongly on the 
errors squared last month.  
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Example: Volatility in Stock Prices 
(continued) 

 
Lag length selection in ARCH models done in 
the same manner as with any time series model.  
 
You can use an information criterion (see 
Chapter 11) to select a model. 
 
Or look at P-values for whether coefficients 
equal zero (and, if they do seem to be zero, then 
variables can be dropped).  
 
E.g. ARCH(2) model 
 
ARCH(2) Model using Stock Returns Data 
 Coeff P-value Lower 

95% 
Upper 
95% 

tYΔ      

Intercept .109 .000 .087 .131 
ARCH     
Lag 1 .717 .000 .328 1.107 
Lag 2 -.043 .487 -.165 .079 
Intercept .025 .000 .016 .033 
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Example: Volatility in Stock Prices 
(continued) 

 
 
Note: coefficient on “Lag 2” (i.e. γ2) is not 
significant (P-value is greater than .05).  
 
Thus, ARCH(1) model is adequate. 
 
 
Note: For many purposes (e.g. pricing financial 
derivatives), an estimate of  is required for 
every time period. This is provided by software 
package.  

2
tσ
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 Extensions of the ARCH model  
 
E.g. Stata lists seven different variants of the 
ARCH model with acronyms like GARCH, 
SAARCH, TARCH, AARCH, NARCH and 
NARCHK.  
 
Another popular  model stochastic volatility.  
 
Here we will discuss the most popular of these 
extensions: Generalized ARCH or GARCH. 
 
GARCH also includes lags of the volatility 
measure itself (instead of just adding lags of 
squared errors).  
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GARCH 
 

GARCH(p,q) and has volatility equation: 
 

22
11

22
110

2 .... qtqtptptt ee −−−− ++++++= σλσλγγγσ . 
 
Properties of GARCH model similar to ARCH. 
 
But GARCH model is much more flexible, much 
more capable of matching a wide variety of 
patterns of financial volatility.  
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Example: Volatility in Stock Prices 
(continued) 

  
  
GARCH(1,1) Model using Stock Returns Data 
 Coeff P-value Lower 

95% 
Upper 
95% 

tYΔ      
Intercept .109 .000 .087 .131 
ARCH     
ARCH 
Lag 1 

.714 .000 .327 1.101 

GARCH 
Lag 1 

-.063 .457 -.231 .104 

Intercept .026 .000 .015 .038 
 
Table interpreted in the same manner as for the 
ARCH tables.  
 
But an extra row labeled “GARCH Lag 1” 
which contains results for λ1 (i.e. the lagged 
volatility).  
 
Lagged volatility is insignificant Thus the 
extension to a GARCH(1,1) model does not seem 
necessary. 
 
ARCH(1) model adequate for this data set. 
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Chapter Summary 

 
1. Many time series variables, particularly asset 

prices, seem to exhibit random walk behavior. 
For this reason, it is hard to predict how they 
will change in the future. However, such 
variables often do exhibit predictable patterns 
of volatility. 

 
 
2. The square of the change in an asset price is a 

measure of its volatility. 
 
 
3. Standard time series methods can be used to 

model the patterns of volatility in asset prices. 
The only difference is that volatility of the 
asset price is used as the dependent variable. 

 
 
4. ARCH models are a more formal way of 

measuring volatility. They contain two 
equations. One is a standard regression 
equation. The second is a volatility equation, 
where volatility is defined as being the (time 
varying) variance of the regression error. 
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5. ARCH models share similarities with AR 
models, except that the “AR” part relates to 
the volatility equation. 

 
6. There are many extensions of ARCH, of 

which GARCH is the most popular.  
 
7. ARCH and GARCH models can be estimated 

using many common statistical software 
packages. 
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