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Introduction

Autoregressive models can be written as regression
models (see lecture 2)

VAR models closely related to SUR model (see lec-
ture 3)

Hence, we will briefly deal with AR and VARs.

Extensions of them are increasingly used with empir-
ical work and we will spend more time on these.

Basic idea: conditional on a parameter (e.g. proba-
bility of transition) or a vector of latent data (e.g. a
vector of states) such extensions reduce to regression
models.

Thus, use Gibbs sampler



A Digression: Unit Roots and Cointe-
gration

e We will not have time to discuss issues relating to
nonstationary variables.

e Survey paper on cointegration in Palgrave Handbook
of Econometrics, Volume 1: Theoretical Economet-
rics (Koop, Strachan, van Dijk and Villani)

e Non-Bayesians worry since asymptotic distributions
of test statistics, etc. become different if unit root
present

e Bayesians proceed conditional on data, so are rarely
interested in asymptotics.

e Thus, many Bayesians uninterested in unit root is-
sues (e.g. just estimate a VAR, not worry if cointe-
gration is present or not).



e Likelihood function of AR/VAR does not depend on

whether variable(s) have unit roots.

e Thus, the Bayesians who do write unit root/cointegration

papers typically focus on prior elicitation.



2 Autoregressive Models

e As discussed in lecture on “Forecasting in Dynamic
Factor Models Using Bayesian Model Averaging” AR(p)
model can be written as a linear regression model.

e All our results for Bayesian analysis of regression
model can be used.

e Example based on Geweke (1988, JBES)
e vy, is log real GDP, follows AR(3):

yt = Bo + B1yt—1 + Boys—2 + B3ys—3 + €,
where € i1s i.i.d. N (O,h_l).



Properties of y+ depend on the roots of the polyno-
mial 1 — Z,?:l ;2" (denote by r; for i =1, .., p)

Features of interest: C' = {Two of r; are complex}
and D = {min|r;| < 1}

C' and D are regions which are nonlinear functions

of 81, 82, B3.

C' implies real GDP exhibits an oscillatory response
to a shock

D implies an explosive response to a shock.

Want Pr (B € Cly) and Pr (8 € D|y).



2.1 Posterior Analysis of the AR(p) Model

e Noninformative prior:

1
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e Simple treatment of initial conditions: y = (yp+1, - yT)
and treat yy, .., Yp as fixed initial conditions.

e AR(p) can be written as:

y = XpB+e

/ .
where € = (ep+1, . eN) and X isthe (T — p)x(p+ 1)
matrix containing an intercept and p lags of the depen-
dent variable.



e (Can use derivations from Lecture 2, to say

B,hly ~ NG (B,V,5%,7)
where parameters of distribution are OLS quantities

e Also as in Lecture 2, marginal posterior is multivari-

ate t:

Bly ~t(B,5°V,7)
e But how to get Pr (3 € Cly) and Pr (8 € D|y)?

e If C' and D were defined by linear combinations of
B, then no problem (“linear combinations of t's are
still t"). But they are nonlinear.



Monte Carlo integration: randomly draw from 3|y.

' p _
For each draw, calculate solutionsto 1—3 2" ; 8;2" =
O and see if C' and D are satisfied

The proportion of draws which satisfy C' (or D) will
converge to Pr (8 € Cly) (or Pr(B € Dly))

Formally, this follows since Pr (8 € Cly) = E[I (8 € C|y)]
and Pr(8 € D|y) = E[I (B € Dl|y)], where I(.)
is the indicator function.

US real GDP from 1947Q1 through 2005Q2, Pr (8 € Cly) =
0.021 and Pr (8 € Dl|y) = 0.132.



3 Nonlinear Time Series Extensions
of AR model

e Many of these have the form “conditional on know-
ing threshold /state/regime/breakpoint parameter we
have a linear regression model”

e E.g. TAR, smooth transition autoregressive, Markov
switching models, many structural break models, etc).

e Gibbs sampler (or similar MCMC algorithms) popular

e We will focus on models in the threshold autoregres-
sive (TAR) class

e For TAR analytical results available if we use natural
conjugate prior (no Gibbs sampling required)



3.1 Threshold Autoregressive (TAR) Mod-

els

e 2 regime TAR:

yt = P10+ B11yt—1+ - + Brpyt—pt e ifyp1 < 7
Yt = Bag + BorYi—1+ - + Bopyt—p + et if yp—1 > 7’

e If threshold 7 is known, model can be written as
regression model:

y=XpB+e,

e X has tt" row given by

Dt7 Dtyt—17 E Dtyt—p7 (1 _ Dt) ) (1 — Dt) Yt—1, }



Dy is dummy which equals 1 if y;_1 < 7 and equals
Oif yp_1 > 7.

Can use all our old results for regression model.

E.g. if prioris NG (é, Q, §_2,g) then posterior is

NG (B, Q, 3_2,5) (see Lecture 2 for exact defini-
tions of arguments)

But what if 7 is an unknown parameter?
We need the posterior: p (8, h, T|y).

Could do Gibbs sampling, but an even simpler strat-
egy is possible.

Rules of conditional probability imply:



p(B,h,Tly) =p (B, hlT,y)p(T]y).

e p (B, h|T,y) use results for regression model.

e But what about p(7|y)?

e Remember that the marginal likelihood (see Lecture
1, used in calculating posterior model probability,

etc.) is p (y)

e For given 7, the marginal likelihood can be calculated

for regression model (Lecture 2):

NI

VN o
P(y|7')—c<@> (V32>



Details of formula unimportant (see Lecture 2 for
details). Key thing is that we can calculate p(y|7)

for every value of 7.

Bayes' theorem implies:

p(Tly) c<p(ylT)p (1),

so combine p(y|7) with a prior for 7 to get p (7|y).

Any prior for T can be used.

A common choice is a restricted noninformative one.

E.g. Every value for 7 which implies each regime
contains a minimum number of observations (e.g.
15% of the observations).



e Note: even though y;_q1 is a continuous variable, 7
will be a discrete random variable since there are a
finite number of ways of dividing a given data set

Into two regimes.

e Hence, if 7 € {71, .., 7p+} denotes possible thresh-
old values, then

T*
p(B,hly) =Y p(B,hT=15y)p (T =Tily).
1=1



3.1.1 Example: US GDP Growth
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Posterior Results for TAR
Model with Unknown Threshold

Parameter | Mean | Standard Dev.
B1o 0.542 0.119
B11 0.269 0.139
B1o 0.373 0.101
Bao 0.249 0.242
Bo1 0.384 0.127
Boo 0.196 0.100
o* 0.896 0.083




3.2 Extensions of the Basic TAR Model

e Many extensions of the TAR can be done in this
basic framework

e Basic TAR has last quarter's GDP growth triggering
regime switch.

e But it might be another (exogenous or lagged) vari-
able, z, that is the threshold trigger.

e It may take longer than one period to induce the
regime switch. Thus, introduce d: delay parameter

Yyt = B10+ B11yt—1+ - + Bipyt—p + et if g < 7
Yyt = Bog + Bo1yi—1 + ... + 52pyt—p +eifz g>T°

e Bayesian inference basically the same as for basic
TAR, but now have two unknown parameters: 7 and
d and so interest centres on:



p(B,h,7,dly) =p(B,h|T,d,y)p(7,d|y) .

Same idea as for basic TAR: evaluate marginal like-
lihood for every value for 7 and d and this can be
used to produce p (7,d|y) .

Extension to more than 2 regimes (with 71 and 75
being two thresholds) same idea (evaluate marginal
likelihood for every value for 71,72 and d and this
can be used to produce p (71,72, d|y)

Note: BMA can be used to average over different
choices for z (which may be empirically important).

Allowing for error variance to differ across regimes
may be important (more about this later)



Figure 172 Posteriar of Delay Farameter

Example: US real GDP growth data, are provided in
Table 17.4.

Figure plots the posterior of d.

Strong support for d = 2 [same as in Potter (1995,
JAE)].



4 \Vector Autoregressive (VAR) Mod-

els

e There is a large literature on Bayesian VARs (e.g.
work of Sims)

e Lots of different priors tried (priors = shrinkage which
seems to help forecasting)

e E.g. Kadiyala and Karlsson (1997, JAE) a good
source for different priors.

e Just as AR could be put in form of regression model,

VAR can be put in form of multivariate regression
model (e.g. like a SUR)

e Thereis a natural conjugate prior for the VAR model

which yields analytical results (comparable to analyt-
ical results for AR/TAR done above).



e Bayesian Econometric Methods, Exercise 17.6 does

natural conjugate case.

e | will discuss VAR using an independent Normal-
Wishart prior (same as we used for SUR model).

e Do this partly to provide a variety of priors, but also
because natural conjugate has some restrictive prop-
erties in the VAR case.



e VAR(p) model is:

p
ye=ao+ > Ajyr—; +ey
j=1

where y; for t = 1,..,T is an M X 1 vector containing
observations on M variables

® ag is an p X 1 vector of intercepts and A; is an
M x M matrix of coefficients.

® &+ are independent N (O, H_l)

e But note (similar to our SUR derivations), we can
write the VAR as



Yt = Lt + €¢

where Z; is an M X m matrix of data on explanatory
variables (i.e. lags of all dependent variables and an in-
tercept and other deterministic terms) arranged in the
same manner as we did for SUR model.

e « is now long vector containing all the VAR coeffi-
cients in every equation

e Put in this form, we can do derivations exactly like
for SUR model.

e Priorp(a, H) =p(a)p(H)

e Prior for VAR coefficients

p(a) = fn (ala, V)



e Noninformative prior has V~1 =0

e Wishart prior for the error precision matrix:

H~W (vyg, H)
e Noninformative prior has vy = 0 and ﬂ_l =0

e As we did with SUR, Gibbs sampler can be set up
using p (a|y, H) and p (Hl|y, a).

e Can show

aly, H ~ N (@,V) :

where formula for @, V are on page 140 of textbook.



e And the posterior for H conditional on « is Wishart:

Hly, a ~ W(ﬁ,ﬁ)

where formula for 7 and H are on pages 140-141 of text-
book.

e 5o can set up a Gibbs sampler involving drawing from
Normal and Wishart distributions.



5 Nonlinear VARs

e Many key recent papers use Bayesian methods in
nonlinear extensions of VARs

e E.g. Sims and Zha (2006, AER), Primiceri (2005,
ReStud) Cogley and Sargent (2001, 2005a, 2005b,
various journals), Bernanke, Boivin and Eliasz (2005,

QJE)

e To illustrate this literature and as a way of linking
many threads together (VARs, state space models,
stochastic volatility, etc.) | will present an empirical
application based on Primiceri (2005)

e Cogley and Sargent use a similar framework in their

work.



5.1 Primiceri’'s TVP-VAR

e Macroeconomic background: evolution of monetary
policy

e Extensions of VARs using a few macro variables used.

e Primiceri: US quarterly data on inflation and un-
employment rates ( “non-policy block”) and interest
rates (“policy block™)

e | will not get into macro issues much.

e Suffice it to note: Primiceri has identification restric-
tions to define “monetary policy shock”, calculates
various impulse responses using this (and many other
things).



5.1.1 Primiceri’'s Model

e Remember: we wrote the VAR as

Yt = Lo+ €¢

e /;isan M x m matrix of data on lags of all depen-
dent variables and an intercept.

® c; are independent N (0, Q)

e Note: to be consistent with Primiceri's notation, er-
ror covariance matrix is €2

e Primiceri extends this in two important ways.



a becomes a; (VAR coefficients can change over
time)

Multivariate stochastic volatility: The error covari-

ance matrix evolves over time.

Note: Primiceri allows error variances and covari-
ances to evolve over time in a very general way (many
other papers more restrictive).

There is much interest in volatility issues in empirical
macro today ( “Great Moderation” of business cycle)



5.1.2 Evolution of VAR coefficients

e A standard state space model:

Yt = Ziog + €t

and

Ot1 = O 1 My,

where oy an m x 1 vector of states and 7); are independent

N (0,Q).

e Random walk evolution of VAR coefficients

e In Lecture 5 we discussed Bayesian inference (Gibbs
sampling) with scalar version of this model (exten-
sion to M dependent variables straightforward)



e | have been using Durbin and Koopman (2002) al-
gorithm for this (but many possible).



5.1.3 Multivariate Stochastic Volatility

e Now let 2 become £2;. Many ways to do this.

e Important issue: want error covariances to evolve
over time (many specifications do not allow for this).

e Primiceri (2005) uses a triangular reduction ¢, such

that:

AU AL = 345
or

Q = A7texy (A7)

® 2 is a diagonal matrix with diagonal elements o ¢

(loosely speaking error variances)



e A; is lower triangular matrix with ones on diagonal
(loosely speaking correlations between errors)

e For X ; — stochastic volatility.

e to be precise h; ; = In (ai,t), hy = (hl £y ooy hp,t),
then:

hit1 = he + ug,
where uz is N (0, W)

e Gibbs sampling: draws of h = (k... hy) (condi-
tional on « and the parameters of the model) use
algorithm of Kim, Shephard and Chib (1998)

e What about A;?



/
e Stack into vector as a; = (a21,t7 31, A32 ¢ «+ ap(p—l),t)
and use

at = ar—1 + Cy,

where (; is N (0,C)
e But now we have another state space model

e Durbin and Koopman (2002) algorithm can be used
to draw the states (conditional on other model pa-

rameters).

e Bottom line: Gibbs sampling algorithm can be set up
which draws on off-the-shelf algorithms



5.1.4 Extension | (with coauthors) am Working On

e Primiceri's model says “all model parameters change
every time period” (gradual evolution of coefficients)

e But other structural break models have a small num-
ber of more substantive breaks.

e \Why not nest these two options?

e Dynamic mixture models (Gerlach, Carter and Kohn,
2000, JASA or Giordani and Kohn, 2008, JBES).

e Work with Primiceri's model except for the following
modifications:

o1 = oy + Kiymyg,



hit1 = ht + Kopuy

at = ap—1 + K3:(y.

e Kiq;, Kot and K34 are 1/0 variables indicating whether
a break has/has not taken place

e Hierarchical prior
p (Kjt) = D
for j = 1,2, 3 where p; is unknown parameter (probabil-

ity of break)

e Can use Primiceri's with some extra blocks added to
the Gibbs sampler



e Gerlach, Carter and Kohn (2000) is a very efficient
algorithm for drawing K j; (conditional on other model
parameters).

e Bottom line: | have set up a Gibbs sampler which
combines existing algorithms to carry out posterior
inference in this extension of Primiceri's model.

e Much recent Bayesian empirical macro adapts this
kind of strategy. Gibbs sampling naturally divides
problems into blocks, each block taken from existing
literature.



5.1.5 Preliminary Empirical Results

US data on inflation and unemployment rates and
interest rates 1947Q1-2006Q3

With my extension, | am getting results suggesting
Primiceri's specification is a good one.

E.g. E(p1|Data) = 0.92, E(pp|Data) = 0.97
and E (p3|Data) = 0.62.

Breaks occur in most periods (like in a TVP model).

Figures 1 through 6 illustrate the kind of things Prim-
iceri presents in his paper (of interest to macro pol-

icy)

Figures 1 through 3 are volatilities



e Figures 4 through 6 are correlations between the er-
rors in the VAR

e These are posterior means (i.e. estimates), but could
calculate posterior standard deviations or anything

else (e.g. prediction)
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Figure 1: Vol atility (st dev) in Inflation Equation
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Figure 2: Wolatility (st dev) in Unemployment Equation
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Figure 3: Volatility (st dev) in Interest Rate Equation
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Figure 4: Correlation between Variance in Inflation and unemployment Equation

U.B T T T T T T T T
— TWP
— Mixture

06
.

041 .

Ly

02 L | .f ) \\. \ |
o / " |

_D_B | | 1 1 | | | | |
1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010



Figure 5: Correlation between Variance in Inflation and interest rate Equation
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Figure 6: Correlation between Variance in Unemployment and interest rate Equation
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