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1 Summary

� Readings: Chapter 2 and 3 of textbook.

� The Normal linear regression model with a single ex-
planatory variable (no matrix algebra required)

� The Normal linear regression model with several ex-
planatory variables (matrix algebra used)

� In these lectures we will use a so-called �natural con-
jugate prior�which yields analytical results.

� No posterior simulation necessary.

� We will compare analytical results with Monte Carlo
integration results



2 Posterior Analysis

Remember: the posterior is proportional to the prior times
the likelihood function.

2.1 The Likelihood Function

� Let yi and xi denote the observed data on the de-
pendent and explanatory variables, respectively, for
individual i for i = 1; ::; N .

� We will work with the linear regression model (with-
out intercept to simplify mathematics):

yi = �xi + "i;

where "i is an error term.



� Assumptions about "i and xi determine the form of
the likelihood function. The classical assumptions
(which we will free up in later lectures) are:

1. "i is i.i.d. N
�
0; �2

�
where i.i.d. stands for �inde-

pendent and identically distributed�.

2. The xi are �xed (i.e. not random variables)

� The likelihood function is de�ned as the joint proba-
bility density function for all the data conditional on
the unknown parameters: p

�
yj�; �2

�

� To start introducing some matrix algebra, stack all
observations of the dependent variable into a vector
of length N :



y =

26666664
y1
y2
:
:
yN

37777775 ;

or, equivalently (and more compactly), y = (y1; y2; ::; yN)
0.

� Similarly, for the explanatory variable, we de�ne x =
(x1; x2; ::; xN)

0.

� Likelihood function can be obtained by using basic
rules of probability and the regression assumptions.

� p(yij�; �2) is Normal (see Appendix B, Theorem
B.10).

� E(yij�; �2) = �xi (see Appendix B, Theorem B.2).



� var(yij�; �2) = �2 (see Appendix B, Theorem
B.2).

� Likelihood function is given by:

p(yj�; �2) = 1

(2�)
N
2 �N

exp

24� 1

2�2

NX
i=1

(yi � �xi)2
35 :

� Likelihood can be written in a slightly di¤erent way
using:

NX
i=1

(yi � �xi)2 = �s2 +
�
� � b��2 NX

i=1

x2i ;

where



� = N � 1;

b� = P
xiyiP
x2i

and

s2 =

P�
yi � b�xi�2
�

:

� Aside: b�, s2 and � are the ordinary least squares
(OLS) estimator for �, standard error and degrees of
freedom, respectively. They are also su¢ cient statis-
tics.

� For many Bayesian derivations, it is easier to work
with the error precision rather than the variance. The
error precision is de�ned as: h = 1

�2
.



� Likelihood function is:

p (yj�; h) = 1

(2�)
N
2�

h
1
2 exp

�
�h2

�
� � b��2PNi=1 x2i �� nh�2 exp h� h�

2s�2

io :

� For future reference, note that the �rst term in curly
brackets looks like the kernel of a Normal density for
� and the second term looks almost like a Gamma
density for h.

2.2 The Prior

� Priors can be any form. However, it is common to
choose particular classes of priors which are easy to
interpret and/or make computation easier.

� Conjugate prior: prior and posterior both have same
class of distributions.



� Prior can be interpreted as arising from a �ctitious
data set from the same process which generated the
actual data.

� We must elicit a prior for � and h which we denote
by p(�; h).

� Laws of probability imply p(�; h) = p(�jh)p(h)

� The form of the likelihood function suggests conju-
gate prior has a Normal distribution for �jh and a
Gamma distribution for h.

� The Normal-Gamma distribution is discussed in Ap-
pendix B.

�jh � N(�; h�1V )



and

h � G(s�2; �)

then the natural conjugate prior for � and h is denoted
by:

�; h � NG
�
�; V ; s�2; �

�
:

� Researcher chooses particular values of prior hyper-
parameters �; V ; s�2 and � to re�ect prior informa-
tion.



2.3 The Posterior

� Posterior proportional to likelihood times the prior
density.

� Very similar derivations in Exercises 2.4 and 2.5 of
Bayesian Econometric Methods

� Posterior density is also of Normal-Gamma form. So
the prior is a natural conjugate one.

�

�; hjy � NG
�
�; V ; s�2; �

�
;

where

V =
1

V �1 +
P
x2i
;



� = V
�
V �1� + b�Xx2i

�
;

� = � +N

and s�2 is de�ned implicitly through

�s2 = �s2 + �s2 +

�b� � ��2
V +

�
1P
x2i

�:

� Our notation is such that lower bars (e.g. �) de-
note prior hyperparameters and upper bars (e.g.�)
posterior ones.



2.4 Properties of the Posterior

� What are E (�jy) and var (�jy)?

� p (�jy; h) is Normal (properties well-known). But
we want p(�jy).

� Exercise 2.8 of Bayesian Econometric Methods shows
that the marginal posterior distribution for � is a t
distribution

�jy � t
�
�; s2V ; �

�
;

and it follows from the de�nition of the t distribution that

E(�jy) = �

and



var (�jy) = �s2

� � 2
V :

� Bayesian point estimate, �, is a weighted average of
the OLS estimate and the prior mean, �.

� The weights are proportional to Px2i and V �1, re-
spectively. The latter of these re�ects the con�dence
in the prior and data information. (Note: in frequen-
tist econometrics (

P
x2i )

�1 is proportional to the
variance of b�.)

� Alternative intuition can be obtained by considering
the simplest case where xi = 1 for i = 1; :::; N .
Then

P
x2i = N and the weight attached to b� will

simply be the sample size, a reasonable measure for
the amount of information in the data.



� In frequentist econometrics, the variance of the OLS
estimator is s2(

P
x2i )

�1 (e.g. the frequentist t-

statistic for testing � = 0 is
b�q

s2(
P
x2i )

�1
).

� The Bayesian analogue is the posterior variance of
� has very similar form, but incorporates both prior
and data information.

� �posterior precision is an average of prior precision
(V �1) and data precision (

P
x2i )�

� Natural conjugate prior implies that the prior can
be interpreted as arising from a �ctitious data set
(e.g. � and N play the same role in equations. See
Exercise 2.6 of Bayesian Econometric Methods)

� � can be interpreted as a prior sample size.



� These facts can be used in prior elicitation (i.e. choos-
ing particular values for �; V ; s�2 and �)

� Prior sensitivity analysis. Empirical results can be
presented using various priors. If empirical results
are basically the same for various sensible priors, then
the reader is reassured that researchers with di¤er-
ent beliefs can, after looking at the data, come to
agreement. If results are sensitive to choice of prior,
then the data is not enough to force agreement on
researchers with di¤erent prior views. The Bayesian
approach allows for the scienti�cally honest �nding
of such a state of a¤airs.



2.5 Posterior Analysis Using a Noninfor-

mative Prior

� A noninformative prior can be obtained by setting
�= 0 and V �1 = 0 (i.e. V!1). Prior no longer
enters posterior � just contains likelihood informa-
tion.

� In this case �; hjy � NG
�
�; V ; s�2; �

�
, where

V =
1P
x2i
;

� = b�;

� = N



and

�s2 = �s2:

� These are OLS results.

� But di¤erent interpretation: Bayesian says � is ran-
dom variable. Frequentist says b� random variable.

� Aside: this prior �density�does not integrate to one.
Such priors are referred to as improper.

� There are some issues relating to the use of improper
priors which we will discuss later.



3 Model Comparison

� Two models, M1 and M2.

� Mj for j = 1; 2 have di¤erent explanatory variables:

yi = �jxji + "ji;

� Normal-Gamma natural conjugate priors as:

�j; hjjMj � NG
�
�
j
; V j; s

�2
j ; �j

�
;

which implies posteriors of the form:

�j; hjjy;Mj � NG
�
�j; V j; s

�2
j ; �j

�
;

� Remember the posterior odds ratio:



PO12 =
p (yjM1) p (M1)

p (yjM2) p (M2)
:

� The prior model probabilities, p(Mi), selected be-
fore seeing the data. The noninformative choice,
p(M1) = p(M2) =

1
2; is commonly made.

� The marginal likelihood, p(yjMj), is calculated as:

p
�
yjMj

�
=
Z Z

p(yj�j; hj)p
�
�j; hj

�
d�jdhj:

� This can be calculated analytically

p(yjMj) = cj

 
V j

V j

!1
2 �
�js

2
j

���j2 ;



for j = 1; 2, where cj is a constant which does not
depend on the data (see textbook, page 41 for details).

� The posterior odds ratio comparing M1 to M2 be-
comes:

PO12 =
c1

�
V 1
V 1

�1
2
�
�1s

2
1

���12 p(M1)

c2

�
V 2
V 2

�1
2
�
�2s

2
2

���22 p(M2)

:

� What factors enter a Bayesian comparison of mod-
els?

� First, the greater is the prior odds ratio, p(M1)
p(M2)

, the
higher the support for M1.



� �js2j contains the term �js
2
j which is the sum of

squared errors (a measure of model �t).

� Other things being equal, the posterior odds ratio
will indicate support for the model where there is
the greatest coherency between prior and data infor-

mation (i.e.
�b�j � �j�2 enters �js2j).

�
�
V 1
V 1

�
is the ratio of posterior to prior variances.

This term can be interpreted as saying, all else being
equal, the model with more prior information (i.e.
smaller prior variance) relative to posterior informa-
tion receives most support.

� With noninformative prior the marginal likelihood is
not de�ned and, hence, the posterior odds ratio is
unde�ned (we will return to this issue �use of non-
informative priors for model comparison � later).



4 Prediction

� We want to predict y� at a point x�:

y� = �x� + "�;

where y� is not observed.

p (y�jy) =
Z Z

p (y�jy; �; h) p(�; hjy)d�dh:

� Exercise 7.7 of Bayesian Econometric Methods shows
that:

y�jy � t
�
�x�; s2

n
1 + V x�2

o
; �
�
:

These results can be used to provide point predictions
and measures of uncertainty associated with the point
prediction (e.g. the predictive standard deviation).



� Aside: this is a logical place to introduce an impor-
tant Bayesian concept: model averaging.

� Suppose you have p(Mjjy), for j = 1; 2.

� Bayesian model averaging involves averaging over all
models.

� Rules of probability imply:

p (y�jy) = p (y�jy;M1) p (M1jy)+p (y�jy;M2) p (M2jy) :

� You should not simply choose one model and work
with, e.g., p (y�jy;M1), but rather average results
over the two models with weights given by the pos-
terior model probabilities.



5 Empirical Illustration

� Arti�cial data with N = 50, � = 2 and h = 1.

� Two priors, the noninformative one and the infor-
mative one with �= 1:5, V = :25, � = 10 and
s�2 = 1. (choice of prior hyperparameter values are
purely illustrative).

Table 2.1: Prior and Posterior Properties of �
Prior Posterior

Informative
Using Noninf

Prior
Using Inf
Prior

Mean 1:50 2:06 1:96
St. Dev 0:56 0:24 0:22

Table 2.2: Prior and Posterior Properties of h
Prior Posterior

Informative
Using Noninf

Prior
Using Inf
Prior

Mean 1:00 1:07 1:04
St. Dev 0:45 0:21 0:19



� Bayesian inference involves combining prior and data
information to form a posterior.

� To illustrate posterior odds, compare to another lin-
ear regression model which contains only an intercept
(i.e. in this second model xi = 1 for i = 1; ::; 50).



� For both models, we use the same informative prior
described above

� Posterior odds ratio of 3; 749:7. (overwhelming sup-
port for the correct �rst model).

� The posterior odds ratio implies that p(M1jy) =
0:9997 and p(M2jy) = 0:0003.

� Bayesian model averaging would attach 99:97% weight
to results from the �rst model and only 0:03% weight
to results from the second.

� Predictive inference at the x� = 0:5. Using the
informative prior

y�jy � t (0:98; 0:97; 60) :



Using the noninformative prior:

y�jy � t (1:03; 0:95; 50) :



6 The Normal Linear Regression Model

with Natural Conjugate Prior and

Many Explanatory Variables

6.1 The Linear Regression Model in Ma-

trix Notation

� Now assume k explanatory variables, xi1,..,xik for
i = 1; ::; N and regression model:

yi = �1 + �2xi2 + :::+ �kxik + "i:

� Note xi1 is implicitly set to 1 to allow for an inter-
cept.



� In matrix notation we have N � 1 vectors

y =

26666664
y1
y2
:
:
yN

37777775
and

" =

26666664
"1
"2
:
:
"N

37777775 ;

the k � 1 vector



� =

26666664
�1
�2
:
:
�k

37777775 ;

and the N � k matrix

X =

26666664
1 x12 : : x1k
1 x22 : : x2k
: : : : :
: : : : :
1 xN2 : : xNk

37777775 ;

and the regression model can be written as:

y = X� + ":



6.2 The Likelihood Function

� The likelihood can be derived under the classical as-
sumptions:

1. " has a multivariate Normal distribution with mean
0N and covariance matrix �2IN . Notation for this
is: " is N(0N ; h

�1IN) where h = ��2.

2. All elements of X are either �xed (i.e. not random
variables).

� Exercise 10.1 for Bayesian Econometric Methods shows
that the likelihood function can be written in terms
of OLS quantities:

� = N � k;



b� = �
X 0X

��1
X 0y

and

s2 =

�
y �X b��0 �y �X b��

�
:

� Likelihood function:

p(yj�; h) = 1

(2�)
N
2�

h
1
2 exp

�
�h2

�
� � b��0X 0X �

� � b���� nh�2 exp h� h�
2s�2

io :

6.3 The Prior

� Normal-Gamma prior is the same as before, except
� conditional on h is now multivariate Normal:



�jh � N(�; h�1V )

and a prior for h of the form

h � G(s�2; �);

� Same as before except that � is now a k�vector
containing the prior means for the k regression co-
e¢ cients, �1; ::; �k, and V is now a k � k positive
de�nite prior covariance matrix.



6.4 The Posterior

� The posterior is derived by multiplying the likeli-
hood by the prior and collecting terms (see Bayesian
Econometrics Methods Exercise 10.1). All similar to
before, except matrices used.

� Posterior is

�; hjy � NG
�
�; V ; s�2; �

�
;

where

V =
�
V �1 +X 0X

��1
;

� = V
�
V �1� +X 0X b�� ;



� = � +N

and s�2 is de�ned implicitly through

�s2 = �s2+�s2+
�b� � ��0 �V + �

X 0X
��1��1 �b� � �� :

� Marginal posterior for � is a multivariate t distribu-
tion:

�jy � t
�
�; s2V ; �

�
;

� Useful results for estimation:

E(�jy) = �

and



var(�jy) = �s2

� � 2
V :

� Similar intuition as before, except now matrices. For
instance, b� is now a vector instead of a scalar, the
matrix

�
X 0X

��1 plays the role that the scalar 1P
x2i

did in simple regression model, V is now a k � k

matrix, etc.. b� is a matrix weighted average of in-
formation in the prior (V �1) and the data.



6.5 A Noninformative Prior

� As before we can create a noninformative prior by
setting �= 0 and setting V �1 to a small value.

� But there is not a unique way of doing the latter (see
Exercise 10.4 in Bayesian Econometric Methods).

� A common way is to set V �1 = cIk where c is a
scalar and then let c go to zero.

� This noninformative prior is improper and can be
written as:

p (�; h) / 1

h
:



� With this choice we get OLS results.

�; hjy � NG
�
�; V ; s�2; �

�

where

V =
�
X 0X

��1
;

� = b�;

� = N

and

�s2 = �s2:



7 Model Comparison

7.1 Model Comparison Involving Inequal-

ity Restrictions

� Consider inequality restrictions of the form:

R� � r;

where R is a known J � k matrix and r is a known
J-vector.

� Two models of the form:

M1 : R� � r



and

M2 : R� � r;

where the notation in the equation de�ning M2 means
that one or more of the J inequality restrictions in M1

are violated.

� Posterior odds ratios is easy, and the use of nonin-
formative priors is not a problem. That is,

PO12 =
p(M1jy)
p(M2jy)

=
p(R� � rjy)
p
�
R� � rjy

�:
Since the posterior for � has a multivariate t distribution,
it follows that p(R�jy) also has a t distribution.



7.2 Equality Restrictions

� Case 1: M1 which imposes R� = r to M2 which
does not have this restriction (nested).

� Case 2: M1 : y = X1�(1) + "1 to M2 : y =

X2�(2) + "2, where X1 and X2 are matrices con-
taining possibly di¤erent explanatory variables (non-
nested).

� Both cases can be handled by de�ning models as (for
j = 1; 2):

Mj : yj = Xj�(j) + "j

� Non-nested model comparison involves y1 = y2.



� Nested model comparison de�nes M2 as the unre-
stricted regression. M1 imposes R� = r which in-
volves a rede�nition of explanatory and dependent
variable (see textbook page 40 for details).

� Posterior odds can be calculated by calculating mar-
ginal likelihoods for the two regression models (where
j subscripts denote models).

� Marginal likelihood is:

p(yjjMj) = cj

 
jV jj
jV jj

!1
2 �
�js

2
j

���j2 ;
for j = 1; 2, where

cj =
�
�
�j
2

� �
�js

2
j

��j
2

�
��j
2

�
�
N
2

:



� The posterior odds ratio comparing M1 to M2 is:

PO12 =
c1

�
jV 1j
jV 1j

�1
2
�
�1s

2
1

���12 p(M1)

c2

�
jV 2j
jV 2j

�1
2
�
�2s

2
2

���22 p(M2)

:

� The posterior odds ratio depends on the prior odds
ratio and contains rewards for model �t, coherency
between prior and data information and parsimony.

7.3 Model Comparison with Noninforma-

tive Priors

� Important rule of thumb: When comparing mod-
els using posterior odds ratios, it is acceptable to
use noninformative priors over parameters which are
common to all models. However, informative, proper
priors should be used over all other parameters.



� Why?

� If we set �1 = �2 = 0. Posterior odds ratio still
has a sensible interpretation involving model �t, the
coherency between prior and data information, etc..
In short, using a noninformative prior for the error
precisions in the two models is perfectly reasonable.

� But, using noninformative priors for the �(j)�s causes
major problems which occur largely when k1 6= k2.
(Exercise 10.4 of Bayesian Econometric Methods)

� Brie�y, noninformative prior for �(j) based on V
�1
j =

cIkj and letting c! 0. Since jV jj = 1

c
kj
terms in-

volving kj do not cancel out. If k1 < k2, PO12
becomes in�nite, while if k1 > k2, PO12 goes to
zero (regardless of data).



7.4 Highest Posterior Density Intervals

� Loosely analogous to con�dence intervals and, thus,
sometimes used for testing point null hypotheses.

� General de�nition in textbook, here de�ne for �j a
single regression coe¢ cient.

� A 95% credible interval for �j is any interval, [a; b]
such that:

p
�
a � �j � bjy

�
= 0:95:

� There are numerous possible credible intervals. E.g.
if �jjy isN (0; 1). Then, [�1:96; 1:96], [�1:75; 2:33]
and [�1:64;1), etc. are all 95% credible intervals.



� A 95% highest posterior density interval is a 95%
credible interval with the property that it has a smaller
area than any other 95% credible interval.

� In example, [�1:96; 1:96] is the shortest credible in-
terval.

� HPDIs exist any time the posterior exists. Thus, they
can be used with the noninformative prior discussed.



7.5 Prediction

� Want to predict:

y� = X�� + "�

� As before, prediction is based on:

p (y�jy) =
Z Z

p (y�jy; �; h) p(�; hjy)d�dh:

� The resulting predictive:

y�jy � t
�
X��; s2

n
IT +X

�V X�0
o
; �
�
:



8 Computational Methods: Monte

Carlo Integration

� Model comparison, prediction and posterior inference
about � can all be done analytically. So no need for
posterior simulation in this model. However, let us
illustrate Monte Carlo integration in this model.

� Theorem 3.1: Monte Carlo Integration

Let �(s) for s = 1; ::; S be a random sample from p(�jy)
and g (:) be any function and de�ne

bgS = 1

S

SX
r=1

g
�
�(s)

�
,

then bgS converges to E [g(�)jy] as S goes to in�nity.



� Outline of computer code:

Step 1: Take a random draw, �(s) from the posterior for
� using a random number generator for the multivariate
t distribution.

Step 2: Calculate g
�
�(s)

�
and keep this result.

Step 3: Repeat Steps 1 and 2 S times.

Step 4: Take the average of the S draws g
�
�(1)

�
; :::; g

�
�(S)

�
.

These steps will yield an estimate of E [g(�)jy] for any
function of interest.

� Remember: Monte Carlo integration yields only an
approximation for E [g(�)jy] (since you cannot set
S = 1). However, by selecting S, the researcher
can control the degree of approximation error.



� Using a CLT we can obtain an approximate 95%
con�dence interval for E[g(�)jy] of the form

�bgS � 1:96 b�gpS ; bgS + 1:96 b�gpS
�
. where �2g = var(g(�)jy).

� Alternatively, the numerical standard error, b�gp
S
; can

be reported as implicitly containing the same infor-
mation.



9 Empirical Illustration

� Data set onN = 546 houses sold in Windsor, Canada
in 1987.

� yi = sales price of the ith house measured in Cana-
dian dollars,

� xi2 = the lot size of the ith house measured in square
feet,

� xi3 = the number of bedrooms in the ith house,

� xi4 = the number of bathrooms in the ith house,

� xi5 = the number of storeys in the ith house.

� Example uses informative and noninformative priors.



� Textbook goes through detailed discussion of how
you might elicit a prior for this example.

� Our prior implies statements of the form �if we com-
pare two houses which are identical except the �rst
house has one bedroom more than the second, then
we expect the �rst house to be worth $5; 000 more
than the second�. This yields prior mean, then choose
large prior variance to indicate prior uncertainty.

� The following tables present some empirical results
(textbook has lots of discussion of how you would
interpret them).



Table 3.1: Prior and Posterior Means for �
(standard deviations in parentheses)
Prior Posterior

Informative
Using Noninf

Prior
Using Inf
Prior

�1
0

(10; 000)
�4; 009:55
(3; 593:16)

�4; 035:05
(3; 530:16)

�2
10
(5)

5:43
(0:37)

5:43
(0:37)

�3
5; 000
(2; 500)

2; 824:61
(1; 211:45)

2; 886:81
(1; 184:93)

�4
10; 000
(5; 000)

17; 105:17
(1; 729:65)

16; 965:24
(1; 708:02)

�5
10; 000
(5; 000)

7; 634:90
(1; 005:19)

7; 641:23
(997:02)



Table 3.3: Model Comparison involving �
Informative Prior

p
�
�j > 0jy

�
95% HPDI

Posterior Odds
for �j = 0

�1 0:13 [�10; 957; 2; 887] 4:14

�2 1:00 [4:71; 6:15] 2:25� 10�39
�3 0:99 [563:5; 5; 210:1] 0:39

�4 1:00 [13; 616; 20; 314] 1:72� 10�19
�5 1:00 [5; 686; 9; 596] 1:22� 10�11

Noninformative Prior

p
�
�j > 0jy

�
95% HPDI

Posterior Odds
for �j = 0

�1 0:13 [�11; 055; 3; 036] �
�2 1:00 [4:71; 6:15] �
�3 0:99 [449:3; 5; 200] �
�4 1:00 [13; 714; 20; 497] �
�5 1:00 [5; 664; 9; 606] �



Table 3.4: Posterior Results for �2 Calc. Various Ways

Mean
Standard
Deviation

Numerical St.
Error

Analytical 5:4316 0:3662 �
Number
of Reps
S = 10 5:3234 0:2889 0:0913
S = 100 5:4877 0:4011 0:0401
S = 1; 000 5:4209 0:3727 0:0118
S = 10; 000 5:4330 0:3677 0:0037
S = 100; 000 5:4323 0:3664 0:0012


