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1 Summary

e Readings: Chapter 6 of textbook. | will cover the
general theory and three special cases: the regres-
sion model with autocorrelated errors, the regression
model with Student-t errors and the seemingly unre-
lated regressions (SUR) model.

e The textbook discusses heteroskedasticity.

e All fall into the class where, conditional on €2 (to be
defined shortly), the model becomes a Normal linear
regression model.

e Can draw on results from previous lecture for p (3, h|y, Q).
e So, if we knew €2, we could do Bayesian inference.

e But, in practice, £2 will be unknown. How to pro-
ceed? Use Gibbs sampling.



1.1 Bayesian Computation: The Gibbs Sam-
pler

e The Gibbs sampler is a powerful tool for posterior
simulation which is used in many econometric mod-
els.

e Bayesian Econometric Methods, Exercises 11.6 through
11.16 all relate to Gibbs sampling.

e We will motivate the basic ideas in a very general
context before returning to the regression model.

e General notation: 6 is a p—vector of parameters and
p(y|0),p(0) and p(B8|y) are the likelihood, prior
and posterior, respectively.

o Let O be partitione/d into various blocks as 0 =
(9’(1),9’(2), ..,9’(3)) where ;) is a scalar or vec-
tor, 7 =1,2,.., 5.



e E.g. in regression model, B = 2 with 9(1) = 3 and

e Intuition: i) Monte Carlo integration takes draws
from p (6|y) and averages them to produce estimates
of E[g(0) |y] for any function of interest g (6).

e ii) In many models, it is not easy to directly draw
from p (0|y). However, it often is easy to randomly

draw from

p (01)|¥,0(2) 0y ). P (0(2)|v: 01), O3y O(3) ) - -
p (0¥, 01y 0(-1))-

e Note: Preceding distributions are referred to as full
conditional posterior distributions since they define a

posterior for each block conditional on all the other
blocks.



e iii) Drawing from the full conditionals will yield a
sequence 9(1), 9(2), - 0(5) which can be averaged to
produce estimates of F [g (0) |y] in the same manner

as Monte Carlo integration did.



1.1.1 More motivation for the Gibbs sampler

e Let B = 2 and suppose you have one random draw

from p (9(2)|y>. Call this draw Qggg

e Since p(fly) = p (9(1)|y,9(2))p(9(2)|y), it fol-
lows that a random draw from p (8(1)|y, 98;) IS a

valid draw of 61y from p (0]y). Call this draw 98;

o Since p(0ly) = p (0(2)lv.01)) P (O(lw). it fol-
lows that a random draw from p (9(2)|y, 983) IS a
valid draw of 05y from p (6]y).

/
e Hence, o(1) — (98%’,98;’) Is a valid draw from
p(0]y).

e You can continue this reasoning indefinitely.



(0)

Hence, if you can successfully find 6(2), then sequen-
tially drawing from the posterior of 0(1) conditional
on the previous draw for 65, then 65) given the
previous draw for 9(1), will yield a sequence of draws
from the posterior.

This strategy of sequentially drawing from full con-
ditional posterior distributions is called Gibbs sam-

pling.

Problem with steps above is that it is not possible

(0)

to find such an initial draw 0(2). (if we knew how to

easily take random draws from p (0(2)|y), we could

use this and p (9(1)|9(2),y> to do Monte Carlo in-
tegration and have no need for Gibbs sampling.

However, subject to weak conditions, the initial draw

08; does not matter in the sense that the Gibbs

sampler will converge to a sequence of draws from

p (0]y).



(0) .

e In practice, choose 9(2 in some manner and then
run the Gibbs sampler gor S replications. However,
the first Sg of these are discarded as so-called burn-
in replications and the remaining S retained for the
estimate of F [g(0) |y]|, where Sg+ S1 = S.

e After dropping the first Sg of these to eliminate the
effect of 6(0), remaining S7 draws can be averaged
to create estimates of posterior features of interest.

That is, if

then gg, converges to F'[g(0)|y] as S1 goes to infinity.

e There are various "MCMC Diagnostics" which you
can use to make sure you have taken enough draws
(and discarded enough burn-in draws). See textbook
pages 64-68.



e Gibbs sampler popular since many models logically
break into blocks. Many posteriors can be written
as p (B, h, z|y) where z is something else (often a
vector of latent data). Gibbs sampling involving
p(B,hly,z) and p(z|y, 3,h) can be used (where
p (B, h|y, z) uses results for linear regression model).

e Examples: tobit, probit, stochastic frontier model,
random effects panel data model, SUR, error cor-
rection models, state space models, threshold au-
toregressive models, Markov switching models, some
semiparametric regression models, etc. etc. etc.



2 The Model with General 2

e Now return to regression model:

y=Xp+e.
e Before we assumed € was N (0x, h 1 1y).

e Now we will assume:

e~ N0y, h71Q).
where € is an N X N positive definite matrix.

e Many models can be put in this form (including ran-
dom effects panel data models, SUR models, ARMA
models and the ones we will discuss below).



e Appendix A, Theorem A.10 says that an N X N
matrix P exists with the property that PQP’ = I.

e Multiply both sides of the regression model by P:
y' = XT3+,
where yI = Py, XT = PX and e = Pe.
e It can be verified that &1 is N0y, h Iy).

e Hence, the transformed model is identical to the Nor-
mal linear regression model.

e If Q is known, Bayesian analysis of the Normal lin-
ear regression model with non-scalar error covariance
matrix is straightforward (simply work with trans-
formed model).



If Q2 is unknown, often can use Gibbs sampling

For instance, if the prior for Band his NG (ﬁ, V,s 2, z),
then all the results of previous lecture are applicable

conditional upon €.

E.g. p(B|y,2) is a multivariate t distribution and
this, combined with a posterior simulator for p (Q2|y, 5)
can be used to set up a Gibbs sampler.

Note: what if p(Q2|y, B, h) does not have a conve-
nient form to draw from? Metropolis-Hastings algo-
rithms are popular (see pages 92-99 of textbooks).
“Metropolis-within-Gibbs" algorithms popular.



2.1 Posterior Inference in General Case

e In last lecture, we used a natural conjugate Normal-

Gamma prior.

e To illustrate another prior we will use an independent
Normal-Gamma prior for 8 and h

e At this stage use general notation, p (€2), to indicate
the prior for €.

e Thus prior used is

p(B,h, Q) =p(B)p(h)p(Q)

where



p(B) = fn (BI8,V)

and

p(h) = fo (hlr,s72).

e Exercise 13.1 of Bayesian Econometric Methods show
that posterior conditionals are (in terms of trans-
formed model):

Bly,h, 2~ N (B,V),

where

V= (v l4axolx)



and

B=V(V!8+rX'Q1XB(Q))

hly, 8,2 ~ G(72,7),
where 3 (Q) is the GLS estimator

N
|
Z
_|_
<

and

o _(y—XB)Q (y— XB) +vs®

v



The posterior for 2 conditional on 3 and h has a kernel

of the form:

p (Qly, B, fi) x
p(2) 1972 {exp [~ B (y — XY Q1 (y - XB)|}
(*)

e In general, this conditional posterior does not take
any easily recognized form. Note that, if we could
take posterior draws from p (2|y, 3, h), then a Gibbs
sampler for this model could be set up in a straight-
forward manner since p(8ly, h, ) is Normal and
p (hly, B,) is Gamma.



3 Heteroskedasticity of an Unknown

Form: Student-t Errors

e It turns out that we have heteroskedasticity of an
unknown form in the Normal linear regression model
it is equivalent to a regression model with Student-t

errors.
e This is a simple example of a mixture model.

e Mixture models are very popular right now in many
fields as a way of making models more flexible (e.g.
non-Normal errors, “nonparametric” treatment of re-

gression line, etc.).



e Heteroskedasticity occurs if:

wy O . . O
0O wr O
Q= .0 :
: . .0
0 . . 0 W N

e In other words, var (g;) = h™lw; fori =1, .., N.

e With N observations and N+ k-1 parameters to es-
timate (i.e. 5,h and w = (wq, ..,wy)’), treatment
of heteroskedasticity of unknown form may sound
like a difficult task.

e Solution: use a hierarchical prior (w;s drawn from
some common distribution — parameters of that dis-
tribution estimated from the data).



e Hierarchical priors are commonly used as a way of
making flexible, parameter-rich models more amenable

to statistical analysis.

e Allows us to free up the assumption of Normal errors

that we have used so far.



3.1 A Hierarchical Prior for the Error Vari-

ances

e We begin by eliciting p (w).

e Work with error precisions rather than variances and,
hence, we define A = (Aq, Ao, .., Ayx)’

_(, -1 -1 -1y’
:(wl ,wz 7..,(&)N>.
e Consider the following prior for A:

N
p(N) = 11 fa (Nill,vy). (**)

1=1
Note f is the Gamma p.d.f.



The prior for A depends on a hyperparameter, v,
and assumes each \; comes from the same distribu-
tion.

In other words, \;s are i.i.d. draws from the Gamma
distribution.

This assumption (or something similar) is necessary

to deal with the problems caused by the high-dimensionality
of .

Why should the \;s be i.i.d. draws from the Gamma
distribution with mean 1.07 This model is exactly
the same as the linear regression model with i.i.d.
Student-t errors with vy degrees of freedom (Bayesian
Econometric Methods Exercise 15.1)..

In other words, if we had begun by assuming:



p(ei) = fi (eil0,h 71, v))

fore = 1,.., N, we would have ended up with exactly the
same posterior.

e Note: we now have model with more flexible error
distribution, but we are still our familiar Normal lin-

ear regression model framework.



Chapter 10 of textbook discusses several ways of
making models more flexible: mixture of Normals
distributions. Our treatment of heteroskedasticity is
scale mixture of Normals.

If vy is unknown, need a prior p (v)).

Note that now the prior for A is specified in two steps,
the first being (**), the other being p (v ). Alterna-
tively, the prior for X can be written as p (A|vy) p (V).
Priors written in two (or more) steps in this way are
referred to as hierarchical priors.

See discussion of p (v)) in textbook pages 126-127.



3.2 Bayesian Computation with Student-t
Model

o Geweke (1993, JAE) develops a Gibbs sampler for
taking draws of the parameters in the model: 3, h, A
and v).

e p(Bly,h,\) and p(h|y, 5, A) are as discussed in
last week.

e Focus on p(Aly, B, h,vy) and p (valy, B, h, A).

e Bayesian Econometric Methods, Exercise 15.1 de-
rives posterior conditionals for A;s as

I/)\—I—].
h€,62—|—V)\

p(>‘i|y767hay)\):fG <>\7,| ,l/)\—|—1>.



e p(vy|y,B,h,A\) depends on p(vy). Geweke uses
the exponential density which is simply the Gamma
with two degrees of freedom:

p(vy) = fa(valyy, 2).

U % U -N
p(aly, BN o (2) 7T (2) 7 exp (-mnn),
where
1 1Y .
= = 4+ >3 In(XH) 4+
1=t ()

e Geweke derives a method of drawing from this den-
sity (thus completing the Gibbs sampler). My text-
book treatment slightly different.



4 Autocorrelated Errors

e Assume errors in a regression model follow an au-
toregressive process of order 1 or AR(1) process:

Et = PE{—1 T Ut,
where g is iid. N (0,h71) and —1 < p < 1.

e Using standard results from time series we can write
covariance matrix of € as h~1Q, where

1 o p2 pT—1
1 g Lo P
Q1= 2| PP p
P : : P
_ pT—1 2 o1 |



e Thus, the regression model with AR(1) errors falls
into the class of regression models with General Error
Covariance Matrix.

e Extension to AR(p) errors is straightforward. Exten-
sion to ARMA(p,q) errors also (relatively) straight-

forward.

e Assuming independent Normal-Gamma prior for re-
gression part, then Gibbs sampler can be set up in-

volving p (Q|y, B, k), p (Bly, h, ) and p (hly, B,).



4.1 Bayesian Computation in Regression

Model with AR Errors

e Same idea as for all models in this chapter: p (B|y, h, Q2)
and p (hly, B,) have familiar forms (Normal and
Gamma) and we need only focus on p (Q|y, B, h) =

p (ply, B, h).

e To motivate results, write the regression model as:

Yyt = Tt + ¢
where x+ is a scalar.

e Defining y;r = Y+ — pY¢—1 and :1::5r = Xt — PT_1 We

obtain:

yz = LBIB + uyt.



e We have assumed that u; is i.id. NV (O, h_l). This
transformed model is simply a Normal linear regres-
sion model with i.i.d. errors.

e Aside: treatment of initial condition.

e Prior for p can be anything, here assume Normal,
truncated to the stationary region. That is,

p(p) < fx (plo, V) 1(p € @),

where 1 (p € ®) is the indicator function which equals 1
for the stationary region and zero otherwise.

e Intuition for p (p|y, B, k). Conditional on 3, can use



et = Yt — ¢,

to get ;. But then the AR(1) equation:

€t = PE¢—1 T Ut,

is just like a regression model.

e Using standard regression derivations we have:

p(ply, B,h) < f (plp, V) 1(p € @),

where

V,= (z;l 4 hE’E>_1 ,



p=Vp(V,'p+hE)
and E is a (T — p) x k matrix with ¢! row given by

(gt—la X3 6t—p> .

e Exercise 13.4 of Bayesian Econometric Methods gives
exact derivations (and an empirical application).

e Key thing: Gibbs sampler involves drawing from full
conditional posteriors: p (B|y, h, p) and p (h|y, 3, p)
and p (ply, B, h). All of these have forms the com-
puter can easily draw from.

e Remember, once you have S Gibbs sampling draws
(discarding Sg burn-in draws), you can simply av-
erage them to produce any feature of interest you

want.



e For instance if §; is a regression coefficient

1 S
— ¥ 53(8)
18=Sg+1

converges to E (Bﬂy), a popular point estimate.

1S (5 )
Sl sz%o:—l—l (Bj ) |

converges to E (B§|y> which can be used to calculate

var (ley) (i.e. var (ley) = F (6§|y)—[E (53-\3/)}2)-

etc. etc. etc.



4.2 Prediction Using the Gibbs Sampler

e In last lecture we worked out that the predictive den-
sity for the Normal regression model with natural
conjugate prior had t distribution. But in other cases
predictive density may not have convenient form.

e Gibbs sampling can be used. The strategy below
works with any Gibbs sampler, but let me illustrate
with regression model with the independent Normal-
Gamma prior (for simplicity set Q = I).

e Want to predict 1" unobserved values of the depen-
/
dent variable y* = <y’1k, - y%i) , which are generated
according to:

e The predictive density is p (y*|y) but cannot be de-
rived analytically.



e But we do know:

" h% h * * 0\ % *
p(y*|B,h) = = €XP —E(y - X"B) (yv* — X7B)| .
(2m)2

e Predictive features of interest can be written as E [g (y*) |y]
for some function g (.).

e E.g. Predictive mean of 4 implies g (y*) = v,

e But, using same reasoning as for Monte Carlo inte-
gration, if we can find y*(S) for s = 1,..,.S which
are draws from p (y*|y), then

S
gy = g > g (y*(s)) ,

will converge to E [g (y*) |y].



The following strategy will provide the required draws
of y*.

For every B(S) and h(%) provided by the Gibbs sam-
pler, take a draw, y*(s) from p(y*w(s),h(s)) (a
Normal density)

We now have draws 6(8), h($) and y*(s) for s =
1,..,.S which we can use for posterior or predictive
inference.

Why are these the correct draws? Simply use rules of
conditional probability (see pages 72-73 of textbook
for details).



5 The Seemingly Unrelated Regres-

sions Model

e Seemingly unrelated regressions (SUR) are multiple
equation models:

— ! .
Ymi = TpilBm + Emi,

with 7« = 1,.., N observations for m = 1,.., M equa-
tions.

® y,,; IS the it" observation on the dependent vari-
able in equation m, x,,,; is a km-vector containing
the it observation of the vector of explanatory vari-
ables in the mt? equation and 3., is a km-vector of

regression coefficients for the mth equation.

e SUR model can be written using matrices in a famil-
lar form.



e Stack all equations into vectors/matrices as y; =
/ /
(Y16, - yma) €0 = (€14 - E014)

B1
B = | ,
B
[ 2}, O 0 )
0 58’22 0
X; = . ]
. . . 0
\ 0 . .0 :U?m }

and define k£ = Z%:l km,.

e SUR model can be written as:

yi = XiB +¢€;.



e Stack all the observations together as:

Y

Y = )
YN
€1

£ = :
EN
X1

X =
XN

and write



Thus, the SUR model can be written as our familiar

linear regression model.

If we were to assume €,,,; to be i.i.d. N (O, h_l) for
all = and m, then we would simply have the Normal
linear regression model of Chapters 2, 3 and 4.

However, it is common for the errors to be correlated

across equations and, thus, we assume ¢; to be i.i.d.
N (O,H_1> fore =1,..,N where H isan M x M
error precision matrix.

Thus, € is N (0,Q) where Q2 is an NM x NM
block-diagonal matrix given by:

(H1 o . . 0 )
o H1




e Hence, the SUR model lies in the class of models
being studied in this lecture.



5.1 Bayesian Inference in the SUR Model

e Any prior can be used, here we use a popular one
which is an extended version of our familiar indepen-
dent Normal-Gamma prior.

e The independent Normal-Wishart prior:

p(B,H)=p(B8)p(H)

where

p(B) = fn (8I8,V)

and

p(H) = fw(H|v, H).



e The Wishart distribution, which is a matrix general-
ization of the Gamma distribution, is defined /discussed
in Appendix B, Definition B.27 of textbook.

e Bayesian computation involves a Gibbs sampler using
following posterior conditionals:

Bly, H~ N (B,V),

where formula for 3,V are on page 140 of textbook.

e And the posterior for H conditional on 3 is Wishart:

Hly, ~W (7,H)

where



N
|
Z
_|_
<

and

N —1
H=|H '+ (vi — XiB) (i — X;B8)
1=1

e Empirical illustration provided in textbook.



