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1 Introduction

� Based on a paper �Forecasting in Dynamic Factor
Models using Bayesian Model Averaging�(coauthored
with Simon Potter, Econometric Reviews, 2004).

� Uses methods for Normal linear regression model

� Shows how Bayesian model averaging done using
forecasting

� Introduces a new posterior simulation algorithm: Markov
Chain Monte Carlo Model Composition (MC3)

� Note on terminology: Gibbs sampler is the most pop-
ular of a class of algorithms called Markov Chain
Monte Carlo (MCMC) algorithms



2 Motivation for Application

� Many recent papers based on a model where informa-
tion in a large number of variables is used to explain
a single (or a few) dependent variables.

� Information in numerous explanatory variables ex-
tracted using factor analysis.

� Forecasting: e.g. Stock and Watson (2002) using
di¤usion indexes, etc.

� Structural modelling (e.g. identi�cation of monetary
shocks): e.g. the FAVAR of Bernanke, Boivin and
Eliasz (2002), Reichlin and coauthors, etc.

� Theoretical econometric work: Bai and Ng (2002),
Reichlin and coauthors, West (2002), etc.



� Generic problem: lots and lots of potential explana-
tory variables, you know some are probably impor-
tant but do not know which ones. Bayesian model
averaging is ideally suited for such a situation.

� Our paper: considers various ways of implement-
ing Bayesian model averaging in forecasting prob-
lems when there are hundreds of potential explana-
tory variables.



3 Dynamic Factor Models

yt+h = � (L) yt +  (L)wt + "t

� � (L) and  (L) are polynomials in the lag operator

� wt is a kw-vector where kw is huge e.g. kw = 215
in Stock and Watson (2002, JBES)

� Standard sequential testing/model selection criteria
can lead you astray.

� Hence, dynamic factor model:

yt+h = � (L) yt + � (L) ft + "t

where ft is q-vector of factors extracted from wt (e.g.
using principal components)



� q << kw is usually "small" (but should it be?)

� Model selection/pre-test problems can still be sub-
stantive when using models with non-sequential fac-
tors.

� Note that our variant of the dynamic factor model is
a regression model (with lags of dependent variable
and factors as explanatory variables)



4 Bayesian Model Averaging

� Researcher often has many possible models and the
common strategy (for virtually all non-Bayesians and
many Bayesians) is to select one model.

� The problems associated with presentation of results
from a single model selected on the basis of a se-
quence of hypothesis tests have long been recog-
nized in the statistical literature (the so-called pre-
test problem).

� Intuitive idea: each time a hypothesis test is carried
out, the possibility exists that a mistake will be made
(i.e. the researcher will reject the better model for a
not so good one). This possibility multiplies sequen-
tially with each hypothesis test.

� Even if procedure does lead to the selection of the
"best" model, standard decision theory implies that



it is rarely desirable to present results for this model
while ignoring all evidence from the not quite so good
model(s).

� Response to these problems: Bayesian model averag-
ing (BMA)

� Suppose the researcher is entertaining R possible
models, denoted by M1; :::;MR, to forecast y

�.

� Models and parameters are random variables and
rules of probability imply:

E (y�jData) =
RX
r=1

p (MrjData)E (y�jData;Mr)

(*)



� Overall point forecast E (y�jData), is weighted av-
erage of point estimates in every modelE (y�jData;Mr).
Weights in weighted average are the posterior model
probabilities, p (MrjData).

� Can use same idea with entire predictive distribution:

p (y�jData) =
RX
r=1

p (MrjData) p (y�jData;Mr)



5 Bayesian Model Averaging in the

Normal Linear Regression Model

� Researcher often faced with the situation where nu-
merous potential explanatory variables exists. Many
of these explanatory variables are probably irrelevant,
but you do not know which ones.

� Selecting a single model could be misleading: model
uncertainty is ignored and sequential testing proce-
dures would involve many tests.

� BMA is a sensible alternative.

� Consider a set of possible linear regression models:
All potential explanatory variables are stacked in a
T �K matrix X and set of models given by:



y = Xr�r + "

Xr is a N � kr matrix containing some (or all) columns
of X.

� In our case Xr are various factors and lagged depen-
dent variables

� Note: minor extension to allow some explanatory
variables to be common to all models.

� Since there are 2K possible subsets of X, there are
2K possible choices for Xr and, thus, R = 2K .

� IfK is at all large, then the number of possible mod-
els is astronomical.



� E.g. 30 potential explanatory variables and 230 mod-
els. If the computer could analyze each model in
0:001 of a second, it would take almost two years to
analyze all the models!

� In such cases, directly doing Bayesian model aver-
aging by explicitly calculating every term in (*) is
impossible.

� MC3 algorithms have been developed to surmount
this problem.



5.1 Results for a Single Model

� Remember: When comparing models using poste-
rior odds ratios, it is acceptable to use noninforma-
tive priors over parameters which are common to all
models. However, informative, proper priors should
be used over all other parameters.

� Can use noninformative prior for h:

p (h) / 1

h
;

and for the intercept:

p (�) / 1:

� But we need informative prior for �. One commonly-
used benchmark prior called the g-prior.



� This is a natural conjugate Normal-Gamma prior with:

�rjh � N
�
0kr; h

�1 hgrX 0rXri�1� :
� See textbook for motivation for the g-prior. It de-
pends only on a scalar prior hyperparameter gr.

� gr = 0 corresponds to a perfectly noninformative
prior. The value gr = 1 implies that prior and data
information are weighted equally in the posterior co-
variance matrix. One strategy a researcher could
follow is to try a range of values for gr between 0
and 1.

� Another common strategy is to choose gr based on
some measure such as an information criterion.



� We use various benchmark values suggested in the
literature (see, e.g., Fernandez, Ley and Steel, 2001)

� gr = 1
T � asymptotic relationship with Schwarz

criteria

� gr = 1
ln(T )3

� asymptotic relationship with Hannan-

Quinn

� gr = 1
K2

� risk in�ation criterion of George and
Foster

� Empirical Bayes: Choose value for gr which maxi-
mizes marginal likelihood

� Lecture 2 showed analytical posterior results exist
with this prior. Hence, E (y�jy;Mr) ; p (y�jy;Mr)

and p (Mrjy) can be evaluated easily.



6 Bayesian Computation: MC-cubed

� MCMC algorithms take draws from the parameter
space, MC-cubed algorithm draw from model space
(since Bayesians treat parameters and models as ran-
dom variables same ideas hold)

� A chain of models is drawn M (s) for s = 1; ::; S.

� BMA involving g (y�) (i.e. any function of your fore-
cast) can be approximated by bgS1 where

bgS1 = 1

S1

SX
s=S0+1

E
h
g (y�) jy;M (s)

i
.

� As with Gibbs sampler, bgS1 converges to E [g(y�)jy]
as S1 goes to in�nity (where S1 = S � S0).



Details of MC3

� Candidate model, M�, is drawn (with equal proba-
bility) from the set of models containing:

1. M (s�1)

2. All models which add one extra explanatory variable
to M (s�1)

3. All models which delete one variable from M (s�1)

� M (s) is set equal to M� with probability A, else
M (s) =M (s�1)

� If A is chosen correctly, models drawn in this way
will do BMA correctly

� A is acceptance probability (with simple formula, see
page 273)



6.1 Practical Issues with MC-cubed

� Problem 1: MC3 can provide a highly correlated sam-
ple from model space � can be very slow and inef-
�cient.

� Remember (from Lecture 1) that

p(Mrjy) / p (yjMr) p (Mr)

� p (Mr) is prior model probability which must be cho-
sen

� Why not try �noninformative prior�which treats all
models equally?



p (Mr) =
1

R

� Problem 2: Work of Ed George (see his website at
University of Pennsylvania) show that with many
correlated regressors, "noninformative" priors over
model space can potentially put most of the prior
probability in small regions of model space.

� Solution to Problems 1 and 2: Orthogonalize regres-
sors

� But that is exactly what dynamic factor models do.

� Original model with allK potential explanatory vari-
ables (ignoring variables common to all models):



y = X� + "

can be written as:

y = Z�+ "

where

Z = XW

� =W�1�

and columns of Z are orthogonal

� Here we choose W to be the matrix of eigenvectors
of X 0X and, thus, Z is the usual matrix of factors



7 The Data

� The same as that used in Stock and Watson (2002,
NBER working paper)

� 162 U.S. quarterly time series from 1959Q1 through
2001Q1

� Stock and Watson transformations to stationarity
used for all variables (to avoid worrying about unit
root issues).

� Focus on forecasting GDP and CPI

� Given transformations, GDP growth and growth in
in�ation.



8 Empirical Issues

We compare Bayesian model averaging to:

1. Bayesian model selection: Using output from BMA
algorithm, select the single model with highest p (Mrjy)

2. Conventional model selection: Model with �rst q fac-
tors where q maximizes marginal likelihood

3. AR(p)

� Lag lengths: We choose AR(p) with best forecasting
performance (in root mean squared error sense).

� p = 2 for both variables (results using p = 4 quali-
tatively similar)



� Factor models all include AR(p) component plus fac-
tors calculated using p lags of explanatory variables.

� Note: we put the AR(p) base case in the most ad-
vantageous position

� Two priors over model space (more in paper):

1. the noninformative prior

2. 99.9% prior which in noninformative over �rst q
factors (where 99.9% of the variation in X is
included in the �rst q factors)

� Four priors over parameter space (three benchmark
values for gr plus empirical Bayes)



9 Empirical Results Using the En-
tire Sample

� Summary:

� Factor models perform very well relative to AR(2)

� BMA and Bayesian model selection allow for sub-
stantial improvements in marginal likelihoods (infor-
mation criteria) over conventional procedures

� Lots of factors have explanatory power (e.g. OLS re-
gression of GDP growth on �rst 100 factors yields 46
coe¢ cients with t-stats >1 and 15 with t-stats>2)

� Non-sequential factors often selected (e.g. with in-
�ation and 99.9% prior, model with highest marginal
likelihood contains factors ranked 1, 2, 3, 5, 6 and
11)



10 Forecasting Setup

� Forecast horizons: h=1, 4 and 8

� Forecasting from 1970Q1 through 2001Q1-h

� Dynamic factor forecasting models at time � all based
on

y�+h = 0 + 1y� + 1y��1 + Z��+ "�

where Z� contains factors constructed using data through
� (based on 2 lags).

� Models di¤er in which factors are included in Z� .

� Forecasts evaluated using root mean squared error:



RMSE =

rX�
y�+h � E

�
y�+hj
�

��

where 
� denotes data through time �

� RMSE�s presented as % of AR(2) RMSE



11 Forecasting Results

� See tables 3, 4 and 5

� Summary: Forecasting results less favorable than in-
sample results for BMA (or any factor model).

� At h=4 or 8 no clear improvements over an AR(2)
for either series. Following discussion relates to h=1.

� For h=1, factor models do beat AR(2) and BMA
with the 99.9% prior does beat conventional meth-
ods.

� BMA with noninformative prior over model space
forecasts poorly (too many factors included).

� Discuss prior sensitivity and the related issue of shrink-
age



Table 3a: RMSE relative to AR(2), percentage, GDPQ

g = 1
T g = 1

[ln(T )]3
g = 1

K2
Optimal
g

Bayesian Model Averaging
(equal prior weights to all models)

h = 1 171:1 172:7 102:6 173:7
h = 4 188:2 190:9 99:4 186:1
h = 8 246:3 248:3 131:0 248:5

Bayesian Model Selection
(equal prior weights to all models)

h = 1 181:7 184:0 103:7 176:9
h = 4 194:1 194:1 109:5 188:6
h = 8 254:2 252:5 123:4 249:2

Bayesian Model Averaging
(99.9% prior)

h = 1 94:1 94:1 94:2 93:0
h = 4 100:1 100:2 100:1 99:6
h = 8 99:0 99:1 99:1 99:2

Bayesian Model Selection
(99.9% prior)

h = 1 96:5 96:1 95:6 93:1
h = 4 101:5 101:8 101:4 99:7
h = 8 100:5 100:7 100:5 101:8

Model with First q Factors Selected
h = 1 94:9 94:8 94:3 94:6
h = 4 99:4 99:4 97:9 100:7
h = 8 100:4 100:4 100:5 100:5



Table 3b: RMSE relative to AR(2), PUNEW

g = 1
T g = 1

[ln(T )]3
g = 1

K2
Optimal
g

Bayesian Model Averaging
(equal prior weights to all models)

h = 1 120:6 121:9 92:4 121:4
h = 4 141:7 142:6 104:0 143:5
h = 8 150:9 154:8 102:9 158:5

Bayesian Model Selection
(equal prior weights to all models)

h = 1 131:5 131:0 95:2 130:6
h = 4 144:6 142:7 106:3 145:1
h = 8 159:8 162:1 106:2 163:3

Bayesian Model Averaging
(99.9% prior)

h = 1 91:2 91:3 91:4 88:2
h = 4 100:8 100:8 100:8 101:1
h = 8 100:9 100:9 100:9 100:7

Bayesian Model Selection
(99.9% prior)

h = 1 93:5 94:6 94:7 90:0
h = 4 102:4 100:9 100:8 103:4
h = 8 100:6 100:6 100:6 101:4

Model with First q Factors Selected
h = 1 92:7 93:4 94:1 89:2
h = 4 99:6 99:6 101:3 101:3
h = 8 100:0 100:0 100:0 100:0



Table 4a: Percentage of Predictive Means within
2 Standard Deviations of Actual Value, GDPQ

g = 1
T g = 1

[ln(T )]3
g = 1

K2
Optimal
g

Bayesian Model Averaging
(equal prior weights to all models)

h = 1 58:3 57:5 96:1 52:0
h = 4 33:1 28:2 95:2 37:1
h = 8 37:5 32:5 91:7 33:3

Bayesian Model Selection
(equal prior weights to all models)

h = 1 39:4 33:1 93:7 40:9
h = 4 21:8 20:2 87:1 29:0
h = 8 21:7 19:2 85:8 23:3

Bayesian Model Averaging
(99.9% prior)

h = 1 96:1 96:1 96:1 96:1
h = 4 91:9 91:9 91:9 91:9
h = 8 95:0 95:0 95:0 95:0

Bayesian Model Selection
(99.9% prior)

h = 1 95:3 95:3 95:3 95:3
h = 4 91:1 91:1 91:9 91:9
h = 8 95:0 95:0 95:0 94:2

Model with First q Factors Selected
h = 1 96:1 96:1 95:3 95:2
h = 4 91:1 91:1 91:9 91:1
h = 8 93:3 93:3 94:2 91:7



Table 4b: Percentage of Predictive Means within
2 Standard Deviations of Actual Value, PUNEW

g = 1
T g = 1

[ln(T )]3
g = 1

K2
Optimal
g

Bayesian Model Averaging
(equal prior weights to all models)

h = 1 63:0 58:3 92:1 58:3
h = 4 44:4 40:3 90:3 41:9
h = 8 31:7 32:5 89:2 46:7

Bayesian Model Selection
(equal prior weights to all models)

h = 1 26:8 22:8 86:6 36:2
h = 4 33:9 33:1 85:5 34:7
h = 8 25:8 23:3 83:3 35:0

Bayesian Model Averaging
(99.9% prior)

h = 1 88:2 88:2 87:4 89:2
h = 4 87:9 87:9 87:9 87:1
h = 8 89:2 87:5 87:5 87:5

Bayesian Model Selection
(99.9% prior)

h = 1 86:6 86:6 86:6 87:4
h = 4 87:9 87:9 87:9 86:3
h = 8 87:5 87:5 87:5 87:5

Model with First q Factors Selected
h = 1 87:2 87:2 85:8 88:8
h = 4 87:1 87:1 87:9 87:1
h = 8 86:7 86:7 86:7 86:7



Table 5a: Number of Factors in Model
(average over all �), GDPQ

g = 1
T g = 1

[ln(T )]3
g = 1

K2
Optimal
g

E
�PK

j=1 jjData
�
for Bayesian Model Averaging

(equal prior weights to all models)
h = 1 47:8 50:6 3:9 63:7
h = 4 67:2 70:5 3:9 64:0
h = 8 63:5 67:0 3:1 66:0PK

j=1 j for Selected Model for Bayesian Model
Selection (equal prior weights to all models)

h = 1 55:0 60:8 1:6 66:9
h = 4 70:9 72:3 2:0 62:9
h = 8 65:2 67:6 1:1 66:4

E
�PK

j=1 jjData
�
for Bayesian Model Averaging

(99.9% prior)
h = 1 3:4 3:4 3:4 5:2
h = 4 3:4 3:4 3:4 5:2
h = 8 1:9 1:9 1:9 4:0PK

j=1 j for Selected Model for Bayesian Model
Selection (99.9% prior)

h = 1 2:3 2:3 2:3 4:7
h = 4 3:1 3:0 3:0 4:2
h = 8 0:4 0:4 0:4 2:6



Table 5b: Number of Factors in Model
(average over all �), PUNEW

g = 1
T g = 1

[ln(T )]3
g = 1

K2
Optimal
g

E
�PK

j=1 jjData
�
for Bayesian Model Averaging

(equal prior weights to all models)
h = 1 48:7 52:8 4:5 59:3
h = 4 62:5 67:8 3:0 65:9
h = 8 65:9 69:1 3:0 63:9PK

j=1 j for Selected Model for Bayesian Model
Selection (equal prior weights to all models)

h = 1 68:1 72:6 2:3 62:6
h = 4 64:8 68:9 0:4 67:5
h = 8 66:3 70:5 0:4 64:9

E
�PK

j=1 jjData
�
for Bayesian Model Averaging

(99.9% prior)
h = 1 4:4 4:4 4:4 5:8
h = 4 1:7 1:7 1:6 3:5
h = 8 1:4 1:4 1:4 1:8PK

j=1 j for Selected Model for Bayesian Model
Selection (99.9% prior)

h = 1 4:0 4:0 4:0 5:2
h = 4 0:1 0:04 0:1 1:7
h = 8 0:4 0:4 0:4 1:0


