
EC 306: Introductory Econometrics
Class Problem Sheet 2

Hints/Sketches of answers are provided in italics below the questions.

1. The simple linear regression model without intercept was discussed in the
lectures and is given by:

Yi = �Xi + "i;

where Xi is a scalar. For this question, we will free up one of the classical
assumptions to allow for heteroskedasticity. In particular, the classical assump-
tions hold except we now assume

var ("i) = �
2!2i :

i) The ordinary least squares estimator is given by:

b� = P
XiYiP
X2
i

:

Show that E
�b�� = � and, thus, that the OLS estimator is unbiased. What

is var
�b��?

SKETCH OF ANSWER: The OLS estimator can be written as:

b� = � +
X

Xi"iX
X2
i

Taking the expected value of both sides of this equation and using the prop-

erties of the expectations operator, the fact that E
�b�� = � can be established

in a similar fashion as in some of the lecture proofs. The key step in the proof
involves noting that Xi is assumed to be �xed (not a random variable) and hence
we end up with a form involving E ("i) and can use the fact that the errors have
mean zero to establish unbiasedness.
We can derive the variance using various properties of variance operator:
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var
�b�� = var

0@� +
X

Xi"iX
X2
i

1A
= var

0@XXi"iX
X2
i

1A
=

1�X
X2
i

�2 var �XXi"i

�

=
1�X
X2
i

�2 XX2
i var ("i)

=
�2�X
X2
i

�2 XX2
i !

2
i

ii) The generalized least squares estimator for this model is given by:

b�GLS =
P�

Xi

!i

��
yi
!i

�
P�

Xi

!i

�2
Show that E

�b�GLS� = � and, thus, that the OLS estimator is unbiased.

What is var
�b�GLS�? Is var �b�GLS� � var �b��?

ANSWER: as noted in lectures, if we de�ne Y �i =
Yi
!i
and X�

i =
Xi

!i
, then the

GLS estimator is simply an OLS estimator �only one which uses Y �i and X
�
i

instead of Yi and Xi. In other words, GLS is OLS on a transformed model. The
key question is: "does this transformed model satisfy the classical assumptions?"
The answer to this is "Yes". You should con�rm this yourself, I will answer only
one (the most crucial) part. Remember that the classical assumptions required
var (Yi) = �

2. Under heteroskedasticity this does not hold and in this question
we have var (Yi) = �2!2i . But

var (Y �i ) = var

�
Yi
!i

�
=
1

!2i
var (Yi) =

�2!2i
!2i

= �2:

Thus, the transformed model is homoskedastic.
Since the transformed model satis�es the classical assumptions and GLS is

OLS on this transformed model, we can use all our old OLS results to de-
rive everything asked for in this question. I will not repeat these derivations
here. Note, however, that the Gauss Markov theorem implies immediately that

var
�b�GLS� � var

�b�� so just citing this theorem (and explaining why it is

relevant here) is enough to prove the �nal part of the question.
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iii) Assume that you know what var ("i) is and that b�GLS is Normally dis-
tributed. Derive a 95% con�dence interval involving the GLS estimator using
your results form part ii).
ANSWER: .
The results derived in part ii), and the fact the linear combinations of Normal

random variables are still Normal, imply that:

Z =
b�GLS � �s

�2X�
Xi
!i

�2
is N (0; 1)

We can now use statistical tables for the Normal distribution to make prob-
ability statements:

Pr [�1:96 � Z � 1:96] = 0:95
To get 95% con�dence interval, we rearrange the inequalities to put � in the

middle:

Pr

266664�1:96 �
b�GLS � �s

�2X�
Xi
!i

�2
� 1:96

377775 = 0:95
rearranging:

Pr

264b�GLS � 1:96vuut �2X�
Xi

!i

�2 � � � b�GLS + 1:96
vuut �2X�

Xi

!i

�2
375 = 0:95

Thus, 95% con�dence interval is264b�GLS � 1:96vuut �2X�
Xi

!i

�2 � � � b�GLS + 1:96
vuut �2X�

Xi

!i

�2
375

iv) Assume that you know what �2!2i is and that b� is Normally distributed.
Derive a 95% con�dence interval involving the OLS estimator using your results
from part i).
ANSWER: The derivation is the same as for part iii) except that the OLS

estimator has a di¤erent variance:

Z =
b� � �s

�2�X
X2
i

�2 PX2
i !

2
i

is N (0; 1)
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We can now use statistical tables for the Normal distribution to make prob-
ability statements:

Pr [�1:96 � Z � 1:96] = 0:95

To get 95% con�dence interval, we rearrange the inequalities to put � in the
middle:

Pr

266664�1:96 �
b� � �s

�2�X
X2
i

�2 PX2
i !

2
i

� 1:96

377775 = 0:95
rearranging:

Pr

264b� � 1:96vuut �2�X
X2
i

�2 XX2
i !

2
i � � � b� + 1:96

vuut �2�X
X2
i

�2 XX2
i !

2
i

375 = 0:95
Thus, 95% con�dence interval is

264b� � 1:96vuut �2�X
X2
i

�2 XX2
i !

2
i � � � b� + 1:96

vuut �2�X
X2
i

�2 XX2
i !

2
i

375
v) Now consider two possible 95% con�dence intervals for �. They are the

(correct) OLS and GLS con�dence intervals given in parts iii) and iv). Compare
these two intervals. Which one is wider?
ANSWER: The Gauss Markov theorem tells us that var

�b�GLS� � var �b��
(using the correct formula for var

�b��). An examination of the manner in which
these variances enter the con�dence intervals shows that this means the GLS
con�dence interval is narrower than the OLS con�dence interval (and, thus,
that GLS is providing more accurate estimates). As a digression, note that you
could also get a third con�dence interval for OLS estimator which obtains under
the classical assumptions (i.e. the standard one which was derived in Chapter
3 under the classical assumptions). If heteroskedasticity is present, this third
con�dence interval is incorrect and should never be used.
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2. (Measurement error in the dependent variable). Consider the regression
model

Yi = �Xi + "i:

This regression satis�es the classical assumptions. However, you cannot run this
regression since do not observe Yi, but instead observe:

Y �i = Yi + vi;

where vi is i.i.d. with mean zero, variance �2� and is independent of "i. Show
that OLS is BLUE in the regression of Y � on X.
ANSWER: If you put the expression for Y from the �rst equation into the

second you get:

Y �i = �Xi + ("i + vi)

This is a regression you can run in practice since the dependent variable and
explanatory variable are now observed. The properties of OLS depend on what
assumptions the regression satis�es. If it satis�es the classical assumptions, then
we can call on the Gauss-Markov theorem to say that OLS is BLUE. Hence, to
answer this question you must prove it satis�es the classical assumptions. I
will not provide full details on the answer. One of the key assumptions is that
the errors are not heteroskedastic. You can prove that this assumption holds as
follows:
In this new regression, the error is ("i + vi). You can use the properties of

the variance operator (and the assumptions about "i and vi) as follows:

var ("i + vi) = var ("i) + var (vi)

= �2 + �2v

This does not have exactly the same form as in Chapter 3, but that does not
matter. The crucial thing is that the variance of the errors is constant. Therefore
the second of the classical assumptions is satis�ed. I leave you to prove that the
other classical assumptions are also satis�ed.
Remember that, in the lectures, we showed that if there was measurement er-

ror in the explanatory variable, then OLS was biased. The point of this exercise
is to show that measurment error in the dependent variable does not cause any
such problem.
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