
Chapter 9: Univariate Time Series 
Analysis 

 
 
• In the last chapter we discussed models with 

only lags of explanatory variables. These can 
be misleading if: 

 
1. The dependent variable Yt depends on lags of 

the dependent variable as well, possibly, as Xt, 
Xt-1,...,Xt-q. 

 
2. The variables are nonstationary. 
 
 

• In this chapter and the next, we develop tools 
for dealing with both issues and define what 
we mean by “nonstationary”.  

 
• To simplify the analysis, focus solely on one 

time series, Y. Hence, univariate time series 
analysis. 

 
• It is important to understand the properties of 

each individual series before proceeding to 
regression modelling involving several series.  
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Example: Stock Prices on the NYSE 
 
Figure 9.1: natural logarithm of monthly data 
from 1952 through 1995 on a major stock price 
index provided by the New York Stock 
Exchange 
 
 
Aside on logs 
 
 

• It is common to take the natural logarithm of 
time series which are growing over time (i.e. 
work with ln(Y) instead of Y). Why? 

 
• A time series graph of ln(Y) will often 

approximate a straight line. 
 
• In regressions with logged variables 

coefficients can be interpreted as elasticities. 
 
• ln(Yt)-ln(Yt-1) is (approximately) the 

percentage change in Y between period t-1 
and t.  
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Figure 9.1: Log of Stock Price Index
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Example: NYSE Data (cont.) 
 
 

• Note trend behaviour of personal income 
series. 

 
 
• Many macroeconomic time series exhibit such 

trends. 
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Differencing 
 

ΔYt = Yt – Yt-1  
 

• ΔYt measures the change (or growth) in Y 
between periods t-1 and t. 

 
• If Yt is the log of a variable, then ΔYt is the 

percentage change. 
 
• ΔYt is the difference of Y (or first difference). 
 
• ΔYt is often called “delta Y”. 
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Example: NYSE Data (cont.) 
 
 
See Figure 9.2. 
 
 
• ΔY = % change in personal income 
 
 
• Not trending, very erratic. 
 
 
• The differences/growth rates/returns of many 

financial time series have such properties. 
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Figure 9.2: Stock Price Return
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The Autocorrelation Function 
 

 
• Correlation between Y and lags of itself shed 

important light of the properties of Y. 
 
  
• Relates to the idea of a trend (discussed 

above) and nonstationarity (not discussed yet). 
 
 
Example: Y =  NYSE stock price 
 
• Correlation between Yt and Yt-1 is .999! 
 
• Correlation between ΔYt and ΔYt-1 is .0438. 
 
• These are autocorrelations (i.e. correlations 

between a variable and lags of itself). 
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The Autocorrelation Function: Notation 
  

 
• r1 = correlation between Y and Y lagged one 

period. 
 
 
• rp = correlation between Y and Y lagged p 

periods. 
 
   
• Autocorrelation function treats rp as a function 

of p. 
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Example: NYSE Data (cont.) 
 
 
Autocorrelation functions of Y and ΔY 
 
Lag length (p) Stock Price Change in 

Stock Price 
1 .9990 .0438 
2 .9979 -.0338 
3 .9969 .0066 
4 .9958 .0297 
5 .9947 .0925 
6 .9934 -.0627 
7 .9923 -.0451 
8 .9912 -.0625 
9 .9902 -.0113 

10 .9893 -.0187 
11 .9885 -.0119 
12 .9876 .0308 

 
 
 
 

 
• Y is highly correlated with lags of itself, but 

the change in Y is not. 
 
 
• Information could also be presented on bar 

charts. See Figures 9.3 and 9.4. 
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Figure 9.3: Autocorrelation Function for Stock Prices
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Figure 9.4: Autocorrelation Function for Stock Returns
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Autocorrelation: Intuition 
 
 
• Y is highly correlated over time. ΔY does not 

exhibit this property.  
 
 
• If you knew past values of stock price, you 

could make a very good estimate of what stock 
price was this month. However, knowing past 
values of the change in stock price will not 
help you predict the change in stock price this 
month (not change in stock price is return, 
exclusive of dividends). 

 
 
• Y “remembers the past”. ΔY does not. 
 
 
• Y is a nonstationary series while ΔY is 

stationary. (Note: These words not formally 
defined yet.)  
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The Autoregressive Model 
 
 
• Previous discussion has focussed on graphs 

and correlations, now we go on to regression. 
 
 
• Autoregressive model of order 1 is written as 

AR(1) and given by: 
 
 

Yt = α + φYt-1 + et  
 
 
• Figures 9.5, 9.6 and 9.7 indicate the types of 

behaviour that this model can generate. 
 
 
• φ = 1 generates trending behaviour typical of 

financial time series. 
 
 
• φ = 0 looks more like change in financial time 

series. 
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Figure 9.5: AR(1) Time Series with Phi=0
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Figure 9.6: AR(1) Time Series with Phi=.8
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Figure 9.7: AR(1) Time Series with Phi=1
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Nonstationary vs. Stationary Time 

Series 
 
 

• Formal definitions require difficult statistical 
theory. Some intuition will have to suffice. 

 
 
• “Nonstationary” means “anything which is 

not stationary”. 
 
 
• Focus on a case of great empirical relevance: 

unit root  nonstationarity. 
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Ways of Thinking about Whether Y is 
Stationary or has a Unit Root 

 
 
1. If φ = 1, then Y has a unit root. If |φ|<1 then Y 

is stationary. 
 
 
2. If Y has a unit root then its autocorrelations 

will be near one and will not drop much as lag 
length increases.  

 
 
3. If Y has a unit root, then it will have a long 

memory. Stationary time series do not have 
long memory. 

 
 
4.  If Y has a unit root then the series will exhibit 

trend behaviour.  
 
 
5.  If Y has a unit root, then ΔY will be 

stationary. Hence, series with unit roots are 
often referred to as difference stationary. 
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More on the AR(1) Model 
 
 

Yt = α + φYt-1 + et
 
 
• Can rewrite as: 
 
 

ΔYt = α + ρYt-1 + et
 

where  ρ = φ - 1 
 

• If φ = 1 (unit root) then ρ = 0 and: 
 

ΔYt = α+ et
 

• Intuition: if Y has a unit root, can work with 
differenced data --- differences are stationary. 
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More on the AR(1) Model 
 
 

• Test if ρ = 0 to see if a unit root is present. 
 
 
• –1<φ<1 is equivalent to –2<ρ<0. This is called 

the stationarity condition. 
 
 

Aside: The Random Walk with drift model:  
 
  

Yt=α+Yt-1 + et
 
 
• This is thought to hold for many financial 

variables such as stock prices, exchange rates. 
 
 
• Intuition: Changes in Y are unpredictable, so 

no arbitrage opportunities for investors. 
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Extensions of the AR(1) Model 
 
 

• AR(p) model: 
 
 

,...
11 tptptt

eYYY ++++=
−−

φφα  
 
 

• Properties similar to the AR(1) model. 
 
 
• Alternative way of writing AR(p) model: 
 
 

....
11111 tptpttt

eYYYY +Δ++Δ++=Δ
+−−−−

γγρα  
 
 
• Coefficients in this alternative regression (ρ, 
γ1,...,γp-1) are simple functions of  φ1,..,φ p. 
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The AR(p) Model 
 
 
 
• AR(p) is in the form of a regression model. 
 
 
• ρ=0 implies that the time series Y contains a 

unit root (and –2<ρ<0 indicates stationarity). 
 
 
• If a time series contains a unit root then a 

regression model involving only ΔY is 
appropriate (i.e. if ρ = 0 then the term Yt-1 will 
drop out of the equation). 

 
 
• “If a unit root is present, then you can 

difference the data to induce stationarity.” 
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More Extensions: Adding a 
Deterministic Trend 

 
 
• Consider the following model: 
 
 

.
tt

etY ++= δα  
 
 

• The term δt is a deterministic trend since it is 
an exact (i.e. deterministic) function of time.  

 
• Unit root series contain a so-called stochastic 

trend. 
 
• Combine with the AR(1) model to obtain: 

 
 

.
1 ttt

etYY +++=
−

δφα  
  
 
• Can generate behaviour that looks similar to 

unit root behaviour even if |φ|<1. (i.e. even if 
they are stationary). 

 
 
• See Figure 9.8. 
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Figure 9.8: Trend Stationary Series
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Summary 
 

 
• The nonstationary time series variables on 

which we focus are those containing a unit 
root. These series contain a stochastic trend. If 
we difference these time series, the resulting 
time series will be stationary. For this reason, 
they are also called difference stationary. 

 
 
• The stationary time series on which we focus 

have –2<ρ<0. But these series may exhibit 
trend behaviour through the incorporation of 
a deterministic trend. If this occurs, they are 
also called trend stationary. 
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AR(p) with Deterministic Trend 
Model 

 
• Most general model we use: 
 
 

....
1111 tptpttt

etYYYY ++Δ++Δ++=Δ
+−−−

δγγρα  
 
 
• Why work with this form of the model? 
 
1. A unit root is present if ρ = 0. Easy to test. 
 
2. The specification is less likely to run into 

multicollinearity problems. Remember: in 
finance we often find Y is highly correlated 
with lags of itself but ΔY is not. 
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Estimation of the AR(p) with 
Deterministic Trend Model 

 
 

• OLS can be done in usual way. 
 
 
Example: Y = NYSE stock price 
 
 
• ΔY is the dependent variable in the regression 

below. 
 
 

AR(4) with Deterministic Trend Model 
 
 Coeff t Stat P-

value 
Lower 
 95% 

Upper 
95% 

Inter  .082  2.074    .039   .004    .161 
Yt-1 -.016 -1.942    .053   -.033    .0002 
ΔYt-1 .051   1.169    .243   -.035    .138 
ΔYt-2  -.027     -.623    .534   -.114    .059 
ΔYt-3  .015   .344    .731   -.071    .101 
time  1E-4   1.979    .048   7E-7   0.0002 
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Testing in AR(p) with Deterministic 
Trend Model 

 
 

• For everything except ρ, testing can be done in 
usual way using t-statistics and P-values. 

 
 
• Hence, can use standard tests to decide 

whether to include deterministic trend. 
 
 
Lag length selection
 
 
• A common practice: begin with an AR(p) 

model and look to see if the last coefficient, γp 
is significant. If not, estimate an AR(p-1) 
model and see if γp-1 is significant. If not, 
estimate an AR(p-2), etc. 
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Example: Y = NYSE Stock Price Data 
 
 
• Sequential testing strategy leads us to drop 

the deterministic trend and go all the way 
back to a model with one lag, an AR(1). 

 
• ΔY is the dependent variable in the 

regression. 
 
 

 
 Coeff t Stat P-value Lower 

 95% 
Upper 
95% 

Inter  .00763 0.6188 .5363 -.0166 .0318 
Yt-1 -.00012 -0.0631 .9497 -.0039 -.0037 
 
Note that it looks like the coefficient on Yt-1 is 
insignificant – but this coefficient is ρ (so don’t 
throw out Yt-1 yet!) 
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Testing for a Unit Root 
 
 
 
• You might think you can test ρ = 0 in the same 

way (i.e. look at P-value and, if it is less than 
.05, reject the unit root hypothesis, if not 
accept the unit root). 

 
 
• THIS IS INCORRECT! 
 
 
• Justification: Difficult statistics. 
 
 
• Essentially: The t-statistic correct, but the P-

value (and standard error) is wrong. 
 
• A correct test is the Dickey-Fuller Test, which 

uses the t-statistic and compares it to a critical 
value. 
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Practical Advice on Unit Root Testing 
 
 
• Most computer packages will do the unit root 

test for you and provide a critical value or a 
P-value for the Dickey-Fuller test 

 
• If the t-statistic is less negative than the 

Dickey-Fuller critical value then accept the 
unit root hypothesis.  

 
• Else reject the unit root and conclude the 

variable is stationary (or trend stationary if  
your regression includes a deterministic 
trend) 

 
• Alternatively, if you are using software which 

does not do the Dickey-Fuller test (e.g. Excel), 
use the following rough rule of thumb which 
should be okay if sample size is moderately 
large (e.g. T>50). 
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Testing for a Unit Root: An 
Approximate Strategy 

 
 
1. Use the sequential testing strategy outlined 

above to estimate the AR(p) with 
deterministic trend model. Record the t-stat 
corresponding to ρ  (i.e. the coefficient on 
Yt-1).   

 
2. If the final version of your model includes a 

deterministic trend, the Dickey-Fuller 
critical value is approximately –3.45. If the 
t-stat on ρ is more negative than –3.45, 
reject the unit root hypothesis and conclude 
that the series is stationary. Otherwise, 
conclude that the series has a unit root.  

 
3. If the final version of your model does not 

include a deterministic trend, the Dickey-
Fuller critical value is approximately –2.89. 
If the t-stat on ρ is more negative than this, 
reject the unit root hypothesis and conclude 
that the series is stationary. Otherwise, 
conclude that the series has a unit root. 
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Example: Y = NYSE Stock Price Data 
(continued) 

 
 

The final version of the AR(p) model did not 
include a deterministic trend.  
 
The t-stat on ρ is –0.063, which is not more 
negative than –2.89.  
 
Hence we can accept the hypothesis that NYSE 
stock prices contain a unit root and are, in fact, 
a random walk. 
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Example: Y = Long term interest rates 
  
Use preceding strategy on a data set containing 
long term interest rate data 
 
Beginning with pmax=4 and sequentially 
deleting insignificant lagged variables, we end 
up with an AR(1) model: 
 

.1 ttt eYY ++=Δ −ρα  
 
OLS estimation results for this model are given 
in the following table. 
 
 
 Coeff t Stat P-value Lower 

 95% 
Upper 
95% 

Intercept  .039 2.682 .008 .010 .067 
Yt-1 -.004 -2.130 .035 -.0077 -.0003 
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A researcher who did not know about the 
Dickey-Fuller test would incorrectly say: “Since 
the P-value for ρ is less than .05, we can 
conclude that ρ is significant. Thus, the long 
term interest rate variable does not contain a 
unit root”.  
 
 
The correct researcher says: 
 
“The final version of the AR(p) model I used did 
not include a deterministic trend. Hence, I must 
use the Dickey-Fuller critical value of –2.89. The 
t-stat on ρ is –2.13, which is not more negative 
than –2.89. Hence we can accept the hypothesis 
that long term interest rates contain a unit 
root.” 
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Chapter Summary 

 
1. Many financial time series exhibit trend 

behavior, while their differences do not 
exhibit such behavior. 

 
2. The autocorrelation function is a common tool 

for summarizing the relationship between a 
variable and lags of itself. 

 
3. Autoregressive models are regression models 

used for working with time series variables 
and can be written with Yt or ΔYt as the 
dependent variable. 

 
4. The distinction between stationary and non-

stationary models is a crucial one. 
 
5. Series with unit roots are the most common 

type of non-stationary series considered in 
financial research. 

 
6. If Yt has a unit root then the AR(p) model 

with ΔYt as the dependent variable can be 
estimated using OLS. Standard statistical 
results hold for all coefficients except the 
coefficient on Yt-1. 
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7. The Dickey-Fuller test is a test for the 
presence of a unit root. It involves testing 
whether the coefficient on Yt-1 is equal to zero 
(in the AR(p) model with ΔYt being the 
dependent variable).  
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