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1 Bayesian Theory

� Reading: Chapter 1 of textbook and Appendix B,
section B.1.

� We will begin with broad outlines of general concepts
in Bayesian theory before getting to practical models
such as the regression model. If you know these
general concepts you will never get lost.

� What does an econometrician do? i) Estimate para-
meters in a model (e.g. regression coe¢ cients), ii)
Compare di¤erent models (e.g. hypothesis testing),
iii) Prediction.

� Bayesian econometrics does all these things based on
a few simple rules of probability.



� Let A and B be two events, p(BjA) is the con-
ditional probability of BjA. �summarizes what is
known about B given A�

� Bayesians use this rule withB = something known or
assumed (e.g. the Data), A is something unknown
(e.g. coe¢ cients in a model).

� Let y be the data, y� be unobserved data (i.e. to be
forecast), Mi for i = 1; ::;m be the set of models
under consideration each of which depends on some
parameters, �i.

� Learning about parameters in a given model is based
on the posterior density: p(�ijMi; y)

� Model comparison is based on posterior model prob-
ability: p(Mijy)

� Prediction is based on the predictive density p(y�jy).



1.1 Bayes Theorem

� I expect you know basics of probability theory from
your previous studies, see Appendix B of my text-
book if you do not.

� De�nition: Conditional Probability

The conditional probability of A given B, denoted by
Pr (AjB), is the probability of event A occurring given
event B has occurred.

Theorem: Rules of Conditional Probability including Bayes�
Theorem

Let A and B denote two events, then

� Pr (AjB) = Pr(A;B)
Pr(B)

and



� Pr (BjA) = Pr(A;B)
Pr(A)

.

These two rules can be combined to yield Bayes�Theo-
rem:

Pr (AjB) = Pr (BjA) Pr (A)
Pr (B)

:

Note: Above is expressed in terms of two events, A and
B. However, they also can be interpreted as holding
for two random variables, A and B with probability or
probability density functions replacing the Pr ()s in the
previous formulae.



1.2 Learning About Parameters in a Given

Model (Estimation)

� Assume we are working with a single model (e.g. a
regression model with a particular set of explanatory
variables) which depends on parameters �

� So we want to �gure out properties of the posterior
p(�jy)

� It is convenient to use Bayes�rule to write the pos-
terior in a di¤erent way.

� Bayes�rule lies at the heart of Bayesian economet-
rics:

p(BjA) = p(AjB)p(B)
p(A)

:



� Replace B by � and A by y to obtain:

p(�jy) = p(yj�)p (�)
p(y)

:

� Bayesians treat p(�jy) as being of fundamental in-
terest. That is, it directly addresses the question
�Given the data, what do we know about �?�.

� The treatment of � as a random variable is contro-
versial among some econometricians. The chief com-
petitor to Bayesian econometrics, called frequentist
econometrics, says that � is not a random variable.

� For estimation we can ignore the term p(y) since it
does not involve �:

p(�jy) / p(yj�)p(�).



� p(�jy) is referred to as the posterior density (i.e.
�after or posterior to� seeing the data)

� p(yj�) is the likelihood function

� p(�) as the prior density.

� �posterior is proportional to likelihood times prior�.

� p(�), does not depend on the data. It contains any
non-data information available about �.

� Prior information is a controversial aspect of Bayesian
econometrics since it sounds unscienti�c.



� Bayesian answers (to be elaborated on later):

� i) Often we do have prior information and, if so, we
should include it (more information is good)

� ii) Can work with �noninformative�priors

� iii) Can use �empirical Bayes� methods which esti-
mate prior from the data

� iv) Training sample priors

� v) Bayesian estimators often have better frequentist
properties than frequentist estimators (e.g. results
due to Stein show MLE is inadmissible � but Bayes
estimators are admissible)

� vi) Prior sensitivity analysis



1.3 Prediction in a Single Model

� Prediction based on the predictive density p(y�jy)

� Since a marginal density can be obtained from a joint
density through integration (see Appendix B) we can
write:

p(y�jy) =
Z
p(y�; �jy)d�:

� Term inside the integral can be rewritten using an-
other rule of probability as:

p(y�jy) =
Z
p(y�jy; �)p(�jy)d�:

� Prediction involves the posterior and p(y�jy; �) (more
description provided later).



1.4 Model Comparison (Hypothesis test-

ing)

� Models denoted byMi for i = 1; ::;m. Mi depends
on parameters �i.

� Posterior model probability is p(Mijy).

� Using Bayes rule with B = Mi and A = y we
obtain:

p(Mijy) =
p(yjMi)p(Mi)

p(y)
:

� p(Mi) is referred to as the prior model probability.

� p(yjMi) is called the marginal likelihood.

� How is marginal likelihood calculated?



� Posterior can be written as:

p(�ijy;Mi) =
p(yj�i;Mi)p(�

ijMi)

p(yjMi)

� Integrate both sides of previous equation with re-
spect to �i, use the fact that

R
p(�ijy;Mi)d�

i = 1

(since probability density functions integrate to one)
and rearrange we obtain:

p(yjMi) =
Z
p(yj�i;Mi)p(�

ijMi)d�
i:

� Note that the marginal likelihood depends only on
the prior and likelihood.

� Bayesians often present posterior odds ratio to com-
pare two models:

POij =
p(Mijy)
p(Mjjy)

=
p(yjMi)p(Mi)

p(yjMj)p(Mj)
:



� Note that, since p(y) is common to both models, do
not need to work it out. Can use fact that p(M1jy)+
p(M2jy) + ::: + p(Mmjy) = 1 and posterior odds
ratios to calculate the posterior model probabilities.

� For instance, if we have m = 2 models then we can
use the two equations:

p(M1jy) + p(M2jy) = 1

and

PO12 =
p(M1jy)
p(M2jy)

to work out

p(M1jy) =
PO12

1 + PO12



and

p(M2jy) = 1� p(M1jy).

� The Bayes Factor is de�ned as:

BFij =
p(yjMi)

p(yjMj)
:



1.5 Summary

On one level, this course could end right here. These
few pages have outlined all the basic theoretical concepts
required for the Bayesian to learn about parameters, com-
pare models and predict. We stress what an enormous
advantage this is. Once you accept that unknown things
(i.e. �, Mi and y�) are random variables, the rest of
Bayesian approach is non-controversial.

What are going to do in rest of this course?

See how these concepts work in commonly-used models
(e.g. the regression model).

Bayesian computation.



2 Bayesian Computation

� How do you present results from a Bayesian empirical
analysis?

� p(�jy) is a p.d.f. Especially if � is a vector of many
parameters cannot present a graph of it.

� Want features analogous to frequentist point esti-
mates and con�dence intervals.

� A common point estimate is the mean of the poste-
rior density (or posterior mean).

� Let � be a vector with k elements, � = (�1; ::; �k)
0.

The posterior mean of any element of � is:



E(�ijy) =
Z
�ip(�jy)d�.

� Aside De�nition B.8: Expected Value

Let g () be a function, then the expected value of g (X),
denoted E [g (X)], is de�ned by:

E [g (X)] =
NX
i=1

g (xi) p (xi)

if X is a discrete random variable with sample space
fx1; x2; x3; ::; xNg and

E [g (X)] =
Z 1
�1

g (x) p (x) dx

ifX is a continuous random variable (providedE [g (X)] <
1).



� Most common measure of dispersion is the posterior
standard deviation which is the square root of the
posterior variance. The latter is calculated as:

var(�ijy) = E(�2i jy)� fE(�ijy)g2;

which requires evaluation posterior mean as well as:

E(�2i jy) =
Z
�2i p(�jy)d�.

� Many other possible features of interest. E.g. what
is probability that a coe¢ cient is positive?

p(�i � 0jy) =
Z 1
0
p(�jy)d�



� All of these posterior features which the Bayesian
may wish to calculate have the form:

E [g (�) jy] =
Z
g(�)p(�jy)d�,

where g(�) is a function of interest.

� All of these features have integrals in them. Mar-
ginal likelihood and predictive density also involved
integrals.

� Apart from a few simple cases, it is not possible
to evaluate these integrals analytically, and we must
turn to the computer.



2.1 Posterior Simulation

� The integrals involved in Bayesian analysis are usu-
ally evaluated using simulation methods. We will
develop many of these later. Here we just describe
the basic idea to give you some intuition.

� From your study of frequentist econometrics you should
know some asymptotic theory and, in particular, the
idea of a Law of Large Numbers (LLN) and a Central
Limit Theorem (CLT).

� A typical LLN would say �consider a random sam-
ple, Y1; ::YN , as N goes to in�nity, the average con-
verges to its expectation� (e.g. Y ! �)

� Bayesians use a LLN as �consider a random sample
from the posterior, �(1); ::�(S), as S goes to in�nity,
the average of these converges to E [�jy]�



� Note: Bayesians use asymptotic theory, but asymp-
totic in S (under control of researcher) not N

� Example: Monte Carlo integration.

Let �(s) for s = 1; ::; S be a random sample from p(�jy)
and de�ne

bgS = 1

S

SX
s=1

g
�
�(s)

�
,

then bgS converges to E [g (�) jy] as S goes to in�nity.
� Monte Carlo integration can be used to approximate
E [g (�) jy], but only if S were in�nite would the
approximation error go to zero.

� We can choose any value for S (although larger val-
ues of S will increase the computational burden).



� To gauge size of approximation error, we can use a
CLT to obtain a numerical standard error.

� In practice, most Bayesians write their own programs
(e.g. using Gauss, Matlab or R) to do posterior sim-
ulation

� BUGS (Bayesian Analysis Using Gibbs Sampling) and
BACC (Bayesian Analysis, Computation and Com-
munication) are popular Bayesian packages, but only
have limited set of models (or require substantial pro-
gramming to adapt to other models)

� Bayesian work cannot (easily) be done in standard
econometric packages like Micro�t, Eviews or Stata.


