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1 Introduction

e State space models are a popular way of modeling
time series.

e Useful for trend/cycle/irregular/seasonal decompo-
sitions

e Also many models in macroeconomics/finance have
state space structure (e.g. time varying VARs, sto-
chastic volatility)

e Fallsinto familiar framework: Gibbs sampling/hierarchical
priors



2 A General State Space Model

We will work with the state space model with measure-
ment equation:

yr = X8 + Zioy + e,

and state equation:

opy1 = Trog + ug.

e y; is scalar dependent variable and X; and Z; are
1 X k and 1 X p vectors, respectively, containing
explanatory variables and /or known constants.

e Extension to multivariate y is straightforward

® oy Is p X 1 vector containing p states.



e is ii.d. N(o,h—l)
ut i1s p X 1 vector which is i.i.d. N (O, H_l)

e+ and ug are independent of one another for all s
and t.

T3 is a p X p matrix of known constants.

Note: if T} contains unknown parameters can be han-
dled easily.

Lots of interesting models structural time series mod-
els fall in this framework

State equation can be interpreted as a hierarchical
prior



2.1 Bayesian Computation in the State Space
Model

e Conditional on knowing states, model is the Normal
regression model:

yi = X8 + &4,

where y;' = y; — Zioy.

e All our results for Normal linear regression model can
be used (conditional on states).

e But, conditional on other parameters, can draw states.
Thus, Gibbs sampler can be used. Formally, Gibbs
sampler involves

p(5|ya a1, .., 7, h),p (h|y7 i, ..y OAT,,B),

p(a1,..,ar|y, B, h, H) and p (H|y, aq, .., aT).



2.2 A Prior

e We will derive Gibbs sampler using following prior
(although anything possible):

p(B)=fn (818, V),

p(h) = fg (hls™%v),

p(H) = fw (H|lvg, H).

e Assume ag = 0 (there are various ways of treating
initial condition, but we will not discuss)

e State equation is a hierarchical prior:



p (a1, ..,ar|H) =p(aq|H)p(ag]ay, H) ..p (ar|ar_1, H),

where

p (Oét+]_|0£t, H) — fN (Oét_|_]_|TtOét, H)

and

p(a1|H) = fn (1[0, H).



2.3 Gibbs Sampler

e Gibbs sampler involves drawing from posterior con-
ditionals

e Posterior conditionals for 3 and h based on usual

regression results (with y replaced by y*, see page
197)

5|y7 h,ay,..,ap ~ N (B, V) .

and:

hly, B, 01, ..,ar ~ G(57%,7)



e What about H? Conditional on a1, .., a, state equa-

tions are like SUR model (with no explanatory vari-
ables).

e Thus (using SUR results from page 140):

Hly,a1,..,ap ~ W (PH,H)

where Uz; and H are given on page 197



To complete Gibbs sampler, need p (a1, .., arl|y, B, h, H)
and a means of drawing from it.

This is multivariate Normal distribution, but hard
draw from it since T'—dimensional (elements can be
highly correlated with one another).

But we can draw on standard state space algorithms
(e.g. Carter and Kohn, 1994, and DeJong and Shep-
hard, 1995, Durbin and Koopman, 2002)

Textbook described Deldong and Shephard's algo-
rithm. | won't repeat details here.

But note these papers are not explicitly Bayesian,
but it turns out that there is an equivalence between
standard non-Bayesian methods.



E.g. Kalman filter produces posterior means of o}
that are required for our Gibbs sampler

Since writing my textbook, it has come to my atten-
tion that the following is the most efficient algorithm
for drawing states:

Durbin, J. and Koopman, S., 2002, A simple and
efficient simulation smoother for state space time
series analysis, Biometrika.

Thus, a Gibbs sampler can be set up which draws
on results for Normal linear regression model, SUR
model and a standard algorithm for drawing states
in state space models.



2.4 Empirical lllustration: A TVP-AR Model

e A simple example taken from Koop and Potter (2001,
Econometrics Journal).

e Economic history data set percentage change in UK
industrial production from 1701-1992.

e AR(p) model with time varying parameters:

Yt = oot T @1tYt—1 + --- T QptYi—p + Et,

where for . = 0,..,p

Qjt4+1 = OG ¢ T Uit

o c;isiid. N(o,h—l) and w;y is i.i.d. N(O,Aih_l)
where €¢, u;s and w - are independent of one another

e Special case of our state space model if we exclude
X and define:
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e Posterior results obtained by running Gibbs sampler.

e As an example of empirical results.
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3 Extensions

e Note that blocking nature of Gibbs sampler means
we can handle many extensions by just adding one
more block (i.e. one more conditional posterior dis-
tribution) to the Gibbs sampler

e For instance, adding Student-t errors to the state
space model can be done by combining Gibbs sam-
pler Normal state space model with Gibbs sampler
we talked about before for regression model with
Student-t errors.

e Many other nonlinear/non-normal extensions of state
space models

e Of particular importance: stochastic volatility model:



= exp | — | &,
Yt P 5 ) €t

where €4 is i.i.d. N (0,1)

Q1 = p+ poy + uy
where uy is i.id. N (0,02).

e Rewrite (nonlinear) measurement equation as:

log (yf) = ot + log (8% )

e The only thing which stops direct use of our previous
Gibbs sampler is that log (5%) is not Normal



e But as noted in Shephard (1993, Biometrika), Carter
and Kohn (1997, JRSS,B) and Kim, Shephard and
Chib (ReStud, 1998), Iog(a%) can be approximated
extremely well by a mixture of Normal distributions.

e Hence, add block to Gibbs sampler drawing on re-
sults from mixture of Normals literature (remember
Student-t errors is an example of mixture, but more

general mixtures possible).



