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1 Introduction

� Autoregressive models can be written as regression
models (see lecture 2)

� VAR models closely related to SUR model (see lec-
ture 3)

� Hence, we will brie�y deal with AR and VARs.

� Extensions of them are increasingly used with empir-
ical work and we will spend more time on these.

� Basic idea: conditional on a parameter (e.g. proba-
bility of transition) or a vector of latent data (e.g. a
vector of states) such extensions reduce to regression
models.

� Thus, use Gibbs sampler



A Digression: Unit Roots and Cointe-
gration

� We will not have time to discuss issues relating to
nonstationary variables.

� Survey paper on cointegration in Palgrave Handbook
of Econometrics, Volume 1: Theoretical Economet-
rics (Koop, Strachan, van Dijk and Villani)

� Non-Bayesians worry since asymptotic distributions
of test statistics, etc. become di¤erent if unit root
present

� Bayesians proceed conditional on data, so are rarely
interested in asymptotics.

� Thus, many Bayesians uninterested in unit root is-
sues (e.g. just estimate a VAR, not worry if cointe-
gration is present or not).



� Likelihood function of AR/VAR does not depend on
whether variable(s) have unit roots.

� Thus, the Bayesians who do write unit root/cointegration
papers typically focus on prior elicitation.



2 Autoregressive Models

� As discussed in lecture on �Forecasting in Dynamic
Factor Models Using Bayesian Model Averaging�AR(p)
model can be written as a linear regression model.

� All our results for Bayesian analysis of regression
model can be used.

� Example based on Geweke (1988, JBES)

� yt is log real GDP, follows AR(3):

yt = �0 + �1yt�1 + �2yt�2 + �3yt�3 + �t,

where �t is i.i.d. N
�
0; h�1

�
.



� Properties of yt depend on the roots of the polyno-
mial 1�P3

i=1 �iz
i (denote by ri for i = 1; ::; p)

� Features of interest: C = fTwo of ri are complexg
and D = fmin jrij < 1g

� C and D are regions which are nonlinear functions
of �1; �2; �3.

� C implies real GDP exhibits an oscillatory response
to a shock

� D implies an explosive response to a shock.

� Want Pr (� 2 Cjy) and Pr (� 2 Djy).



2.1 Posterior Analysis of the AR(p) Model

� Noninformative prior:

p
�
�0; ::; �p; h

�
/ 1

h
;

� Simple treatment of initial conditions: y =
�
yp+1; ::; yT

�0
and treat y1; ::; yp as �xed initial conditions.

� AR(p) can be written as:

y = X� + �;

where � =
�
�p+1; ::; �N

�0
andX is the (T � p)�(p+ 1)

matrix containing an intercept and p lags of the depen-
dent variable.



� Can use derivations from Lecture 2, to say

�; hjy � NG
�
�; V ; s�2; �

�

where parameters of distribution are OLS quantities

� Also as in Lecture 2, marginal posterior is multivari-
ate t:

�jy � t
�
�; s2V ; �

�

� But how to get Pr (� 2 Cjy) and Pr (� 2 Djy)?

� If C and D were de�ned by linear combinations of
�, then no problem (�linear combinations of t�s are
still t�). But they are nonlinear.



� Monte Carlo integration: randomly draw from �jy.

� For each draw, calculate solutions to 1�Ppi=1 �izi =
0 and see if C and D are satis�ed

� The proportion of draws which satisfy C (or D) will
converge to Pr (� 2 Cjy) (or Pr (� 2 Djy))

� Formally, this follows since Pr (� 2 Cjy) = E [I (� 2 Cjy)]
and Pr (� 2 Djy) = E [I (� 2 Djy)], where I (:)
is the indicator function.

� US real GDP from 1947Q1 through 2005Q2, Pr (� 2 Cjy) =
0:021 and Pr (� 2 Djy) = 0:132.



3 Nonlinear Time Series Extensions

of AR model

� Many of these have the form �conditional on know-
ing threshold/state/regime/breakpoint parameter we
have a linear regression model�

� E.g. TAR, smooth transition autoregressive, Markov
switching models, many structural break models, etc).

� Gibbs sampler (or similar MCMC algorithms) popular

� We will focus on models in the threshold autoregres-
sive (TAR) class

� For TAR analytical results available if we use natural
conjugate prior (no Gibbs sampling required)



3.1 Threshold Autoregressive (TAR) Mod-

els

� 2 regime TAR:

yt = �10 + �11yt�1 + :::+ �1pyt�p + �t if yt�1 � �
yt = �20 + �21yt�1 + :::+ �2pyt�p + �t if yt�1 > �

;

� If threshold � is known, model can be written as
regression model:

y = X� + �;

� X has tth row given by

h
Dt; Dtyt�1; ::; Dtyt�p; (1�Dt) ; (1�Dt) yt�1; ::

i



� Dt is dummy which equals 1 if yt�1 � � and equals
0 if yt�1 > � .

� Can use all our old results for regression model.

� E.g. if prior is NG
�
�;Q; s�2; �

�
then posterior is

NG
�
�;Q; s�2; �

�
(see Lecture 2 for exact de�ni-

tions of arguments)

� But what if � is an unknown parameter?

� We need the posterior: p (�; h; � jy).

� Could do Gibbs sampling, but an even simpler strat-
egy is possible.

� Rules of conditional probability imply:



p (�; h; � jy) = p (�; hj�; y) p (� jy) :

� p (�; hj�; y) use results for regression model.

� But what about p (� jy)?

� Remember that the marginal likelihood (see Lecture
1, used in calculating posterior model probability,
etc.) is p (y)

� For given � , the marginal likelihood can be calculated
for regression model (Lecture 2):

p(yj�) = c
 
jV j
jV j

!1
2 �
�s2

���2



� Details of formula unimportant (see Lecture 2 for
details). Key thing is that we can calculate p(yj�)
for every value of � .

� Bayes�theorem implies:

p (� jy) / p (yj�) p (�) ;

� so combine p(yj�) with a prior for � to get p (� jy).

� Any prior for � can be used.

� A common choice is a restricted noninformative one.

� E.g. Every value for � which implies each regime
contains a minimum number of observations (e.g.
15% of the observations).



� Note: even though yt�1 is a continuous variable, �
will be a discrete random variable since there are a
�nite number of ways of dividing a given data set
into two regimes.

� Hence, if � 2 f�1; ::; �T �g denotes possible thresh-
old values, then

p (�; hjy) =
T �X
i=1

p (�; hj� = � i; y) p (� = � ijy) :



3.1.1 Example: US GDP Growth



Posterior Results for TAR
Model with Unknown Threshold
Parameter Mean Standard Dev.
�10 0:542 0:119
�11 0:269 0:139
�12 0:373 0:101
�20 0:249 0:242
�21 0:384 0:127
�22 0:196 0:100

�2 0:896 0:083



3.2 Extensions of the Basic TAR Model

� Many extensions of the TAR can be done in this
basic framework

� Basic TAR has last quarter�s GDP growth triggering
regime switch.

� But it might be another (exogenous or lagged) vari-
able, z, that is the threshold trigger.

� It may take longer than one period to induce the
regime switch. Thus, introduce d: delay parameter

yt = �10 + �11yt�1 + :::+ �1pyt�p + �t if zt�d � �
yt = �20 + �21yt�1 + :::+ �2pyt�p + �t if zt�d > �

;

� Bayesian inference basically the same as for basic
TAR, but now have two unknown parameters: � and
d and so interest centres on:



p (�; h; � ; djy) = p (�; hj�; d; y) p (�; djy) :

� Same idea as for basic TAR: evaluate marginal like-
lihood for every value for � and d and this can be
used to produce p (�; djy) :

� Extension to more than 2 regimes (with �1 and �2
being two thresholds) same idea (evaluate marginal
likelihood for every value for �1; �2 and d and this
can be used to produce p (�1; �2; djy)

� Note: BMA can be used to average over di¤erent
choices for z (which may be empirically important).

� Allowing for error variance to di¤er across regimes
may be important (more about this later)



� Example: US real GDP growth data, are provided in
Table 17.4.

� Figure plots the posterior of d.

� Strong support for d = 2 [same as in Potter (1995,
JAE)].



4 Vector Autoregressive (VAR) Mod-

els

� There is a large literature on Bayesian VARs (e.g.
work of Sims)

� Lots of di¤erent priors tried (priors = shrinkage which
seems to help forecasting)

� E.g. Kadiyala and Karlsson (1997, JAE) a good
source for di¤erent priors.

� Just as AR could be put in form of regression model,
VAR can be put in form of multivariate regression
model (e.g. like a SUR)

� There is a natural conjugate prior for the VAR model
which yields analytical results (comparable to analyt-
ical results for AR/TAR done above).



� Bayesian Econometric Methods, Exercise 17.6 does
natural conjugate case.

� I will discuss VAR using an independent Normal-
Wishart prior (same as we used for SUR model).

� Do this partly to provide a variety of priors, but also
because natural conjugate has some restrictive prop-
erties in the VAR case.



� VAR(p) model is:

yt = a0 +
pX
j=1

Ajyt�j + "t

where yt for t = 1; ::; T is an M � 1 vector containing
observations on M variables

� a0 is an p � 1 vector of intercepts and Aj is an
M �M matrix of coe¢ cients.

� "t are independent N
�
0; H�1

�

� But note (similar to our SUR derivations), we can
write the VAR as



yt = Zt�+ "t

where Zt is an M � m matrix of data on explanatory
variables (i.e. lags of all dependent variables and an in-
tercept and other deterministic terms) arranged in the
same manner as we did for SUR model.

� � is now long vector containing all the VAR coe¢ -
cients in every equation

� Put in this form, we can do derivations exactly like
for SUR model.

� Prior p (�;H) = p (�) p (H)

� Prior for VAR coe¢ cients

p (�) = fN (�j�; V )



� Noninformative prior has V �1 = 0

� Wishart prior for the error precision matrix:

H �W (�H ; H)

� Noninformative prior has �H = 0 and H�1 = 0

� As we did with SUR, Gibbs sampler can be set up
using p (�jy;H) and p (Hjy; �) :

� Can show

�jy;H � N
�
�; V

�
;

where formula for �; V are on page 140 of textbook.



� And the posterior for H conditional on � is Wishart:

Hjy; � �W
�
�;H

�
where formula for � and H are on pages 140-141 of text-
book.

� So can set up a Gibbs sampler involving drawing from
Normal and Wishart distributions.



5 Nonlinear VARs

� Many key recent papers use Bayesian methods in
nonlinear extensions of VARs

� E.g. Sims and Zha (2006, AER), Primiceri (2005,
ReStud) Cogley and Sargent (2001, 2005a, 2005b,
various journals), Bernanke, Boivin and Eliasz (2005,
QJE)

� To illustrate this literature and as a way of linking
many threads together (VARs, state space models,
stochastic volatility, etc.) I will present an empirical
application based on Primiceri (2005)

� Cogley and Sargent use a similar framework in their
work.



5.1 Primiceri�s TVP-VAR

� Macroeconomic background: evolution of monetary
policy

� Extensions of VARs using a few macro variables used.

� Primiceri: US quarterly data on in�ation and un-
employment rates (�non-policy block�) and interest
rates (�policy block�)

� I will not get into macro issues much.

� Su¢ ce it to note: Primiceri has identi�cation restric-
tions to de�ne �monetary policy shock�, calculates
various impulse responses using this (and many other
things).



5.1.1 Primiceri�s Model

� Remember: we wrote the VAR as

yt = Zt�+ "t

� Zt is anM �m matrix of data on lags of all depen-
dent variables and an intercept.

� "t are independent N (0;
)

� Note: to be consistent with Primiceri�s notation, er-
ror covariance matrix is 


� Primiceri extends this in two important ways.



� � becomes �t (VAR coe¢ cients can change over
time)

� Multivariate stochastic volatility: The error covari-
ance matrix evolves over time.

� Note: Primiceri allows error variances and covari-
ances to evolve over time in a very general way (many
other papers more restrictive).

� There is much interest in volatility issues in empirical
macro today (�Great Moderation�of business cycle)



5.1.2 Evolution of VAR coe¢ cients

� A standard state space model:

yt = Zt�t + "t

and

�t+1 = �t + �t;

where �t anm�1 vector of states and �t are independent
N (0; Q).

� Random walk evolution of VAR coe¢ cients

� In Lecture 5 we discussed Bayesian inference (Gibbs
sampling) with scalar version of this model (exten-
sion to M dependent variables straightforward)



� I have been using Durbin and Koopman (2002) al-
gorithm for this (but many possible).



5.1.3 Multivariate Stochastic Volatility

� Now let 
 become 
t. Many ways to do this.

� Important issue: want error covariances to evolve
over time (many speci�cations do not allow for this).

� Primiceri (2005) uses a triangular reduction 
t, such
that:

At
tA
0
t = �t�

0
t

or


t = A
�1
t �t�

0
t

�
A�1t

�0

� �t is a diagonal matrix with diagonal elements �j;t
(loosely speaking error variances)



� At is lower triangular matrix with ones on diagonal
(loosely speaking correlations between errors)

� For �t �stochastic volatility.

� to be precise hi;t = ln
�
�i;t

�
, ht =

�
h1;t; ::; hp;t

�0
then:

ht+1 = ht + ut;

where ut is N (0;W )

� Gibbs sampling: draws of h =
�
h01; ::; h

0
T

�0
(condi-

tional on � and the parameters of the model) use
algorithm of Kim, Shephard and Chib (1998)

� What about At?



� Stack into vector as at =
�
a21;t; a31;t; a32;t; ::; ap(p�1);t

�0
and use

at = at�1 + �t,

where �t is N (0; C)

� But now we have another state space model

� Durbin and Koopman (2002) algorithm can be used
to draw the states (conditional on other model pa-
rameters).

� Bottom line: Gibbs sampling algorithm can be set up
which draws on o¤-the-shelf algorithms



5.1.4 Extension I (with coauthors) am Working On

� Primiceri�s model says �all model parameters change
every time period�(gradual evolution of coe¢ cients)

� But other structural break models have a small num-
ber of more substantive breaks.

� Why not nest these two options?

� Dynamic mixture models (Gerlach, Carter and Kohn,
2000, JASA or Giordani and Kohn, 2008, JBES).

� Work with Primiceri�s model except for the following
modi�cations:

�t+1 = �t +K1t�t;



ht+1 = ht +K2tut

at = at�1 +K3t�t.

� K1t,K2t andK3t are 1/0 variables indicating whether
a break has/has not taken place

� Hierarchical prior

p
�
Kjt

�
= pj

for j = 1; 2; 3 where pj is unknown parameter (probabil-
ity of break)

� Can use Primiceri�s with some extra blocks added to
the Gibbs sampler



� Gerlach, Carter and Kohn (2000) is a very e¢ cient
algorithm for drawingKjt (conditional on other model
parameters).

� Bottom line: I have set up a Gibbs sampler which
combines existing algorithms to carry out posterior
inference in this extension of Primiceri�s model.

� Much recent Bayesian empirical macro adapts this
kind of strategy. Gibbs sampling naturally divides
problems into blocks, each block taken from existing
literature.



5.1.5 Preliminary Empirical Results

� US data on in�ation and unemployment rates and
interest rates 1947Q1-2006Q3

� With my extension, I am getting results suggesting
Primiceri�s speci�cation is a good one.

� E.g. E (p1jData) = 0:92, E (p2jData) = 0:97

and E (p3jData) = 0:62.

� Breaks occur in most periods (like in a TVP model).

� Figures 1 through 6 illustrate the kind of things Prim-
iceri presents in his paper (of interest to macro pol-
icy)

� Figures 1 through 3 are volatilities



� Figures 4 through 6 are correlations between the er-
rors in the VAR

� These are posterior means (i.e. estimates), but could
calculate posterior standard deviations or anything
else (e.g. prediction)














