
Learning About Bayesian Computation
The classical econometrician will often used software packages such as Eviews,

Stata or Micro�t which allow the user to implement a set of econometric pro-
cedures at the click of a mouse. For the Bayesian, such options are typically
not available. There are a limited number of Bayesian software packages that
can handle some models. For instance, BUGS (which is freeware available
at http://www.mrc-bsu.cam.ac.uk/bugs/) is the most popular and can han-
dle many models. However, BUGS is mostly written by statisticians and does
not directly handle a lot of models used by econometricians (especially in time
series). For this reason, many Bayesians write their own programs in languages
such as Matlab, Gauss or R. The purpose of this set of exercises is to build up
Bayesian programming skills of relevance for posterior simulation (e.g. Monte
Carlo integration and Gibbs sampling) so that the user can create their own
programs for any model.
My textbooks, Bayesian Econometrics (BE) and Bayesian Econometric Meth-

ods (BEM),contain a wide variety of computer exercises. The present handout
takes a few exercises from BEM books. These exercises take you through some of
the key steps of Bayesian computation. BEM provides written solutions to these
exercises and Matlab solutions to these exercises are provided on the book web-
site which is. The website for BE also contains a variety of Matlab code. Links to
both of these websites are on my website (http://personal.strath.ac.uk/gary.koop/).
It is also worth noting that, increasingly, Bayesian researchers are making

their Matlab or Gauss programs available on their websites (e.g. James LeSage
has a good website: http://www.spatial-econometrics.com/). Even if you are
going to use someone else�s programs, it is useful to have some basic Matlab or
Gauss skills to understand and, if necessary, adapt their code.

Exercise 1: Drawing from Standard Distributions.
Simulation-based inference via Monte Carlo integration, the Metropolis-

Hastings algorithm or the Gibbs sampler requires the researcher to be able
to draw from standard distributions. In this exercise we discuss how MATLAB
can be used to obtain draws from a variety of standard continuous distributions.
Speci�cally, we obtain draws from the Uniform, Normal, Student-t, Beta, Ex-
ponential and Chi-squared distributions, using MATLAB (see the Appendix to
BEM or BE for de�nitions of these distributions). This exercise is designed to
be illustrative - MATLAB is capable of generating variates from virtually any
distribution that an applied researcher will encounter (and the same applies to
other relevant computer languages such as Gauss).
Using MATLAB, obtain sets of 10, 100 and 100,000 draws from the Uni-

form, standard Normal, Student-t(3) (denoted t (0; 1; 3) in the notation of the
Appendix), Beta(3,2), Exponential with mean 5 and �2 (3) distributions. For
each sample size calculate the mean and standard deviation and compare these
quantities to the known means and standard deviations from each distribution.
Solution: This is Exercise 11.2 in BEM.
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Exercise 2: Analytical and Monte Carlo Integration in the Normal Linear
Regression Model
a) Generate an arti�cial data set of size N = 100 from the Normal linear

regression model with an intercept and one other explanatory variable. Set the
intercept (�1) to 0, the slope coe¢ cient (�2) to 1:0 and h = 1:0. Generate the
explanatory variable by taking random draws from the U (0; 1) distribution.
b) Calculate the posterior mean and standard deviation for the slope coe¢ -

cient, �2, for this data set using a Normal-Gamma prior with � = (0; 1)
0
; V =

I2; s
�2 = 1; � = 1.
c) Calculate the Bayes factor comparing the model M1 : �2 = 0 with M2 :

�2 6= 0.
d) Carry out a prior sensitivity analysis by setting V = cI2 and repeating

parts b) and c) for values of c = 0:01; 1:0; 100:0; 1 � 106. How sensitive is the
posterior to changes in prior information? How sensitive is the Bayes factor?
e) Repeat part b) using Monte Carlo integration for various values of R.

How large does R have to be before you reproduce the results of the previous
parts to two decimal places?
f) Calculate the numerical standard errors associated with the posterior

mean of the slope coe¢ cient for the models. Does the nse seem to give a
reliable guide to the accuracy of the approximation provided by Monte Carlo
integration?
Solution: This is Exercise 11.3 in BEM.
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Exercise 3: Gibbs Sampling from The Bivariate Normal .
The purpose of this question is to learn about the properties of the Gibbs

sampler in a simple case.
Assume that you have a model which yields a bivariate Normal posterior,�

�1
�2

�
� N

��
0
0

�
;

�
1 �
� 1

��
;

where j�j < 1 is the (known) posterior correlation between �1 and �2.
(a) Write a program which uses Monte Carlo integration to calculate the

posterior means and standard deviations of �1 and �2.
(b) Write a program which uses Gibbs sampling to calculate the posterior

means and standard deviations of �1 and �2.
(c) Set � = 0 and compare the programs from parts a) and b) for a given

number of replications (e.g. R = 100) and compare the accuracy of the two
algorithms.
(d) Repeat part c) of this question for � = :5; :9; :99 and :999. Discuss how

the degree of correlation between �1 and �2 a¤ects the performance of the Gibbs
sampler. Make graphs of the Monte Carlo and Gibbs sampler replications of �1
(i.e. make a graph with x-axis being replication number and y-axis being �1).
What can the graphs you have made tell you about the properties of Monte
Carlo and Gibbs sampling algorithms?
(e) Repeat parts c) and d) more replications (e.g. R = 10; 000) and discuss

how Gibbs sampling accuracy improves with number of replications.
Solution: This is Exercise 11.7 in BEM.
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Exercise 4: Gibbs Sampling in the SUR model
Consider a two-equation version of the SUR model

yi1 = xi1�1 + "i1;

yi2 = xi2�2 + "i2;

for i = 1; ::; n and where "i = ("i1; "i2)
0 are i.i.d. N(0;�). xi1 and xi2 are

1� k1 and 1� k2, respectively and

� =

�
�21 �12
�12 �22

�
:

Suppose you employ priors of the form:

� � N
�
�� ; V�

�
and

��1 �W (
; �)

where W denotes the Wishat distribution.
Derive a posterior simulator for this model and conduct a test of it using

arti�cial data.
Solution: This is Exercise 11.10 in BEM.
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Exercise 5: Using the AR(p) model to Understand the Properties of a Series
This exercise is loosely based on Geweke (1988, JBES). Let yt for t = 1; ::; T

indicate observations on a time series variable. yt is assumed to follow an AR(p)
process:

yt = �0 + �1yt�1 + :::+ �pyt�p + �t, (1)

where �t is i.i.d. N
�
0; h�1

�
. Many important properties of yt depend on the

roots of the polynomial 1�
Pp

i=1 �iz
i which we will denote by ri for i = 1; ::; p.

Geweke (1988) lets yt be the log of real GDP and sets p = 3 and, for this
choice, focusses on the features of interest: C = f� : Two of ri are complexg
and D = f� : min jrij < 1g where � = (�0; �1; �2; �3)

0. Note that C and D
are regions whose bounds are complicated nonlinear functions of �1; �2; �3. If
the AR coe¢ cients lie in the region de�ned by C then real GDP exhibits an
oscillatory response to a shock and if they lie in D then yt exhibits an explosive
response to a shock.
(a) Assuming a prior of the form:

p
�
�0; ::; �p; h

�
/ 1

h
; (2)

derive the posterior for �. To simplify things, you may ignore the (minor)
complications relating to the treatment of initial conditions. Thus, assume
the dependent variable is y = (yp+1; ::; yT )

0 and treat y1; ::; yp as �xed initial
conditions.
(b) Using an appropriate data set (e.g., the US real GDP data set provided

on the website associated with this book), write a program which calculates the
posterior means and standard deviations of � and minjrij.
(c) Extend the program of part b) to calculate the probability that yt is oscil-

latory (i.e., Pr (� 2 Cjy)), the probability that yt is explosive (i.e., Pr (� 2 DjData))
and calculate these probabilities using your data set.
Solution: This is Exercise 17.1 in BEM.
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Exercise 6: The Threshold Autoregressive Model
Dynamics of many important macroeconomic variables can potentially vary

over the business cycle. This has motivated the development of many mod-
els where di¤erent autoregressive representations apply in di¤erent regimes.
Threshold autoregressive (TAR) models are a class of simple and popular regime-
switching models. Potter (1995, JAE) provides an early exposition of these
models in macroeconomics and Geweke and Terui (1993, JTSA) is an early
Bayesian treatment. This exercise asks you to derive Bayesian methods for a
simple variant of a TAR model.
Consider a two regime TAR for a time series variable yt for t = p + 1; ::; T

(where t = 1; ::; p are used as initial conditions):

yt = �10 + �11yt�1 + :::+ �1pyt�p + �t if yt�1 � �
yt = �20 + �21yt�1 + :::+ �2pyt�p + �t if yt�1 > �

;

where �t is i.i.d. N
�
0; h�1

�
. We will use the notation � =

�
�01; �

0
2

�0
where

�j =
�
�j0; �j1; :::; �jp

�0
for j = 1; 2. For all parts of this question, you may

proceed conditionally on the �rst p observations and, thus, ignore the (minor)
complications caused by initial conditions [see Exercise 5 for more detail].
(a) Assume that � is known (e.g., � = 0) and Normal-Gamma priors are

used (i.e., the joint prior for � and h is NG
�
�;Q; s�2; �

�
), derive the posterior

for the TAR given in this question.
(b) Using an appropriate data set (e.g., the real GDP data set available on

the website associated with this book), write a program and carry out Bayesian
inference in the TAR model using your results from part (a). Note: When
working with GDP, TAR models are usually speci�ed in terms of GDP growth.
Hence, if you are working with a GDP series, you should de�ne yt as its �rst
di¤erence.
(c) Repeat parts (a) and (b) assuming that � is an unknown parameter.

Solution: This is Exercise 17.2 in BEM.
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Exercise 7: Extensions of the Basic Threshold Autoregressive Model 1: Other
Threshold Triggers
There are many extensions of the TAR which have been found useful in

empirical work. In Exercise 5, we assumed that the �rst lag of the dependent
variable (last quarter�s GDP growth) triggered the regime switch. However, in
general, it might be another variable, z, that is the threshold trigger and it may
take longer than one period to induce the regime switch. Thus, we use the same
assumptions and de�nitions as in Exercise 5, except that now:

yt = �10 + �11yt�1 + :::+ �1pyt�p + �t if zt�d � �
yt = �20 + �21yt�1 + :::+ �2pyt�p + �t if zt�d > �

;

where d is the delay parameter and zt�d is either an exogenous variable or a
function of the lags of the dependent variable.
(a) Assume that d is an unknown parameter with a noninformative prior

over 1; ::; p (i.e., Pr (d = i) = 1
p for i = 1; ::; p) and Normal-Gamma priors are

used (i.e., the joint prior for � and h is NG
�
�;Q; s�2; �

�
), derive the posterior

for this model.
(b) Using an appropriate data set (e.g., the real GDP growth data set avail-

able on the website associated with this book), write a program and carry out
Bayesian inference for this model using your results from part (a). Set p = 4
and

zt�d =

Pp
d=1 yt�d
d

;

so that (if you are using quarterly real GDP growth data), the threshold trigger
is average GDP growth over the last d quarters.

Solution: This is Exercise 17.3 in BEM.
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Exercise 8. Extensions of the Basic Threshold Autoregressive Model 1:
Switches in the Error Variance
Recently, there has been much interest in the volatility of macroeconomic

variables and, in particular, whether the error variance exhibits regime-switching
behavior [see, .e.g., Zha and Sims (2006, AER)]. Accordingly, we can extend the
TAR models of previous exercises to:

yt = �10 + �11yt�1 + :::+ �1pyt�p +
q
h�11 �t if zt�d � �

yt = �20 + �21yt�1 + :::+ �2pyt�p +
q
h�12 �t if zt�d > �

;

where all de�nitions and assumptions are the same as in Exercises 6 and 7 except
that we now assume �t is i.i.d. N (0; 1).
(a) Assume that d is an unknown parameter with a noninformative prior

over 1; ::; p (i.e., Pr (d = i) = 1
p for i = 1; ::; p) and Normal-Gamma priors are

used in each regime (i.e., the joint prior for �j and hj is NG
�
�j ; Qj ; sj

�2; �j

�
for j = 1; ::; 2), derive the posterior for this model.
(b) Using an appropriate data set (e.g., the real GDP growth data set avail-

able on the website associated with this book), write a program and carry out
Bayesian inference for this model using your results from part (a). Set p = 4
and

zt�d =

Pp
d=1 yt�d
d

:

Solution: This is Exercise 17.4 in BEM.
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