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1 Summary

� Readings: Chapter 6 of textbook. I will cover the
general theory and three special cases: the regres-
sion model with autocorrelated errors, the regression
model with Student-t errors and the seemingly unre-
lated regressions (SUR) model.

� The textbook discusses heteroskedasticity.

� All fall into the class where, conditional on 
 (to be
de�ned shortly), the model becomes a Normal linear
regression model.

� Can draw on results from previous lecture for p (�; hjy;
).

� So, if we knew 
, we could do Bayesian inference.

� But, in practice, 
 will be unknown. How to pro-
ceed? Use Gibbs sampling.



1.1 Bayesian Computation: The Gibbs Sam-

pler

� The Gibbs sampler is a powerful tool for posterior
simulation which is used in many econometric mod-
els.

� Bayesian Econometric Methods, Exercises 11.6 through
11.16 all relate to Gibbs sampling.

� We will motivate the basic ideas in a very general
context before returning to the regression model.

� General notation: � is a p�vector of parameters and
p (yj�) ; p (�) and p (�jy) are the likelihood, prior
and posterior, respectively.

� Let � be partitioned into various blocks as � =�
�0(1); �

0
(2); ::; �

0
(B)

�0
where �(j) is a scalar or vec-

tor, j = 1; 2; ::; B.



� E.g. in regression model, B = 2 with �(1) = � and
�(2) = h.

� Intuition: i) Monte Carlo integration takes draws
from p (�jy) and averages them to produce estimates
of E [g (�) jy] for any function of interest g (�).

� ii) In many models, it is not easy to directly draw
from p (�jy). However, it often is easy to randomly
draw from

p
�
�(1)jy; �(2); ::; �(B)

�
, p
�
�(2)jy; �(1); �(3)::; �(B)

�
, ...,

p
�
�(B)jy; �(1); ::; �(B�1)

�
.

� Note: Preceding distributions are referred to as full
conditional posterior distributions since they de�ne a
posterior for each block conditional on all the other
blocks.



� iii) Drawing from the full conditionals will yield a
sequence �(1); �(2); ::; �(s) which can be averaged to
produce estimates of E [g (�) jy] in the same manner
as Monte Carlo integration did.



1.1.1 More motivation for the Gibbs sampler

� Let B = 2 and suppose you have one random draw
from p

�
�(2)jy

�
. Call this draw �(0)(2).

� Since p (�jy) = p
�
�(1)jy; �(2)

�
p
�
�(2)jy

�
, it fol-

lows that a random draw from p

�
�(1)jy; �

(0)
(2)

�
is a

valid draw of �(1) from p (�jy). Call this draw �
(1)
(1).

� Since p (�jy) = p
�
�(2)jy; �(1)

�
p
�
�(1)jy

�
, it fol-

lows that a random draw from p

�
�(2)jy; �

(1)
(1)

�
is a

valid draw of �(2) from p (�jy).

� Hence, �(1) =
�
�
(1)0
(1) ; �

(1)0
(2)

�0
is a valid draw from

p (�jy).

� You can continue this reasoning inde�nitely.



� Hence, if you can successfully �nd �(0)(2), then sequen-
tially drawing from the posterior of �(1) conditional
on the previous draw for �(2), then �(2) given the
previous draw for �(1), will yield a sequence of draws
from the posterior.

� This strategy of sequentially drawing from full con-
ditional posterior distributions is called Gibbs sam-
pling.

� Problem with steps above is that it is not possible
to �nd such an initial draw �(0)(2). (if we knew how to

easily take random draws from p
�
�(2)jy

�
, we could

use this and p
�
�(1)j�(2); y

�
to do Monte Carlo in-

tegration and have no need for Gibbs sampling.

� However, subject to weak conditions, the initial draw
�
(0)
(2) does not matter in the sense that the Gibbs
sampler will converge to a sequence of draws from
p (�jy).



� In practice, choose �(0)(2) in some manner and then
run the Gibbs sampler for S replications. However,
the �rst S0 of these are discarded as so-called burn-
in replications and the remaining S1 retained for the
estimate of E [g (�) jy], where S0 + S1 = S.

� After dropping the �rst S0 of these to eliminate the
e¤ect of �(0), remaining S1 draws can be averaged
to create estimates of posterior features of interest.
That is, if

bgS1 = 1

S1

SX
s=S0+1

g
�
�(s)

�
,

then bgS1 converges to E [g(�)jy] as S1 goes to in�nity.
� There are various "MCMC Diagnostics" which you
can use to make sure you have taken enough draws
(and discarded enough burn-in draws). See textbook
pages 64-68.



� Gibbs sampler popular since many models logically
break into blocks. Many posteriors can be written
as p (�; h; zjy) where z is something else (often a
vector of latent data). Gibbs sampling involving
p (�; hjy; z) and p (zjy; �; h) can be used (where
p (�; hjy; z) uses results for linear regression model).

� Examples: tobit, probit, stochastic frontier model,
random e¤ects panel data model, SUR, error cor-
rection models, state space models, threshold au-
toregressive models, Markov switching models, some
semiparametric regression models, etc. etc. etc.



2 The Model with General 


� Now return to regression model:

y = X� + ":

� Before we assumed " was N(0N ; h�1IN).

� Now we will assume:

" � N(0N ; h�1
):

where 
 is an N �N positive de�nite matrix.

� Many models can be put in this form (including ran-
dom e¤ects panel data models, SUR models, ARMA
models and the ones we will discuss below).



� Appendix A, Theorem A.10 says that an N � N

matrix P exists with the property that P
P 0 = IN .

� Multiply both sides of the regression model by P :

yy = Xy� + "y;

where yy = Py, Xy = PX and "y = P".

� It can be veri�ed that "y is N(0N ; h�1IN).

� Hence, the transformed model is identical to the Nor-
mal linear regression model.

� If 
 is known, Bayesian analysis of the Normal lin-
ear regression model with non-scalar error covariance
matrix is straightforward (simply work with trans-
formed model).



� If 
 is unknown, often can use Gibbs sampling

� For instance, if the prior for � and h isNG
�
�; V ; s�2; �

�
,

then all the results of previous lecture are applicable
conditional upon 
.

� E.g. p (�jy;
) is a multivariate t distribution and
this, combined with a posterior simulator for p (
jy; �)
can be used to set up a Gibbs sampler.

� Note: what if p (
jy; �; h) does not have a conve-
nient form to draw from? Metropolis-Hastings algo-
rithms are popular (see pages 92-99 of textbooks).
�Metropolis-within-Gibbs�algorithms popular.



2.1 Posterior Inference in General Case

� In last lecture, we used a natural conjugate Normal-
Gamma prior.

� To illustrate another prior we will use an independent
Normal-Gamma prior for � and h

� At this stage use general notation, p (
) ; to indicate
the prior for 
.

� Thus prior used is

p (�; h;
) = p (�) p (h) p (
)

where



p (�) = fN
�
�j�; V

�
and

p (h) = fG
�
hj�; s�2

�
:

� Exercise 13.1 of Bayesian Econometric Methods show
that posterior conditionals are (in terms of trans-
formed model):

�jy; h;
 � N
�
�; V

�
;

where

V =
�
V �1 + hX 0
�1X

��1



and

� = V
�
V �1� + hX 0
�1X b� (
)�

hjy; �;
 � G(s�2; �);

where b� (
) is the GLS estimator

� = N + �

and

s2 =
(y �X�)0
�1 (y �X�) + �s2

�
:



The posterior for 
 conditional on � and h has a kernel
of the form:

p (
jy; �; h) /
p (
) j
j�

1
2

n
exp

h
�h2 (y �X�)

0
�1 (y �X�)
io :
(*)

� In general, this conditional posterior does not take
any easily recognized form. Note that, if we could
take posterior draws from p (
jy; �; h), then a Gibbs
sampler for this model could be set up in a straight-
forward manner since p (�jy; h;
) is Normal and
p (hjy; �;
) is Gamma.



3 Heteroskedasticity of an Unknown

Form: Student-t Errors

� It turns out that we have heteroskedasticity of an
unknown form in the Normal linear regression model
it is equivalent to a regression model with Student-t
errors.

� This is a simple example of a mixture model.

� Mixture models are very popular right now in many
�elds as a way of making models more �exible (e.g.
non-Normal errors, �nonparametric�treatment of re-
gression line, etc.).



� Heteroskedasticity occurs if:


 =

26666664
!1 0 : : 0
0 !2 0 : :
: 0 : : :
: : : : 0
0 : : 0 !N

37777775

� In other words, var ("i) = h�1!i for i = 1; ::; N:

� WithN observations andN+k+1 parameters to es-
timate (i.e. �; h and ! = (!1; ::; !N)

0), treatment
of heteroskedasticity of unknown form may sound
like a di¢ cult task.

� Solution: use a hierarchical prior (!is drawn from
some common distribution �parameters of that dis-
tribution estimated from the data).



� Hierarchical priors are commonly used as a way of
making �exible, parameter-rich models more amenable
to statistical analysis.

� Allows us to free up the assumption of Normal errors
that we have used so far.



3.1 A Hierarchical Prior for the Error Vari-

ances

� We begin by eliciting p (!).

� Work with error precisions rather than variances and,
hence, we de�ne � � (�1; �2; ::; �N)0

�
�
!�11 ; !�12 ; ::; !�1N

�0
.

� Consider the following prior for �:

p (�) =
NY
i=1

fG (�ij1; ��) : (**)

Note fG is the Gamma p.d.f.



� The prior for � depends on a hyperparameter, ��,
and assumes each �i comes from the same distribu-
tion.

� In other words, �is are i.i.d. draws from the Gamma
distribution.

� This assumption (or something similar) is necessary
to deal with the problems caused by the high-dimensionality
of �.

� Why should the �is be i.i.d. draws from the Gamma
distribution with mean 1:0? This model is exactly
the same as the linear regression model with i.i.d.
Student-t errors with �� degrees of freedom (Bayesian
Econometric Methods Exercise 15.1)..

� In other words, if we had begun by assuming:



p ("i) = ft
�
"ij0; h�1; ��

�
for i = 1; ::; N , we would have ended up with exactly the
same posterior.

� Note: we now have model with more �exible error
distribution, but we are still our familiar Normal lin-
ear regression model framework.



� Chapter 10 of textbook discusses several ways of
making models more �exible: mixture of Normals
distributions. Our treatment of heteroskedasticity is
scale mixture of Normals.

� If �� is unknown, need a prior p (��).

� Note that now the prior for � is speci�ed in two steps,
the �rst being (**), the other being p (��). Alterna-
tively, the prior for � can be written as p (�j��) p (��).
Priors written in two (or more) steps in this way are
referred to as hierarchical priors.

� See discussion of p (��) in textbook pages 126-127.



3.2 Bayesian Computation with Student-t

Model

� Geweke (1993, JAE) develops a Gibbs sampler for
taking draws of the parameters in the model: �; h; �
and ��.

� p (�jy; h; �) and p (hjy; �; �) are as discussed in
last week.

� Focus on p (�jy; �; h; ��) and p (��jy; �; h; �).

� Bayesian Econometric Methods, Exercise 15.1 de-
rives posterior conditionals for �is as

p (�ijy; �; h; ��) = fG
 
�ij

�� + 1

h"2i + ��
; �� + 1

!
:



� p (��jy; �; h; �) depends on p (��). Geweke uses
the exponential density which is simply the Gamma
with two degrees of freedom:

p (��) = fG (��j��; 2) :

p (��jy; �; h; �) /
�
��
2

�N��
2
�
�
��
2

��N
exp (����) ;

where

� =
1

��
+
1

2

NX
i=1

h
ln
�
��1i

�
+ �i

i

� Geweke derives a method of drawing from this den-
sity (thus completing the Gibbs sampler). My text-
book treatment slightly di¤erent.



4 Autocorrelated Errors

� Assume errors in a regression model follow an au-
toregressive process of order 1 or AR(1) process:

"t = �"t�1 + ut,

where ut is i.i.d. N
�
0; h�1

�
and �1 < � < 1.

� Using standard results from time series we can write
covariance matrix of " as h�1
, where


 =
1

1� �2

26666664
1 � �2 : �T�1

� 1 � : :

�2 � : : �2

: : : : �

�T�1 : �2 � 1

37777775 :



� Thus, the regression model with AR(1) errors falls
into the class of regression models with General Error
Covariance Matrix.

� Extension to AR(p) errors is straightforward. Exten-
sion to ARMA(p,q) errors also (relatively) straight-
forward.

� Assuming independent Normal-Gamma prior for re-
gression part, then Gibbs sampler can be set up in-
volving p (
jy; �; h), p (�jy; h;
) and p (hjy; �;
).



4.1 Bayesian Computation in Regression

Model with AR Errors

� Same idea as for all models in this chapter: p (�jy; h;
)
and p (hjy; �;
) have familiar forms (Normal and
Gamma) and we need only focus on p (
jy; �; h) =
p (�jy; �; h).

� To motivate results, write the regression model as:

yt = xt� + "t

where xt is a scalar.

� De�ning yyt = yt� �yt�1 and x
y
t = xt� �xt�1 we

obtain:

y
y
t = x

y
t� + ut:



� We have assumed that ut is i.id. N
�
0; h�1

�
. This

transformed model is simply a Normal linear regres-
sion model with i.i.d. errors.

� Aside: treatment of initial condition.

� Prior for � can be anything, here assume Normal,
truncated to the stationary region. That is,

p (�) / fN
�
�j�; V �

�
1 (� 2 �) ;

where 1 (� 2 �) is the indicator function which equals 1
for the stationary region and zero otherwise.

� Intuition for p (�jy; �; h). Conditional on �, can use



"t = yt � xt�;

to get "t. But then the AR(1) equation:

"t = �"t�1 + ut,

is just like a regression model.

� Using standard regression derivations we have:

p (�jy; �; h) / fN
�
�j�; V �

�
1 (� 2 �) ;

where

V � =
�
V �1� + hE0E

��1
;



� = V �
�
V �1� �+ hE0"

�
and E is a (T � p) � k matrix with tth row given by�
"t�1; ::; "t�p

�
.

� Exercise 13.4 of Bayesian Econometric Methods gives
exact derivations (and an empirical application).

� Key thing: Gibbs sampler involves drawing from full
conditional posteriors: p (�jy; h; �) and p (hjy; �; �)
and p (�jy; �; h). All of these have forms the com-
puter can easily draw from.

� Remember, once you have S1 Gibbs sampling draws
(discarding S0 burn-in draws), you can simply av-
erage them to produce any feature of interest you
want.



� For instance if �j is a regression coe¢ cient

1

S1

SX
s=S0+1

�j
(s),

converges to E
�
�jjy

�
, a popular point estimate.

1

S1

SX
s=S0+1

�
�j
(s)
�2
,

converges to E
�
�2j jy

�
, which can be used to calculate

var
�
�jjy

�
(i.e. var

�
�jjy

�
= E

�
�2j jy

�
�
h
E
�
�jjy

�i2
).

etc. etc. etc.



4.2 Prediction Using the Gibbs Sampler

� In last lecture we worked out that the predictive den-
sity for the Normal regression model with natural
conjugate prior had t distribution. But in other cases
predictive density may not have convenient form.

� Gibbs sampling can be used. The strategy below
works with any Gibbs sampler, but let me illustrate
with regression model with the independent Normal-
Gamma prior (for simplicity set 
 = I).

� Want to predict T unobserved values of the depen-
dent variable y� =

�
y�1; ::; y

�
T

�0
, which are generated

according to:

y� = X�� + "�

� The predictive density is p (y�jy) but cannot be de-
rived analytically.



� But we do know:

p (y�j�; h) = h
T
2

(2�)
T
2

exp
�
�h
2
(y� �X��)0 (y� �X��)

�
:

� Predictive features of interest can be written asE [g (y�) jy]
for some function g (:).

� E.g. Predictive mean of y�i implies g (y�) = y�i ,

� But, using same reasoning as for Monte Carlo inte-
gration, if we can �nd y�(s) for s = 1; ::; S which
are draws from p (y�jy), then

bgY = 1

S

SX
s=1

g
�
y�(s)

�
,

will converge to E [g (y�) jy].



� The following strategy will provide the required draws
of y�:

� For every �(s) and h(s) provided by the Gibbs sam-
pler, take a draw, y�(s) from p

�
y�j�(s); h(s)

�
(a

Normal density)

� We now have draws �(s), h(s) and y�(s) for s =
1; ::; S which we can use for posterior or predictive
inference.

� Why are these the correct draws? Simply use rules of
conditional probability (see pages 72-73 of textbook
for details).



5 The Seemingly Unrelated Regres-

sions Model

� Seemingly unrelated regressions (SUR) are multiple
equation models:

ymi = x
0
mi�m + "mi;

with i = 1; ::; N observations for m = 1; ::;M equa-
tions.

� ymi is the ith observation on the dependent vari-
able in equation m, xmi is a km-vector containing
the ith observation of the vector of explanatory vari-
ables in the mth equation and �m is a km-vector of
regression coe¢ cients for the mth equation.

� SUR model can be written using matrices in a famil-
iar form.



� Stack all equations into vectors/matrices as yi =
(y1i; ::; yMi)

0, "i = ("1i; ::; "Mi)
0,

� =

0BBB@
�1
.
.
�M

1CCCA ;

Xi =

0BBBBBB@
x01i 0 . . 0
0 x02i 0 . .
. . . . .
. . . . 0
0 . . 0 x0Mi

1CCCCCCA :

and de�ne k =
PM
m=1 km.

� SUR model can be written as:

yi = Xi� + "i.



� Stack all the observations together as:

y =

0BBB@
y1
:
.
yN

1CCCA ;

" =

0BBB@
"1
:
.
"N

1CCCA ;

X =

0BBB@
X1
:
.
XN

1CCCA
and write

y = X� + ":



� Thus, the SUR model can be written as our familiar
linear regression model.

� If we were to assume "mi to be i.i.d. N
�
0; h�1

�
for

all i and m, then we would simply have the Normal
linear regression model of Chapters 2, 3 and 4.

� However, it is common for the errors to be correlated
across equations and, thus, we assume "i to be i.i.d.
N
�
0; H�1

�
for i = 1; ::; N where H is anM �M

error precision matrix.

� Thus, " is N (0;
) where 
 is an NM � NM

block-diagonal matrix given by:


 =

0BBBBBB@
H�1 0 . . 0
0 H�1 . . .
. . . . .
. . . . 0
0 . . 0 H�1

1CCCCCCA :



� Hence, the SUR model lies in the class of models
being studied in this lecture.



5.1 Bayesian Inference in the SUR Model

� Any prior can be used, here we use a popular one
which is an extended version of our familiar indepen-
dent Normal-Gamma prior.

� The independent Normal-Wishart prior:

p (�;H) = p (�) p (H)

where

p (�) = fN
�
�j�; V

�
and

p (H) = fW (Hj�;H) :



� The Wishart distribution, which is a matrix general-
ization of the Gamma distribution, is de�ned/discussed
in Appendix B, De�nition B.27 of textbook.

� Bayesian computation involves a Gibbs sampler using
following posterior conditionals:

�jy;H � N
�
�; V

�
;

where formula for �; V are on page 140 of textbook.

� And the posterior for H conditional on � is Wishart:

Hjy; � �W
�
�;H

�
where



� = N + �

and

H =

24H�1 + NX
i=1

(yi �Xi�) (yi �Xi�)0
35�1 :

� Empirical illustration provided in textbook.


